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Abstract 

A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model 

is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient 

data are sometimes stored in local repositories or institutions where they were collected, and may not be easily 

shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the 

distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient 

information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support 

Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted 

server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly 

the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) 

for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving 

manner. 

Introduction 

Various types of data (i.e., demographic, clinical, and genomic) are increasingly being collected and stored in 

biomedical research repositories
1,2

. Data sharing and analysis across institutions are necessary to facilitate scientific 

discovery, speed up hypothesis testing, and drive healthcare towards personalized medicine
3
. However, barriers to 

more widespread use of these medical data relate to increasing concerns that patient privacy may be violated
4–6

. In 

the United States, medical data cannot be released without appropriate de-identification, according to HIPAA
7
. 

Because direct dissemination of patient data is difficult, methods that respect patient privacy while enabling 

knowledge retrieval across institutions are highly desired. Besides privacy, another practical reason motivating 

distributed data analysis is that in some cases the size of medical data makes it hard for small institutions to process 

large data efficiently.  

Classification algorithms have numerous applications for medical data, e.g., recognizing ECG signals
8
, 

differentiating obstructive lung diseases
9
, and discriminating biomedical imaging patterns

10
.  There is much demand 

to perform classification in a privacy preserving way, since large amounts of training data are often required to 

ensure sufficient statistical power to test hypotheses.  

To overcome privacy barriers
11

 and facilitate research, a practical solution is to decompose classification algorithms 

and parallelize the computation using a distributed network of nodes to help reduce the demand for resources on any 

single node. There exists extensive literature on privacy-preserving data mining, including models built using naive 

Bayes
12–14

, association rules
15–18

, regression
19,20

, and  support vector machines (SVMs)
21,22

. However, few of them 

can support an easy-to-use collaborative environment, and hence they have not been practically used in biomedical 

applications. In this article, we focus on a specific classifier, the SVM. We leverage this popular classification model 

in machine learning to build a collaborative framework for privacy-preserving distributed learning. 

One closely related work is the vertically partitioned privacy-preserving SVM
21

. In this approach, each party builds 

a local model of its own data, and merges the model with other parties through a secure sum operation. To generate 

a global SVM model, the merging process has to be carried out on a per-node basis. This method has some 

important limitations: (1) synchronization is difficult for multiple parties; (2) it is vulnerable to network interruption 

and participant absence; and, (3) it requires a lot of computing resources for individual participants. 

To face these challenges, we proposed a novel server/client collaborative framework, where all modeling operations 

such as task creation and local model merging are performed on the server. The server is composed of a service 

layer that interacts with individual participants to process data locally, a task manager that constantly checks the 

completeness of intermediary results, and a computation engine to integrate intermediary results.      

                                                 
*
 Xiaoqian Jiang and Jialan Que contributed equally to the first authorship. 
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In this paper, we briefly review the SVM algorithm in the Methods section, followed by description of our proposed 

framework, distributed privacy-preserving support vector machine (DPP-SVM). In the Results section, we evaluate 

the validity of DPP-SVM and test its efficiency with respect to the number of participants involved. The last section 

discusses the advantages and limitations of DPP-SVM.  

Methods 

Review of SVM 

SVMs
23

 are state-of-the-art supervised classification methods. The tasks include classifying binding peptides in an 

antigenic sequence
24

, predicting long disordered regions
25

, and finding novel pre-microRNAs
26

. Consider training 

data   {(     )   (     )}     , where   denotes the space of inputs (e.g.,     ), and class labels 

     {    }. Here   indicates the dimension of inputs, while “+1” and “-1” correspond to class labels. An SVM 

maximizes the geometric margin || ||
 
 between two classes of data, as indicated in Figure 1. The function that is 

optimized can be written as 

                  [
 

    
  ∑   

 
 ] 

                                
                        

where    is the loss of the i-th point   ,   is a vector of weight parameters for features, and a parameter   weighs 

smoothness and errors (i.e., large   for fewer errors, smaller   for increased smoothness). 

 

Figure 1 The geometric view of an SVM model. The dots have class labels “+1”, and the “X”s have class labels “-

1”.   is the set of parameters to be learned, and   is the margin, or the longest distance between the support vector 

(dotted line) for a given class and the separating plane (dashed line). Note that  ( )     in the figure. 

 

The dual form of an SVM can be written as: 

     
 

 ∑    
 

 
∑           
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where      (   ) corresponds to the per-sample parameter, and the per-feature weight is        (   ). An 

important relationship between the primal and dual forms of SVM is that the weight vector   can be converted 
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from sample weight vector   through   ∑          Since   s in the dual format of SVMs can be learned using 

the kernel matrix   alone,            
   , we can build an SVM model without sharing the raw data  . Because 

kernel matrices are often smaller than the raw data (i.e., lots of features and a limited number of patients), it is often 

efficient to work with the dual problem.  

 

Distributed Privacy Preserving Support Vector Machine 

 

Assuming there is a vertically distributed database as indicated in Figure 2, 

where features (i.e., demographics, SNPs, etc.) are present in multiple parties, 

our Distributed Privacy Preserving Support Vector Machine (DPP-SVM) can 

construct the kernel matrix of a global SVM by combining local kernels, since 

  
      

  
  

    
  

  
    

  
  

  always holds. