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ABSTRACT 
Acronyms and abbreviations within electronic clinical texts are widespread and often associated with multiple senses. 
Automated acronym sense disambiguation (WSD), a task of assigning the context-appropriate sense to ambiguous clinical 
acronyms and abbreviations, represents an active problem for medical natural language processing (NLP) systems. In this 
paper, fifty clinical acronyms and abbreviations with 500 samples each were studied using supervised machine-learning 
techniques (Support Vector Machines (SVM), Naïve Bayes (NB), and Decision Trees (DT)) to optimize the window size and 
orientation and determine the minimum training sample size needed for optimal performance. Our analysis of window size 
and orientation showed best performance using a larger left-sided and smaller right-sided window. To achieve an accuracy 
of over 90%, the minimum required training sample size was approximately 125 samples for SVM classifiers with inverted 
cross-validation. These findings support future work in clinical acronym and abbreviation WSD and require validation with 
other clinical texts. 

1. INTRODUCTION 
Acronyms and abbreviations within clinical texts are widespread, and their use continues to increase1-3. Several reasons for 
this ongoing growth include adoption of electronic health record (EHR) systems with increased volume of electronic clinical 
notes accompanied by the wide usage of acronyms and abbreviations2, the time-constrained nature of clinical medicine 
encouraging the use of shortened word forms, and a longstanding tradition of commonly using acronyms and abbreviations in 
clinical documentation1. The process of understanding the precise meaning of a given acronym or abbreviation in texts is one 
of several key functions of automated medical natural language processing (NLP) systems4 and is a special case of word 
sense disambiguation (WSD)5. Automatic meaning discrimination by a machine is a complex  task that is critical to accessing 
information encoded in clinical texts6, 7. Improved acronym and abbreviation WSD methods can therefore enhance automated 
utilization of clinical texts to support diverse applications that rely on NLP.  

Acronyms and abbreviations each have a short form (the acronym or abbreviation) and a long form (the expansion of the 
acronym or abbreviation). In clinical documents, the expanded long form is rarely proximal to the short form of the acronym 
or abbreviation2, 8 because clinical texts rarely conform to the formalism of enclosing the long form in parentheses after the 
first mention of the abbreviation, as is customary in scientific literature9. This lack of the formalism is one of the significant 
barriers associated with using clinical texts for NLP research, which has resulted in limited data resources for research. 
Because of this informality and the shortage of the available resources/research, while researchers have explored the use of 
supervised machine learning (ML) approaches for acronym and abbreviation WSD3, 5, 10, some of the related issues with 
optimal window size and orientation and with training sample size minimization to reduce the associated cost and time to 
manually annotate training corpora remain open3, 10.  

In this paper, we have three objectives: (1) to understand and validate the relative value of different features to automatically 
disambiguate senses of 50 clinical acronyms and abbreviations; (2) to determine the optimal window size and orientation for 
obtaining features for acronym and abbreviation sense disambiguation; and (3) to estimate minimum sufficient training 
sample size for good performance in the inverted cross-validation settings using supervised learning approaches.  

2. Background 
2. 1 Broad classes of features for WSD 
Types of predictive features from clinical notes can be grouped into domain knowledge-based, linguistic, statistical, and 
general document features. These features utilize techniques developed in the biomedical NLP and computational linguistics 
domains. Optimal feature selection for WSD therefore requires a comprehensive understanding of the strengths and 
weaknesses of each feature type to maximize valuable information used for feature sets as input into ML algorithms.  

Because clinical notes are based upon medical knowledge, biomedical and clinical domain resources can serve as the 
knowledge base to enhance clinical WSD algorithms. In particular, the Unified Medical Language System (UMLS)11 and the 
Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT)12 are terminology resources in the biomedical and 
clinical domains respectively. These resources are used by the medical NLP community not only because they provide 
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knowledge sources for identification of medical terms, but also because they offer semantic information and ontological 
relationships3, 4 that may be used to compute semantic similarity measures between concepts that can subsequently serve as 
features for ML13. On the other hand, while medical terminologies have face-validity of concept coverage, the curation and 
quality of these resources are variable for different subject domains and must be considered in any error analysis involving 
the use of these resources14. Automatic tools for the UMLS have been used with success in biomedical WSD research. For 
example, MetaMap automatically maps terms in texts to biomedical concepts of the UMLS15. McInnes et al.16 showed that 
Concept Unique Identifiers (CUIs) generated by MetaMap to biomedical concepts of the UMLS to be good features for 
general WSD using supervised ML algorithms in the biomedical domain. Leroy and Rindflesch17, 18 examined semantic types 
and groups with MetaMap. These ontology features produced high variability in accuracy of supervised ML algorithms, 
because these features rely on complicated hierarchical semantic knowledge representation and have low granularity19.  

Linguistic features are based upon patterns of human natural languages and are applicable to clinical notes that result from 
human communication in the clinical domain. These features represent characteristics of language in general and reflect 
structural properties of a particular language that are independent of the medical domain. Automatic tools, like the Stanford 
part-of-speech (POS) tagger20 or MedPOST21, have been trained on general English and biomedical discourse, respectively. 
However, these tools may not always perform well with clinical texts due to frequent deviations from the standard English 
sentence structure22. The most common linguistic feature set used in WSD is POS information, which indicates the syntactic 
category of a given word as it is used within a sentence. Mohammad and Pedersen23 utilized lexical and syntactic features to 
improve performance of supervised classifiers for general English WSD.  

Statistical features utilize distribution and co-occurrence of features of a given corpus. Because humans often describe ideas 
with similar words, these features are powerful and supported through well-established statistical theories, technologies, and 
tools. However, one of the weaknesses of these approaches is the difficulty of detecting rare cases or minor senses. In 
contrast, parameters of statistical models can increase bias through overfitting. Bag-of-words (BoW) is the simplest example 
of using the frequency of lexical items surrounding the ambiguous word as a predictive statistical feature24. Despite its 
apparent simplicity and a number of limitations, BoW approach has been demonstrated in previous studies to provide high 
quality information for many WSD tasks3, 10. Joshi et al.10 explored BoW and term frequency applying supervised approaches 
to improve accuracy of ML algorithms. Liu et al.25 investigated diverse feature sets including BoW with 15 biomedical 
abbreviations with supervised ML algorithms. In this later study, the authors show that BoW or BoW with a few word-based 
features (corresponding orientation within a three word windows with three nearest two-word collocations) produce the best 
performance for abbreviation disambiguation.  

Finally, general document features include information related to the global discourse structure (e.g., document title or 
section headings). Document characteristics may be indicative of a type of the medical document or clinical sub-specialty and 
may help narrow down a particular rule set for a particular NLP task26. Discourse information therefore incorporates 
idiosyncrasies of clinical documentation into predictive features for WSD. For instance, Xu et al.8 used in part section 
information to build 12 sense inventories from a repository of admission notes through semi-supervised ML methods. One 
limitation of this class of features is that clinical notes do not always use the same structural format for the same note type, 
even within the same hospital system or same EHR system. This set of features may also require significant domain 
knowledge and development of specific rules based upon context, also resulting in a large overhead and lower scalability26.  
 

2.2 Feature selection considerations 
Even though researchers have used diverse approaches for WSD, limited studies in the clinical domain make optimal feature 
sets, optimal window size and orientation, and training sample size optimization an open question3, 10. Major findings in the 
literature include the following:  

(1) Harmonic feature combinations without overfitting results in high performance of supervised ML algorithms3, 10. 
(2) BoW has good performance for disambiguation and simple implementation compared to other single features10. 
(3) Wider window sizes (entire abstract) surrounding the ambiguous target word provide better performance for  

WSD within biomedical text10, 16 compared to general English text25. 
(4) UMLS CUI as a feature has better accuracy than UMLS semantic type information16.  

To obtain optimal “learning”, supervised ML algorithms are required to have enough training samples. Liu et al.25 found 
supervised classifiers require at least “a few dozens of instances” for each sense. Xu et al.27 scrutinized “required sense size,” 
and found that increasing the training sample size tends to diminish the error rate if senses are well separated semantically. 
They also found that a well-separated sense distribution did not affect performance and error rate corresponds to the 
similarity of senses, and the major classifier performs competitively if the distribution of the majority sense is more than 
90%. 
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3. METHODS 
3.1 Data sets 
Clinical notes from Fairview Health Services 2004 to 2008 from four metropolitan hospitals in the Twin Cities were used 
from our research repository. These 604,944 notes were created primarily from voice dictation and transcription with the 
option of manual editing and included admission notes, inpatient consult notes, operative notes, and discharge summaries.  

The 440 most frequently used clinical acronyms and abbreviations were identified using a hybrid heuristic rule-based and 
statistically-based technique. Potential acronyms and abbreviations were chosen if they consisted of capital letters with or 
without numbers and symbols (periods, comma, colon, or semicolon) and occurred over 500 times in the corpus. For each 
acronym or abbreviation, 500 random occurrences of the acronym and abbreviation were selected within the corpus, along 
with the surrounding previous and subsequent 12 word tokens and presented to two physicians to manually annotate for the 
senses of the potential acronyms or abbreviations. These 500 occurrences could potentially be extracted from the same 
discourse if the target acronym or abbreviation was repeated within the discourse. We selected 24 surrounding words as a 
conservative set of surrounding text, since previous work has demonstrated that humans can properly comprehend meaning 
given approximately five words including an acronym or abbreviation in the center position7. The inter-annotator agreement 
of the annotated sense was reported as Kappa with an overlap of 11,000 instances. Percentage agreement was 92.40% and 
Kappa statistic was 0.84 overall indicating a reasonable inter-rater agreement. These manual annotations were used as the 
gold standard.  

Among 440 data sets, 50 acronyms and abbreviations were used for this study. We considered those acronyms and 
abbreviations with a majority sense less than or equal to 95%, then selected the same number of sets according to their 
majority sense ratio. Table 1 shows the 50 acronyms and abbreviations according to their major dominant sense rates. Table 2 
summarizes the senses of acronyms and abbreviations and their coverage in the 500 samples. For example, ‘CVA’ has two 
different senses “cerebrovascular accident” (278 samples, 55.6% - majority sense) and “costovertebral angle” (222 samples, 
44.4%).  

 
Table 1. Distributions of annotated senses of selected clinical acronyms and abbreviations 

 

 

3.2 Features 
For this study, the following features were included and defined as follows: 

• Window size is the number of word tokens on each side of the given acronym or abbreviation. Window size was varied 
as follows: ±3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 words, entire section, and entire document levels. The 
sentence level was not analyzed separately in our experiments because of the lack of formal sentence structure within 
clinical notes. On average, the number of word tokens per document section was 67.97 and for a given note was 391. 
The window size of 3 means that three previous word tokens, the given acronym or abbreviation, and three post word 
tokens were included in the window. Windows were also examined asymmetrically (e,g., more context on the left of the 
acronym than on the right) to understand the relative value of the left and right-sided information. 

• Bag-of-words (BoW) uses each unique word as a feature in a non-weighted vector, not considering word order. Taking 
into account frequency and form (i.e. stems) of words, Lexical Variant Generation (LVG)28 normalization tool 
distributed with MetaMap was used to normalize the 1,000 most frequent words. We limited normalization to the most 
frequent items in order to speed up the processing for a large number of experiments conducted in this study. We 
recognize, however, that normalization of lower frequency words may be of further but likely marginal benefit. We also 
experimented with BoW both with and without stop words29 to further reduce the feature space..  

 

 

Proportion of majority sense Number  of senses Acronyms and Abbreviations 
90 ~ 95% 5 BAL, CVS, DIP, IM, OTC 
85 ~ 90% 5 C&S, CEA, CVP, ER, FISH 
80 ~ 85% 5 ASA, MSSA, PE, SBP, T4 
75 ~ 80% 6 AVR, CA, CTA, IR, NAD, RA 
70 ~ 75% 4 AV, PDA, SA, SMA 
65 ~ 70% 5 AB, BK, DT, LE, RT 
60 ~ 65% 3 IVF, MR, OP 
55 ~ 60% 5 CVA, DC, DM, PCP, VBG 
50 ~ 55% 5 C4, CDI, PAC, PR, T3 
45 ~ 50% 2 C3, T2 
Less than 45% 5 AC, IT, MP, PA, T1 
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Table 2. Annotated senses for selected acronyms and abbreviations in clinical corpus  
Abbr Sense Rate% Abbr Sense Rate% Abbr   Sense Rate% 

abortion 69.0 distal interphalangeal 92.4 posterior-anterior 42.4 
blood group in ABO system 27.4 desquamative interstitial 

pneumonia  7.2 pulmonary artery 27.6 AB 
other 10 senses 3.6 

DIP 
dipropionate  0.4 physician associates 16.6 

acromioclavicular 31.8 dextromethorphan 57.2 physician assistant 12.2 
adriamycin cyclophosphamide 23.6 diabetes mellitus 41.8 

PA 

other 4 senses  1.2 
(drug) AC 21.8 

DM 
other 2 senses 1.0 premature atrial contraction  55.0 

before meals 18.8 diphtheria-tetanus 67.2 physician assistant 
certification  27.4 

AC 

other 6 senses 4.0 delirium tremens 25.8 post anesthesia care  9.2 
acetylsalicylic acid 80.8 dorsalis pedis:DP* 4.4 picture archiving 

communication  5.0 
American Society of 
Anesthesiologists 18.6 

DT 

other 4 senses 2.6 

PAC 

other 5 senses  3.4 ASA 

aminosalicylic acid 0.6 emergency room 89.6 pneumocystis carinii 
pneumonia 58.8 

atrioventricular 74.8 extended release 6.8 primary care physician 22.2 
arteriovenous 23.2 

ER 
estrogen receptor 3.6 phencyclidine 18.6 AV 

other 2 senses 2.0 fluorescent in situ 
hybridization 89.8 

PCP 

other 2 senses 0.4 
aortic valve replacement 76.2 

FISH 
General English (‘fish’) 10.2 posterior descending artery 72.2 

augmented voltage right arm 20.6 intramuscular 92.2 patent ductus arteriosus 27.6 AVR 
other 5 senses 3.2 intramedullary  7.6 

 
PDA 

 patient-controlled 
analgesia:PCA†  0.2 

bronchoalveolar lavage 91.2 
IM 

unsure sense 0.2 pulmonary embolus 81.6 
blood alcohol level 8.6 interventional radiology 78.8 pressure equalization 17.8 BAL 
unsure sense 0.2 immediate-release 20.4 

PE 
other 2 senses 0.6 

BK (virus) 68.6 
IR 

other 3 senses 0.8 pr interval 50.4 BK below knee 31.4 General English 45.0 per rectum 28.2 
conjunctivae and sclerae 86.8 information technology 20.6 progesterone receptor 17.6 
culture and sensitivity 9.4 intrathecal  11.6  

 
PR 

 other 3 senses 3.8 C&S 
other 3 senses 3.8 ischial tuberosity  9.6  right atrium 78.8 
cervical 3 49.8 iliotibial  7.0  rheumatoid arthritis 13.2 
component 3 48.6 intertrochanteric  2.8  room air 7.2 C3 
other 2 senses 1.6 

IT 

other 4 senses 3.4 
RA 

other 2 senses  0.8 
cervical 4 52.2 in vitro fertilization 61.6 radiation therapy 67.2 
component 4 46.2 intravenous fluid 37.2 respiratory therapy 29.6 C4 
other 3 senses 1.6 

 IVF 
unsure senses 1.2 

RT 
other 5 senses 3.2 

cancer 78.2 leukocyte esterase 68.4 slow acting/sustained action 74.0 
carbohydrate antigen 21.0 lower extremity 26.8 sinuatrial 17.6 CA 
other 2 senses 0.8 

LE 
 other 7 senses 4.8 unsure senses 6.6 

Children's Depression 
Inventory 54.0 metacarpophalangeal 35.4 

 
SA 

 other 4 senses 1.8 

center for diagnostic imaging 45.0 mercaptopurine 21.4 spontaneous bacterial 
peritonitis 83.4 CDI 

other 2 senses 1.0 metatarsophalangeal/metacarp
ophalangeal 21.0 

SBP 
systolic blood pressure 16.6 

carcinoembryonic antigen 88.6 metatarsophalangeal 10.8 superior mesenteric artery 70.6 
carotid endarterectomy 10.6 unsure senses 6.8 sequential multiple 

autoanalyzer 16.8 CEA 
other 3 senses 0.8 

MP 
 

other 4 senses 4.6 spinal muscular atrophy 11.2 
clear to auscultation 79.2 magnetic resonance 62.8 

SMA 

other 3 senses 1.4 
computed tomographic 
angiography 20.0 mitral regurgitation 35.2 tumor stage 1 39.6 CTA 
other 3 senses 0.8 

 
MR 

 other 4 senses 2.0 thoracic vertebra 1 38.8 
cerebrovascular accident 55.6 modified selective severity 

assessment 83.6 T1 (MRI) 20.6 
CVA 

 costovertebral angle 44.4 
 

MSSA methicillin-susceptible 
Staphylococcus aureus 16.4 

T1 
 

other 2 senses 1.0 
central venous pressure 87.2 no acute distress 75.4 T2 (MRI) 45.4 
cyclophosphamide, vincristine, 
prednisone 12.4 NAD nothing abnormal detected 24.6 tumor stage 2 33.2 CVP 
cardiovascular pulmonary 0.4 oropharynx 61.6 thoracic vertebra 2 19.4 
chorionic villus sampling 91.4 oblique presentation/occiput 

posterior 24.2 

T2 
 

other 3 senses 2.0 
cardiovascular system 8.2  operative 11.0 triiodothyronine 53.6 CVS 
customer, value, service  0.4 

 

OP 

other 5 senses 3.2 tumor stage 3 31.2 
discontinue 56.4 over the counter 93.8 thoracic vertebra 3 12.8 
direct current 30.4 OTC ornithine transcarbamoylase 6.2 

 
T3 

 other 2 senses 2.4 
discharge  6.2    thyroxine 84.8 
District of Columbia 6.2    thoracic vertebra 4 8.2 

DC 

other 3 senses 0.8    
T4 

tumor stage 4 7.0 
vertical banded gastroplasty 59.8 * DP (dorsalis pedis) should be used instead of DT 

† PCA (patient-controlled analgesia) should be used instead of PDA 
 
VBG venous blood gas 40.2 
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• Concept Unique Identifiers (CUIs) were generated from MetaMap. Unique or multiple CUIs were obtained by putting 
the phrase of a given window size including the acronym or abbreviation into MetaMap. Metamap also generates a score 
for each potential mapped CUI with a maximum score of 1000 (high likelihood of a positive match). Score cutoffs were 
varied in our analysis as shown in the Results section.  

• Semantic types were generated from each of the CUI mappings. The feature set consisted of unique or multiple semantic 
types generated by putting the selected phrase within a given window size including the acronym or abbreviation into 
MetaMap. Semantic type groups were also used, aggregating into the pre-defined 15 groups proposed by McCray et al30. 

• Position information in clinical notes was defined as the relative position of the acronym at the section level and 
document level. Positions were calculated relatively as the location of the target abbreviations over total words of each 
level. 

• Section information from clinical notes is a local contextual feature. We extracted the relevant section information for 
the given sample as the closest previous section header to the target acronym or abbreviation. Four heuristic conditions 
were used to detect section information for the given acronym or abbreviation: (1) the previous line is an empty line or 
other line return symbol only; (2) the position of phrase starts at the beginning of a line; (3) the section indicator symbol 
“:”; and (4) words from the beginning to the section indicator symbol in the line are written in upper case characters. A 
physician merged sections tags manually because of the variability in expression for sections names in clinical notes. 

• Word level POS tags were generated using the Stanford POS tagger. POS tags were collected by putting the word chunk 
with a given word window size including the acronym or abbreviation into the Stanford POS tagger. 

3.3 Algorithms and evaluation 
Three fully supervised classification algorithms (Naïve Bayes, Support Vector Machines, and Decision Tree) were 
implemented with different window sizes using the 10-fold cross-validation setting in Weka (NaiveBayes, LibSVM, and J48 
with the default settings), respectively. Window sizes and orientations were also varied to include different numbers of left or 
right word tokens to find optimal window orientation. Accuracy was reported for system performance with 10-fold cross-
validation. Baseline performance was considered to be the majority sense, which helped in evaluating the performance of our 
ML algorithms. BoW without LVG or stopwords was used for these simulations as a representative baseline methodology. 

To explore minimum training sample sizes for acronyms and abbreviations we used inverted cross-validation (ICV). With 
IVC, various size sub-sets of samples of the acronym or abbreviation were used one time for testing by ICV and the results 
for sub-sets were averaged to assess performance. ICV is a useful approach for estimating the minimum number of samples 
required to reach stable performance at a desired accuracy level. Because the average number of senses of selected acronyms 
and abbreviations was 4.72, we used ICV with 100 and lower number of iterations. Table 3 illustrates training and testing 
sample sizes with various ICV or cross-validation for each evaluation. For inverted cross-validation, the average accuracy of 
simulations was reported for the system performance. 

 
Table 3. Setting parameters of various cross-validation per acronym or abbreviation 
 100 ICV 50 ICV 25 ICV 20 ICV 10 ICV 5 ICV 4 ICV 2 CV 5CV 10CV 
Number of training samples 5 10 20 25 50 100 125 250 400 450 
Number of testing samples 495 490 480 475 450 400 375 250 100 50 
Number of simulations 100 50 25 20 10 5 4 2 5 10 

 

4. RESULTS 
When aggregating the performance, particularly overall accuracy for 50 acronyms and abbreviations, there were several 
general findings. From the perspective of classifiers, similar performance was achieved regardless of the classifier type with 
10-fold cross-validation. However, SVM classifiers tended to show slightly better performance compared to NB classifiers, 
and NB classifiers tended to show better performances compared to DT classifiers. With respect to individual features, most 
features contain better information relative to the baseline majority sense. Among them, BoW features showed better but not 
statistically different performance compared to other features. As a second best feature, CUI demonstrated better performance 
than UMLS semantic type with grouping when using the threshold score 900 from MetaMap for a match compared to 1,000. 

Increasing window size was found to have a tendency to improve performance at the lower but not the higher end of the 
window size range. Moreover, entire section and document-size windows showed further deterioration in performance. In 
contrast, larger window sizes for POS tag features tended to initially decrease performance at lower sizes and then increase 
performance at larger sizes. The best window size for classifier performance was found to vary with individual features and 
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classifiers. Using SVM classifiers, the best window size with a symmetric window for BoW was 40 (left 40 and right 40 
words) and for CUI features with MetaMap was 45 words. Taking out simple English stopwords resulted in better 
performance when the window size was larger than 20 words in our dataset using NB classifiers. However, removal of 
stopwords was not helpful for symmetric windows smaller than 20.  

As a single feature, section information alone resulted only in an accuracy of 80%. However, it contributed additional 
information to other single or combined features. Compared to CUI or semantic type features, the combination of sections 
with CUI or semantic type features improved the ML performance. Although the combination of sections with BoW features 
did not perform significantly better than BoW features, this combination still gave enough information to make it the best 
combination of features from the feature types examined.  

Because BoW resulted in best performance, we investigated information contained in each window of BoW using only one 
side of window. We utilized BoW along with the SVM machine learning algorithms.  

 

  
Figure 1. Accuracy depending on different sides of word window for BoW with SVM classifiers 

 

Figure 1 contains a graphical representation of performance with a symmetric window and with windows containing only 
words on the right or left side. The figure shows that the left word window of the target acronym or abbreviation contains 
more information for WSD compared to the right word window. The use of both sides of word windows offers better 
discriminating information than the left side alone.  

The summarized result using SVM classifiers with an expanding left window BoW is shown in Table 4 with acronyms and 
abbreviations separated by majority sense ratios. Table 4 illustrates a tendency of acronyms and abbreviations with low 
majority ratios to require a wider left window for best performance. However, if the majority ratio of acronyms and 
abbreviations is higher (over 80%), it paradoxically performed best with the entire document (left of the target acronym or 
abbreviation). When this was repeated with the right window, we observed that the maximum performance with the right 
window was achieved with the use of the entire right document window regardless of the majority sense ratio. 

 

Table 4. Depending on left word window, sub-aggregated accuracies of grouping by majority sense ratios of abbreviations   
Left BoW  

using SVM 3 5 10 15 20 25 30 35 40 45 50 55 60 Section Document 

<0.50 
(7 acronyms) 71.486 73.514 77.171 77.086 76.514 76.943 77.000 77.057 76.943 77.086 76.886 77.429 76.943 76.914 77.143 

0.50< & <0.60 
(10 acronyms) 81.940 85.760 88.280 89.300 89.440 89.820 90.000 89.940 89.800 89.900 90.220 90.000 90.000 89.400 88.840 

0.60< & <0.70 
(8 acronyms) 85.750 88.475 90.875 91.025 90.900 91.425 91.400 91.750 91.800 91.425 91.475 91.600 91.375 90.750 90.575 

0.70< & <0.80 
(10 acronyms) 86.060 88.280 89.540 90.320 90.480 90.480 91.140 91.320 90.900 90.820 90.860 90.780 90.900 90.500 89.040 

0.80< & <0.90 
(10 acronyms) 92.260 93.760 94.440 94.520 94.760 94.700 94.680 94.120 94.380 94.640 94.440 94.380 94.180 94.360 95.040 

0.90< & <0.95 
(5 acronyms) 93.920 94.200 95.600 95.440 95.560 95.920 96.160 96.240 96.400 96.400 96.000 96.200 96.280 96.440 97.800 
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Figure 2 shows accuracy trends for a fixed left window size (40) and an increasing right word window size (X-axis) with 
different majority sense distributions. In general, good performance is reached with a smaller size right window. The best 
performance of BoW is 92.88% (over all 50 acronyms and abbreviations) with 40 left side window and 23 right side window.  
 

