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Abstract 

Inherent uncertainties in surgery durations impact many critical metrics about the performance of an operating 
room (OR) environment. OR schedules that are robust to natural variability in surgery durations require surgery 
duration estimates that are unbiased, with high accuracy, and with few cases with large absolute errors. Earlier 
studies have shown that factors such as patient severity, personnel, and procedure type greatly affect the accuracy 
of such estimations. In this paper we investigate whether operational and temporal factors can be used to improve 
these estimates further. We present an adjustment method based on a combination of these operational and temporal 
factors. We validate our method with two years of detailed operational data from an electronic medical record. We 
conclude that while improving estimates of surgery durations is possible, the inherent variability in such estimates 
remains high, necessitating caution in their use when optimizing OR schedules.  

Introduction 

The operating room (OR) is a critical resource in the hospital, and OR scheduling is a challenging and critical 
problem that affects patient throughput, utilization, revenue, clinical outcomes, staff overtime, Post-Anesthesia Care 
Unit arrival rates, as well as patient and staff satisfaction metrics such as number of on-time starts and waiting times. 
We are in the process of a research project to create an integrated planning and scheduling system that enables 
prediction of the impact of an OR schedule on key performance indicators of interest, thus enabling understanding 
of the likely consequences of any given plan and optimization across multiple criteria [12]. Accurate prediction of 
surgery durations is an important component. When surgeries take longer than predicted, subsequent cases get 
postponed (resulting in decreases in on-time starts and extra demands on staff time) or cancelled (creating 
throughput issues); on the other hand, overly conservative estimates result in empty ORs and lower utilization and 
throughput. Overall, unbiased and highly accurate estimates will enable more efficient OR suites as well as better 
patient experiences and outcomes. 

Due to the inherent uncertainty and unpredictable variability from case to case, predicting duration of surgery 
reliably is a very difficult problem. There are three main lines of approach among research on procedure duration 
estimations in the literature.  

The first line of research intends to identify the most significant factors that contribute to the variability of procedure 
durations. For example, Gillespie et al. conducted structured observations to unveil to what extent the factors such as 
interruptions, communication failures, team familiarity and unplanned operations prolong the expected length of an 
operation [5]. They found that the most significant factor is the number of communication failures. Cassera et al. 
specifically analyzed the effect of the surgery team size on surgery time and found that when procedure complexity 
and patient condition were held constant, adding one individual to a team predicted a 15.4 minutes increase in 
procedure time [1].  

The second line of research studies the goodness fit of known distributions, especially the normal distribution and 
lognormal distribution, and identifies the best parameters for procedure duration estimation for predicting procedure 
durations. Strum et al. tested the goodness of fit of both lognormal and normal models to their data and found that 
the lognormal model is statistically superior to the normal model for modeling dual-procedure surgeries [10]. 
Stepaniak et al. found that the 3-paramter lognormal distribution (i.e., including location parameter) provides the 
best results for the case durations of Current Procedural Terminology (CPT)-anesthesia combinations, with an 
acceptable fit for almost 90% of the CPTs when segmented by the factor surgeon [8]. Spangler et al. identified the 
best order statistics to use for the location parameter of the lognormal distribution of surgical procedure time [11]. 
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The third line of research relies on regression models to develop predictive models. Dexter et al. found that the 
precise procedure types, represented by CPT codes, are the most important factor in predicting surgical case 
durations [2, 3], and Li et al. [7] build a linear regression model and a log-regression model based on CPT codes. 
Stepaniak et al. [9] build predictive models of procedure times by specifically investigating the possible effect of 
surgeon factors like age, experience, gender and team composition. The factors found most often to be significant 
are team composition, experience and time of the day. Eijkemans et al. [4] devised a prediction model using a much 
richer set of factors including the surgeon's estimate and characteristics of the surgical team, the operation, and the 
patient. In their model, the potential predictive factors were surgeon's estimate, number of planned procedures, 
number and experience of surgeons and anesthesiologists, patient's age and sex, number of previous hospital 
admissions, body mass index, and eight cardiovascular risk factors. Using the prediction model instead of the 
surgeon's prediction based on historical averages would reduce shorter-than-predicted and longer-than-predicted OR 
time by 2.8 and 6.6 minutes per case. 

 

Methods 

We focused on the cases performed from January 2010 through December 2011 in the main OR suite (with seven 
operating rooms) at Lucile Packard Children’s Hospital. During this period, a total of 10,305 surgeries were 
completed in the seven ORs under consideration. Almost all of these surgeries were elective. We used surgery 
durations obtained from EMR data; detailed electronic documentation was available to give us up-to-the-minute 
accurate surgery durations. 

Before estimating the durations, we first investigated whether actual surgery durations follow a well-known 
parametric distribution, such as log-normal and normal. This was necessary to determine whether we could use a 
simpler parametric method or should look for an estimation method that is more robust to different distributional 
forms.  

Our base estimation method was Last 5 Case estimate, which is currently in widespread use. This method is 
procedure-surgeon specific if enough historical data is available (i.e., the particular surgeon has performed at least 5 
surgeries of the particular type in the last year), and otherwise the estimates are generated from all the same type of 
procedures performed by any surgeon (again, if enough history is available), as advocated by Macario et al. [6]. 
They also showed that in the absence of sufficient historical data for a procedure-surgeon pair, procedure-specific 
estimates perform very well as compared to more sophisticated alternatives. If the above conditions hold, Last 5 
Case estimate is the mean of the last 5 surgeries in the relevant history. We excluded all cases for which the 
considered procedure did not appear in our data at least 5 times prior to scheduling, although operationally for such 
cases one could use a static procedure-specific estimate (i.e., procedure cards).  

First, we evaluated the performance of Last 5 Case estimation method using two metrics: bias and mean absolute 
deviation (MAD) (in minutes) as an indication of accuracy. The (systematic) bias is measured by the mean 
difference between the actual and estimated duration. A value close to zero implies that there is no systematic bias, 
whereas a negative (or positive) bias implies that the estimation method is systematically overestimating 
(underestimating) the duration. The second metric, MAD, is the mean absolute difference between the actual and 
estimated duration, which measures the spread of the error in the estimation. Finally, we measured the distribution 
(in 15 minute intervals) of the number and percentage of cases with various errors, focusing especially on cases with 
large errors (defined as absolute deviation of greater than an hour), and also on those cases with negligible (less than 
5 minutes) or small (less than 15 minutes) absolute deviations. 

We further investigated whether operational or temporal factors could be used to improve the quality of these 
estimates or at least reduce the number of large errors (as these affect the surgical schedule most significantly). 
Since our main goal is to derive estimates that can be used in scheduling surgeries a day in advance, we focus on 
factors that are known at scheduling time. Moreover, to maximize the general replicability of our method, we 
minimize reliance on detailed clinical case data (other than procedure type to be scheduled) and focus instead on 
leveraging operational and temporal data typically available easily at the time of scheduling. On the operational side, 
we use order of a surgery, OR assignment, and surgical staff. On the temporal side, we use the weekday, month, 
year, and time of day. Even though Last 5 Case estimate is procedure-surgeon specific, we include surgeon 
information in the explanatory variables to understand if Last 5 Estimate has to be adjusted for each surgeon (due to 
the specific surgeon’s style) if the estimate is only procedure specific. Other factors include whether the case is an 
add-on, the type of patient stay (inpatient or surgical day care).  
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In order to understand the effect of each of these factors, we set up a regression model in order to explain the 
difference between log (Actual Duration) and log (Last 5 Estimate). Hence we solve the following model: 

݊݅ݐܽݎݑܦ݈ܽݑݐܿܣ ൌ ݊݅ݐܽݎݑܦ݀݁ݐܽ݉݅ݐݏܧ5ݐݏܽܮ ߚෑሺכ כ ሻݎݐܿܽܨ
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where n = 195. Given the high number of explanatory variables, we use elastic-net regularized generalized linear 
model [13]. This approach helps us do model selection and identify the factors have more explanatory power 
compared to others. To minimize the possibility of model overfit due to large number of independent variables, we 
cross-validated the model on a testing sample of 748 randomly selected cases. 

 

Results 

Out of 10305 surgeries, surgeon-procedure-specific estimates were available for 4756 cases and multi-surgeon, 
procedure-specific estimates for 2729 cases. The remaining 2820 cases had to be excluded due to limited historical 
data for that procedure prior to scheduling. 

As Figure 1 shows, we found that a log-normal fits well when all cases are grouped together as well as for some 
procedures (e.g., Procedure Type A). However, at the procedure-specific level, the log-normality assumption is not 
valid for many of the most common procedures; for example, Procedure Type B has a multi-modal distribution, and 
Procedure Type C is neither normal nor log-normal. Hence we conclude that any estimation method should be 
robust to different distributional forms.  

 

Figure 1. Histograms of the actual surgery durations for all procedures and three of the most frequent surgeries. 
 

As the last row of Table 1 shows, we found that Last 5 Estimate produced an almost unbiased estimate with a bias 
across all cases of 0.3 minutes. MAD across all cases indicated an average 35 minute difference between the 
estimate and the actual duration (due to either underestimation or overestimation). Figure 2 shows a histogram for 
the difference in actual and estimated surgery duration, showing that estimation errors appear symmetrical with 
relatively long tails.  
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Specialty 
Number 
of Cases Bias (min) 

MAD 
(min) CV 

General 1621 0 24 55% 

Otolaryngology 1341 -1 25 103% 

Urology 1003 1 33 85% 

Orthopedics 804 0 40 67% 

Cardiothoracic Surgery 759 0 79 154% 

Plastic 518 2 35 78% 

Ophthalmology 488 2 19 73% 

Neurosurgery 480 3 52 86% 

Transplant-related 183 0 42 225% 

Anesthesia 179 -3 47 75% 

Hematology & Oncology 30 -4 22 67% 

Gastroenterology 26 4 13 140% 

Others 53 -4 44 84% 

All 7485 0.271612 35.83718 89% 

Table 1. Bias and Accuracy of Last 5 Estimate Method by specialty. 
 
We examined the performance across several groups, including specialty, procedure, surgeon, sequence, and 
temporal groups. We did not find a significant bias in any of these groupings, as the bias column of Table 1 shows 
for the grouping by specialty (which is representative for other groupings).  

What Table 1 also shows is that there was strong heterogeneity both within and across specialties in terms of MAD, 
ranging from a mean of 13 minutes for Gastroenterology to 79 minutes for Cardiothoracic Surgery. To determine the 
effect of average surgery duration for each specialty, we also provide an estimate of coefficient of variation (CV) for 
MAD. From this perspective, general surgery had the lowest CV at 55%, and transplant-related surgeries the highest 
at 225%. The average CV across all cases was 89%, indicating significant spread for all specialties. Results for all 
other groupings were similar. 

 

Figure 2. Histogram of the difference between the estimated and actual values of surgery durations. 
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We then investigated the effect of operational or temporal factors on errors, as this could potentially offer a means to 
improve predictability. We found that indeed there are some factors that are significant. Table 2 lists the results of 
our regression, showing significant temporal and operational factors along with their respective percentage 
adjustment. The strongest factors were whether the procedure was performed for an outpatient (-14%), whether the 
case was an add-on case (-11%), or whether the case started after 5pm (-7%). The statistically significant factors, out 
of a possible 195, are shown in Table 2.  

Factors 

Percentage 
Adjustment to 
Last 5 Estimate 

Month: January 5% 

Case: Add On -11% 

Encounter: Inpatient 4% 

Encounter: Outpatient -14% 

Sequence: 6 -4% 

Time of Day: After 5 pm -7% 

Table 2. Significant factors that affect Last 5 surgery duration estimates. 

In addition to the factors in Table 2, our model also identified a subset of surgical staff for which an adjustment to 
the Last 5 Estimate could improve the predictability of surgery durations when only procedure-specific estimation is 
available. This would suggest a hybrid solution for the cases with limited procedure-surgeon specific history and 
adjust procedure-specific estimates.  

