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INTRODUCTION 

The liver receives a blood supply both from the portal vein and 

the hepatic artery. Portal venous blood, which is derived from the 

mesenteric veins, constitutes approximately 75% of total blood 

flow to the liver.1 Because large amount of microbes colonize in 

the gut, blood from the intestine contains not only products of 

digestion but also microbial products. Therefore, the liver, the ini-

tial site of filtration of gut-derived products, is susceptible to the 

exposure to the microbial products from the gut, such as lipopoly-

saccharide (LPS).1

In normal condition, translocation of the microbial products 

from the gut to extraintestinal space, including systemic circula-

tion, is effectively prevented by our defense mechanisms: the bar-

rier function of the gut and cleansing and detoxifying function of 

the liver.2 However, disruption of these defense mechanisms can 

lead bacterial translocation to extraintestinal space and aberrant 

activation of immune system, which can trigger harmful or chronic 

inflammations in the liver.3

The importance of bacterial translocation in the pathogenesis of 

alcoholic liver disease has been shown in various previous studies: 

impairment of the function of intestinal tight junction4-7 and bacte-

rial proliferation8,9 by alcohol and/or its metabolites, such as acet-

aldehyde, enhance bacterial translocation into the liver, which in-

duce activation of immune cells, including Kupffer cells, to release 

various pro-inflammatory cytokines and chemokines (Fig. 1).10,11 

Furthermore, various studies suggested that bacterial transloca-

tion also plays an important role in the development and progres-

sion of other types of liver diseases.12-16 Endotoxemia is frequently 

found in patients with cirrhosis, and the degree of endotoxemia 
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is correlated with the degree of liver failure.17,18 In this review, we 

highlight the current knowledge about bacterial translocation and 

its contribution to the pathogenesis of chronic liver diseases and 

portal hypertension.

DEFENSE MECHANISMS IN THE BODY

LPS, glycolipids derived from the outer membrane of gram-

negative bacteria, is a potent activator of immune responses: very 

tiny amount of LPS can induce the manifestations of septic shock 

in human.19,20 Fortunately, the mammals have effective defensive 

mechanisms to prevent this harmful effect of LPS. In healthy ani-

mals, LPS is cleared from the circulation within a few minutes after 

intravenous injection.21,22 Peripheral blood endotoxin concentra-

tion is significantly lower than portal venous endotoxin concentra-

tion, even in patients with liver cirrhosis.23

These defensive mechanisms mainly depend on the barrier 

functions of the gut and the detoxifying capacity of the liver.24 The 

gut epithelium acts as a first-line barrier to the gut microbes and 

prevents exposure of the gut microbes to the host immune system. 

The epithelial cells maintain barrier integrity by microvilli, tight 

junctions, and production of antimicrobial peptides.25-27 These bar-

rier systems of intestinal epithelial cells prevent translocation of 

most of microbial products of gut and only tiny amount of micro-

bial products can reach the liver in healthy condition.28

The liver plays a central role for prevention of translocation 

of gut-derived microbial products to the systemic circulation by 

cleansing and detoxifying microbial products.29 Microbial products 

in the portal venous blood eventually reach to the sinusoids in the 

liver, which contain diverse immunologically active cells, includ-

ing the Kupffer cells, liver dendritic cells, T cells, natural killer T 

cells, and natural killer (NK) cells.28 Not only these immune cells, 

but also liver nonparenchymal cells such as hepatic stellate cells 

and liver sinusoidal endothelial cells, express the LPS receptor and 

remove this molecule to protect the systemic circulation from the 

endotoxemia.30 A previous animal study demonstrated that about 

40-50% of intravenously administered LPS was quickly removed 

by the liver, suggesting the role of the hepatic uptake and detoxi-

fication in the immune homeostasis.31,32 Beside the LPS uptake, 

several other mechanisms also play a role in preventing signifi-

cant immune response to LPS, including LPS-binding molecules, 

enzymes which degrade the lipid A moiety of LPS to decrease its 

activity, and LPS neutralization by serum lipoproteins.33-36 Further-

more, the liver usually tolerates bacterial products to avoid harm-

ful responses.28 The hepatic immune system, including Kupffer 

cells, NK cells, NKT cells, T cells, and B cells, strictly regulate the 

liver immune system including liver tolerance.3

Figure. 1. Schematic presentation of the gut-liver axis and bacterial translocation. In normal condition, bacterial 
translocation from the gut to the liver is effectively prevented by gut barrier function. Furthermore, although 
small amount of bacteria or its products, such as lipopolysaccharide (LPS), can enter into the liver, they are 
rapidly removed by cleansing and detoxifying function of the liver. Therefore, activation of the immune cells and 
subsequent induction of inflammation is effectively prevented. However, in the pathologic condition, bacterial 
translocation is increased by impaired barrier function, bacterial overgrowth, and compositional change of gut 
flora (the increase of pathologic bacteria). Therefore, large amount of LPS can enter into the liver and induce 
immune cell activation and inflammation. In liver immune cells, particularly in the Kupffer cells, LPS induces 
proinflammatory pathway via TLR4 to produce proinflammatory cytokines, chemokines, and interferons.
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DISRUPTION OF GUT BARRIER FUNCTION AND 
THE DEVELOPMENT OF BACTERIAL TRANSLO-
CATION

It is well known that bacterial translocation is closely associated 

with the development of complications of liver cirrhosis, such as 

spontaneous bacterial peritonitis, the hyperdynamic circulatory 

state, and hepatic encephalopathy.37-39 Bacterial translocation is 

defined as the migration of bacteria or bacterial products from the 

gut to the extraintestinal space.40 Increased intestinal permeability 

induced by disruption of the intestinal epithelial barrier function 

contributes to the development of bacterial translocation.3,28,41 In 

addition, intestinal bacterial overgrowth and changes in the com-

position of bacterial flora in the gut can promote bacterial translo-

cation.39,40,42

Increased gut permeability

The gut epithelium plays an important role in the immune 

homeostasis in the gut by acting as the first barrier against the 

bacterial translocation of gut microbiota.43-44 Because gut barrier 

system by intestinal epithelial cells prevent translocation of large 

amounts of bacteria and bacterial products from the gut, only 

very small amount of them can reach the liver in a healthy state.28 

However, this effective gut barrier function can be disrupted by 

various pathological conditions and this disruption leads to bacte-

rial translocation.3,28,41 For example, alcohol can play a role in the 

pathogenesis of alcoholic liver disease by disrupting the gut bar-

rier function: alcohol itself as well as its metabolite, acetaldehyde, 

inhibit tight junction protein expression;44,45 alcohol can impair 

microtubule cytoskeleton in intestinal epithelial cells by inducing 

nitric oxide;46 and transepithelial electrical resistance is reduced 

in alcohol-exposed colon epithelial cells, which leads to impaired 

barrier function.24 In addition, liver-derived inflammatory cytokines 

can further increase gut permeability by disruption of gut epithe-

lial tight junctions.47

Bacterial overgrowth

Bile acid secretion is decreased in patients with liver cirrho-

sis and this could lead bacterial overgrowth and compositional 

change in the intestine in these patients.48,49 In addition, the fact 

that liver cirrhosis and portal hypertension could impair intestinal 

motility may also contribute to the development of intestinal bac-

terial overgrowth.50 Previous study suggested that gastrointestinal 

transit is delayed in patients with liver cirrhosis and this delay 

could be improved with antibiotic therapy.51 Several studies sug-

gested that the duration of the migrating motor complex are pro-

longed and the frequency of clustered contractions are increased 

in patients with liver cirrhosis, and these small intestinal motility 

disturbances are related with the severity of liver failure in these 

patients.52,53

Changes in the composition of gut flora

The composition of the intestinal bacteria is influenced by the 

environment, diet, and host factors.25,54,55 It could be changed 

by certain diseases, including liver cirrhosis. In liver cirrhosis, the 

normal intestinal microbial community is disrupted due to the 

decrease in gastric acidity, intestinal motility, and biliary secre-

tions.56,57 Actually, a previous analysis of fecal microbiome in 

patients with cirrhosis suggested that fecal microbial communi-

ties are significantly different when compared to those in healthy 

individuals: increased prevalence of pathogenic bacteria, such as 

Enterobacteriaceae and Streptococcaceae, and decreased benefi-

cial Bifidobacteria  and Lachnospiraceae  were noted in patients 

with liver cirrhosis.58,59 A previous animal study also reported 

the increased aerobic/anaerobic bacterial ratio in mice with liver 

fibrosis.60 In addition, liver cirrhosis induced by CCl4 in rats was 

also associated with high levels of Enterobacteriaceae.61 They also 

suggested that treatment with antibiotics or probiotics lead de-

crease in Enterobacter  as well as increase in Bifidobacterium and 

Lactobacillus , which in turn lead to decreased systemic endotoxin 

levels and improve in the liver function.61 Similarly, treatment with 

probiotics or antibiotics in patients with liver cirrhosis reduced the 

prevalence of bacterial infection and hepatic enephalopathy62-64 

and partially reversed the hyperdynamic circulatory state in these 

patients.65 A very recent study suggested that modulation of the 

intestinal microbiota is a critical determinant of nonalcoholic fatty 

liver disease (NAFLD) as well as multiple other aspects of meta-

bolic syndrome.66

LPS RECEPTORS AND DOWNSTREAM SIGNAL-
ING PATHWAYS IN THE LIVER

In normal condition, only very small amount of bacteria or bac-

terial products, such as LPS, can enter the liver by the action of gut 

barrier function, where they are sensed and cleared by immune 

cells, particularly by Kupffer cells. However, in the pathologic 
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condition with disrupted gut barrier function, the entry of bacteria 

and bacterial products to the liver is increased and homeostasis 

of the gut-liver axis is impaired, which eventually induce activa-

tion of liver immune cells, particularly Kupffer cells, to produce 

pro-inflammatory mediators.67-69 Previous studies suggested that 

bacterial translocation and resultant Kupffer cell activation are the 

main mechanisms of the pathogenesis of alcoholic liver disease.70 

This suggestion is supported by the finding in animal models that 

alcoholic liver disease could be attenuated by gut sterilization with 

antibiotics or Kupffer cell elimination.71-73 Translocated bacterial 

products activate the hepatic immune cells through pattern rec-

ognition receptors, such as toll-like receptors (TLRs) and NOD-like 

receptors (NLRs). Recent studies suggested that TLR4 in hepatic 

stellate cells (HSCs) also responds to LPS to activate Jun N-termi-

nal kinases (JNK) kinase and NFκB.74 Oxidative stress induced by 

alcohol and its metabolites is also involved in the induction of liver 

fibrosis by sensitizing HSC to LPS.75,76

Toll-like receptors

TLRs, a family of pattern-recognition receptors, are trans-

membrane proteins originally identified in mammals on the basis 

of their homology with Toll, a Drosophila  receptor that contributes 

to development in the embryo, and the production of antimicro-

bial peptides against microorganism invasion in the adult fly.77,78 

TLRs recognize pathogen-derived molecules−i.e., structural 

components unique to bacteria, fungi, and virus−and activate 

inflammatory responses including cytokine and type I interferon 

(IFN) production in response to this recognition.79 Previous stud-

ies suggested that hepatic non-immune cells, including HSCs and 

endothelial cells, respond to bacterial products through TLRs.3,28 

Until now, ten TLRs have been identified in humans,80 while TLR4 

was the first identified isoform that responds primarily to LPS.79

TLR4 plays a pivotal role in the activation of innate immune re-

sponses to LPS.81,82 TLR4 cannot directly bind to LPS and therefore, 

co-receptors, CD14 or MD-2, are needed for LPS binding to TLR4 

and TLR4 activation.83-85 Two pathways for downstream signal-

ing of TLR4 activation are demonstrated: MyD88-dependent and 

MyD88-independent pathways.86 In the MyD88-dependent signal-

ing pathway, association of the intracellular TLR domain of TLR4 

with the adapter molecule MyD86 through TRAM, which results 

in downstream activation of the IL-1 receptor-associated kinase 1 

(IRAK1)/4/tumor necrosis factor receptor (TNFR)-associated factor 

6 (TRAF6) complex and further activation of the IκB kinase (IKK) 

kinase complex that phosphorylates IκB to allow nuclear trans-

location of NF-κB.87 NF-κB binding to the NF-κB responsive ele-

ment in the promoter region of pro-inflammatory cytokine genes 

results in the production of TNFα, and other pro-inflammatory cy-

tokines and chemokines.88 MAP kinases including c-JNK and p38 

activate transcription factor AP-1. Activation of these transcription 

factors induces transcription of proinflammatory cytokines, such 

as TNF-α, IL-6, and IL-1β.89 Except for TLR3, all TLRs activate the 

MyD88-dependent pathway. In the MyD88-independent signal-

ing pathway, recruitment of the adaptor TIR domain-containing 

adaptor inducing IFN-β (TRIF), TRAF6, to TLR4 and TANK-binding 

kinase (TBK)/IKKε phosphorylation induce phosphorylation of 

the interleukin regulatory factor 3 (IRF3), which in turn leads to 

IRF3 nuclear translocation and induction of type-I IFNs.88,90 Both 

MyD88-dependent and MyD88-independent pathways are acti-

vated after LPS-TLR4 interaction, while only one of these path-

ways are activated in other TLRs.

The importance of the TLR4 signaling pathway in the pathogen-

esis of alcoholic liver disease is evidenced by the previous animal 

study showing that decreased steatosis and inflammation and 

significantly reduced levels of pro-inflammatory cytokines, includ-

ing serum TNF-α and IL-6, in the TLR4-deficient mice after chronic 

alcohol feeding.91 In addition, a previous study suggested that 

chronic alcohol exposure not only results in immune cell activation, 

but also sensitizes cells to LPS-induced pro-inflammatory signals 

by reduction in the expression of IRAK-M, a negative regulator of 

TLR4 activation.67 A critical role of LPS and TLR4 is suggested also 

in the pathogenesis of NAFLD: lipid accumulation, inflammation 

and fibrosis were significantly attenuated in TLR4 knockout mice 

after methionine choline-deficient diet.14,92

Recent studies suggested that TLR4 signaling can be activated 

not only by pathogen-associated molecular patterns (PAMPs), but 

also by some endogenous ligands, damage-associated molecular 

patterns (DAMPs), from cellular compartments which are released 

from damaged cells or tissues.79 DAMPs-induced TLR4 activation 

also can induce inflammation, which is called sterile inflammation 

because this inflammation is caused without infections.93 There-

fore, DAMPs as well as PAMPs play a role in the pathogenesis and 

progression of liver diseases through activation of TLR signaling.3

NOD-like receptors and inflammasomes

NLRs is the members of the pattern recognition receptor family 

and they forms cytoplasmic multi-protein complexes, inflamma-

somes, with pro-caspase-1, the effector molecule, with or without 

the adapter molecule, such as the apoptosis-associated speck like 
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CARD-domain containing protein (ASC).94-96 Inflammasomes are 