 
Figure 2. Accuracy depending on varying right word window with left 40 word window 

 Majority ratio = majority sense ratio in groups of acronyms and abbreviations 
 

Figure 3 is the aggregated accuracy of 50 abbreviations with both sides of the word windows equal to 40 when using SVM 
classifiers with BoW with various inverted or standard cross-validation settings. Increasing the training sample size increases 
the accuracy for disambiguation as expected. Our findings demonstrate that 2, 5 and 10-fold cross-validations show similar 
performance. Furthermore, increasing the sample size with ICV shows increasing performance when comparing the gradated 
performance between 100 ICV and 4 ICV. As shown in Figure 3, for a desired accuracy to over 90%, the minimum sample 
number is 125 (4 ICV) when using SVM classifiers, and approximately 250 (2 CV) when using NB classifiers over the 
aggregated 50 acronyms and abbreviations. Therefore, when there is little information about majority sense distributions of 
acronyms and abbreviations, at least 125 training samples is a reasonable baseline required for acronym and abbreviation 
WSD classification with the SVM classifier. 

       

 

Figure 3. Accuracy depending on CV (size of training sample) 
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Table 5. Comparison among classifiers split by majority sense ratio using NB and SVM 

 
 

Table 5 summarizes the accuracy of SVM and NB when grouping acronyms and abbreviations according to the majority 
sense ratios. The highlighted cells are the first points with over 90% aggregated accuracy across inverse cross validation 
settings. Here, acronyms and abbreviations with high majority sense ratios tend to require fewer samples than acronyms and 
abbreviations with low majority sense ratios to achieve a threshold of 90% accuracy. In terms of classifiers, SVM and NB 
classifiers demonstrated better and more stable performance over the DT classifier. SVM had better performance than the NB 
classifier to classify senses of the acronyms and abbreviations when it has fewer samples.  

5. DISCUSSION 
This study provides important insights into the area of clinical acronym and abbreviation WSD. Our main finding is that the 
left side of words in a window around the target acronym or abbreviation provides better information for disambiguation than 
the right side of the window. Therefore, an asymmetrical window larger on the left and smaller on the right maintains 
performance and allows for a smaller feature space and a more efficient computational process. This phenomenon coincides 
with the process of sense discrimination by human annotators. When annotators classify senses of acronyms and 
abbreviations, they mainly focus on the left side of target token. Interestingly, humans require a very small number of tokens 
for the right window (about 5 words) compared to our automated methods (about 20 word window). One factor that could 
partially account for this discrepancy is that there may be information lost in the pre-processing steps for features (i.e., lexical 
normalization and selection of 1,000 frequent words). Another main finding of this study was the observation that a size of 
around 125 samples with SVM classifiers may be effective as a baseline threshold for training. However, it is important to 
note that in cases of acronyms and abbreviations with less than 50% majority sense ratios, all accuracies were lower than 90% 
even in 10-fold cross-validation settings, which warrants future study into the enriching datasets with rarer sense distributions 
associated with acronyms and abbreviations with these distribution patterns. 

We extracted the most frequently used 440 acronyms and abbreviations with a cut-off frequency of 500 occurrences from a 
large corpus consisting of various types of clinical notes and annotated these with experts. To examine questions about 
training sample size, we carefully selected the acronyms and abbreviations according to the majority sense ratio. While it is 
possible that these findings are specific to the corpus of text that we used, these results are still helpful to identify 
representative trends in acronym and abbreviation sense disambiguation in the clinical domain. The large size of the dataset 
(50 acronyms) is also helpful in elucidating the amount of variability that exists in WSD of acronyms in clinical texts. Some 
of the parameters are slightly different in these experiments compared to previous studies, several findings from this study on 
acronym and abbreviation WSD in clinical notes are consistent with several other previous studies3, 10, 25, 27 of word, acronyms, 
and abbreviation sense disambiguation in biomedical literature and clinical notes. (i.e., the BoW feature is a powerful feature 
and SVM algorithm has good performance for WSD). The defining contribution of this work was its use of a large set of 
clinical acronyms and abbreviations and the examination of both window orientation and size as well as looking at the 
question about minimum training sample numbers with a systematic approach.  

The combination of using all features dropped performance in our results. A possible explanation is the presence of 
duplicative or conflicting information between different features (especially POS tag feature) with larger window sizes (up to 
document level). Another possible reason is that CUIs and semantic features may contain noise from inaccuracies in 
MetaMap, which was used for CUI mapping. There is also a tendency for clinical texts to contain incomplete sentences and 
other poorly-formed text. Furthermore, windows for WSD tasks are typically based on centering acronyms and abbreviations 
in our experience and also sometimes do not maintain full sentences for the Stanford POS tagger or using by MetaMap. As 
such, the Stanford POS tagger or MetaMap may generate incorrect POS tags or concepts from any partial sentence phrase, 

SVM classifier NB classifier 
Inverted cross-validation Cross-validation Inverted cross-validation Cross-validation Majority ratio 

100 50 25 20 10 5 4 2 5 10 100 50 25 20 10 5 4 2 5 10 
<0.50 

(7 acronyms) 42.33 53.31 64.79 67.75 73.99 77.94 79.63 82.66 82.74 83.94 39.23 52.09 62.64 65.48 72.17 76.17 78.01 79.83 80.29 81.17 

0.50<& <0.60 
(10 acronyms) 60.07 70.76 80.27 82.83 86.76 89.36 89.98 91.12 92.84 92.80 53.52 69.17 78.17 80.94 85.56 88.62 89.24 90.14 92.12 92.20 

0.60< & <0.70 
(8 acronyms) 68.34 75.77 83.24 84.66 88.83 91.20 91.58 93.03 93.15 93.28 60.35 71.83 79.55 81.53 87.15 89.68 90.28 92.35 92.83 93.15 

0.70< & <0.80 
(10 acronyms) 74.80 79.34 83.38 84.44 87.86 90.12 90.37 92.40 92.14 92.26 67.23 76.02 81.35 82.92 87.35 89.96 90.25 91.62 92.06 92.12 

0.80< & <0.90 
(10 acronyms) 84.00 87.16 89.23 89.99 92.57 94.63 95.31 96.36 96.74 96.84 79.91 85.07 87.88 88.64 91.28 93.42 93.95 94.96 95.14 95.22 

0.90< & <0.95 
(5 acronyms) 91.72 92.44 92.90 93.02 93.88 94.99 95.83 97.36 97.04 97.00 81.83 88.99 91.12 91.72 93.45 94.43 95.27 94.04 93.52 93.32 
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which may deteriorate the overall ML performance. Lastly, the Stanford POS tagger may not be optimized for dealing with 
clinical notes because it is trained and designed for general English.  

It is important to note that this is another example where MetaMap may need future optimization as a core of the UMLS. 
Because the tool was not developed for the clinical domain, it may suffer in performance for certain clinical tasks. According 
to Savova et al.3, 20% of pertinent ambiguous terms overlapping between biomedical and clinical domains possess more 
senses in the clinical domain than the biomedical domain. Xu et al.2 also found that terms in clinical corpora have low 
coverage in UMLS. Therefore, we may miss CUI and semantic information in the clinical domains. We also attempted to 
enhance semantic information by adding semantic grouping information of McCray et al. but found that this did not 
significantly improve the performance because one of the semantic groups dominates (48.8%): “Chemicals & Drugs”. 
Furthermore, some groups such as “Genes & Molecular Sequences”, “Geographic Areas”, “Occupations”, etc, are 
proportionally too small (only 0.1%).  

Certain limitations are important to note with this study in its interpretation. The main limitation is that the features utilized 
here are based on words and are mostly dependent upon one another. In other words, CUI or semantic information from 
MetaMap contains overlapped information with BoW. Therefore, performance using BoW features shows similar 
performance using the combination of knowledge features (BoW+CUI+Semantic information). Another issue is that there is 
no systematic management implemented for the number of features in this study. The average number of features per 
instance was 849 for BoW, 2,427 for CUI, and 134 for semantic information when we fix the word window size to 40 
symmetrically. In other words, MetaMap features may offer insufficient information for the machine to learn compared to 
BoW features. There is also the important issue of dealing with rare senses, which drop the system performance significantly 
and require specific methodologies to address adequately. We did not eliminate these rare senses in this experiment in order 
to reflect the difficulty of this task with clinical notes, and all rare senses, as well as typographical and other errors in the 
samples were included in this experiment. 

Future work is needed to determine if our methods and findings are scalable for other clinical note corpora. We used a 
heuristic approach to detect section information which may require modification for other documents, as over 25,000 
lexically unique section headers were found in this document repository. Finally, although we assumed that there was “one 
sense per-discourse”, this may not apply throughout an entire clinical document8 when considering section information, 
which is an issue that we plan to explore further.  

6. CONCLUSION 
In this study we investigated a large group of clinical acronyms and abbreviations from our clinical notes corpus to 
understand issues related to practical clinical acronym and abbreviation WSD. Using 50 clinical acronyms and abbreviations 
with a majority sense < 95%, we found BoW to be an efficient feature set. When looking at window orientation and size, a 
symmetric window of ~40 words was found to have good performance with the left side of the window providing more 
valuable information compared to the right side. Our experiments also demonstrate that an SVM classifier with at minimum 
125 training samples was needed to achieve at least 90% accuracy for clinical WSD tasks. These findings provide important 
insight into the application of clinical acronym and abbreviation WSD in clinical NLP system modules. 
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