The overall fit of the adjusted model improved MAD by 3%, from 36 minutes to 34.8 minutes in the training sample 
and from 35.1 minutes to 34.1 minutes in the validation set. However, for cases with long durations, the 
improvement was much greater, as suggested in Figure 3 for a comparison of errors produced with Last 5 Estimation 
and the proposed adjustment to that method. We find that the adjusted model is quite effective in reducing large 
negative errors. Last 5 Estimation produces large negatives errors (more than 60 minutes) for 8% of cases, whereas 
the adjusted model produces large negative errors for only 5.7% of cases.  

 

Figure 3. A histogram of the large negative difference between the estimated and actual values of surgery durations 
between two models. 
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Figure 4. Cumulative percentage of cases with absolute error estimation times up to the number of minutes shown 
in the x-axis.  

The effect of the proposed model on relatively good estimates is interesting as well, as shown in Figures 4 and 5. 
The adjusted model (shown in blue in Figure 4) had an absolute error of 5 minutes or less for 17.64% of cases (1186 
cases) versus 15.76% (1061 cases) using Last 5 Estimation (shown in red). Similarly, the adjusted model had an 
absolute error of 15 minutes or less in 44% of cases (2957 cases) versus 42% (2821 cases). In other words, as shown 
in Figure 5, for an extra 121 cases the absolute forecast error was negligible, and for an extra 136 cases the error was 
15 minutes or less.  

 

Figure 5. Number of additional cases in which the proposed model 
is within the number of minutes shown on the horizontal axis. 

Discussion 

While MAD of Last 5 Estimate was much better in our two years of data than that reported as representative in the 
literature (e.g. 66 minutes in [6] compared to 35 minutes in our data), the inherent variability in such estimates 
remains high. This high variability in duration leads to inefficiencies in OR schedules, both in terms of utilization 
(throughput) as well as in on-time starts. The classic approach has been to prioritize utilization (as the OR is a 
critical and expensive resource), thus creating an expectation of long delays and much staff overtime, and overall 
poor experiences for both patients and staff. 

461



  

We see that operational factors are promising in improving predictability of surgery durations. We believe these 
estimates could be improved additionally with patient severity measures, like data from ASA physical status 
classification systems and other variables under investigation. We are currently investigating the extent to which the 
regression model can be improved further, although such improvements require significant data integration in 
operational settings (something that would limit the generalizability of the results). 

We were pleased to see a substantial improvement in the number of cases for which the absolute error was less than 
5 minutes or less than 15 minutes, as these highly accurate forecasts enable us to have a better schedule. On the 
other end of the distribution, we also saw improvements in long tails in the error distribution. These can be 
especially disruptive, as a single bad case can throw off the entire day for an OR. Large negative errors are not 
necessarily better than large positive ones, nor do they cancel one another: When a surgery finishes much earlier 
than estimated, the OR may have to stay empty until the next scheduled case, which may then run over.  

The variability in estimates necessitates caution in their use when optimizing OR schedules. Clearly, when on 
average the best method is off by half an hour, it makes it very difficult to create an accurate surgical schedule a day 
in advance by mere forecasting. In this light, there are several strategies. First, in the scheduling system, we have 
made available quantiles in addition to single point estimates on procedure duration, thus providing the scheduling 
staff with further flexibility, for example to take into account the anticipated complexity of a case or to schedule 
more or less aggressively depending on the circumstances. Second, we have developed a simulation system that 
takes an entire surgical schedule and generates anticipated next-day metrics as well as bounds on those metrics given 
the entire distribution of case durations for the types of cases scheduled for the next day. Thus, we can get an 
expectation of number of on-time starts, likely PACU bottleneck times, utilization for each of the rooms, and 
probability of various amounts of overtime needed. This enables more rational tradeoffs among such target 
variables. Our early results indicate that our system could decrease the average patient waiting time by up to 60% 
and increase on-time starts by up to 30%, while maintaining the current total overtime and OR utilization levels 
[13]. Other tradeoffs are possible as well, of course. 
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