activated by sensing PAMPs or DAMPs via NLRs,97,98 and leads to 

activation of inactive pro-caspase-1 into active caspase-1, which 

in turn, induce cleavage of pro-inflammatory cytokines, including 

pro-interleukin (IL)-1β and pro-IL-18, into active forms of IL-1β and 

IL-18, respectively.94,99 IL-1β is a pro-inflammatory cytokine and 

plays a central role in regulation of inflammation by binding to the 

IL-1 receptor. IL-18 induces activation and IFNγ production of NK 

cells.100

Previous studies suggested that LPS significantly induces 

the mRNA expression of inflammasome components, including 

NLRP3, ASC, and caspase-1, and pro-IL-1β and pro-IL-18 via NFκB 

activation.101,102 Serum levels of IL-1β were increased in alcoholic 

lever disease.103,104

CLINICAL SIGNIFICANCE IN CHRONIC LIVER 
DISEASES AND PORTAL HYPERTENSION

Alcohol can disrupt the intestinal epithelial cell tight junctions 

to impair the gut barrier function, which induce bacterial translo-

cation and elevated endotoxin levels in the portal blood flow.105-107 

Impaired gut permeability was also reported in NAFLD.12,16 A re-

cent study suggested that modulation of the intestinal microbiota 

through multiple inflammasome components is a critical determi-

nant of NAFLD/nonalcoholic steatohepatitis progression as well 

as multiple other aspects of metabolic syndrome such as weight 

gain and glucose homeostasis.66 In liver cirrhosis, the changes in 

intestinal motility and subsequent alteration of microflora content, 

decreased mucosal integrity, and suppressed immunity in hepatic 

fibrosis contribute to failure of the intestinal mucosal barrier with 

subsequent increases in bacterial translocation and LPS levels in 

hepatic fibrosis and cirrhosis.40,108-112

Consistently, plasma level of LPS is increased in patients with 

chronic liver diseases by viral hepatitis,31,112 alcohol,114,115 and 

NAFLD.116 Liver injury can be prevented by elimination of gram-

negative microflora with Lactobacillus  or antibiotics or Kupffer cell 

depletion with gadolinium chloride.71,72,117 Therefore, LPS-induced 

Kupffer cell activation is currently considered as a main mechanism 

for pathogenesis of alcoholic liver disease.118 Similarly, genetically 

obese rodents showed increased sensitivity to endotoxin119 and 

LPS challenge enhance the liver injury and induce inflammatory 

cytokine in mice with NAFLD.120 Some studies suggested that gut 

flora contribute to the pathogenesis of steatohepatitis in mice with 

fatty liver121 and treatment with probiotics reduce hepatic injury 

in obese mice.122 Furthermore, a previous study suggested that 

LPS-induced inflammation is involved in the pathogenesis of liver 

cirrhosis in patients with chronic viral hepatitis.123 Intraperitoneal 

administration of LPS can increase portal pressure124 and increased 

portal pressure can increase intestinal permeability.23,125,126 Bacte-

rial translocation and increased production of proinflammatory 

cytokines and nitric oxide further impair contractility of mesenteric 

vessels in patients with cirrhosis, which could further increase por-

tal pressure.127,128

A previous study reported that liver fibrosis and inflammation 

were significantly reduced after bile duct ligation in the TLR4-

mutant mice and they suggested that LPS-TLR4 pathway play 

a crucial role in the hepatic fibrogenesis.129 It is supported by a 

large cohort study demonstrating that the TLR4 single nucleotide 

polymorphism predicts the risk of liver cirrhosis in patients with 

chronic hepatitis C infection.130

CONCLUSION

Various evidences suggest the gut-liver axis−from disruption of 

gut barrier function, bacterial translocation, and increase in LPS 

in the liver and systemic circulation to TLR and/or inflammasomes 

activation and production of proinflammatory cytokines−as the 

main mechanism of chronic liver disease and portal hypertension. 

Therefore, understanding this axis and the signaling pathway may 

provide new targets for the prevention or treatment of liver cirrho-

sis and portal hypertension.
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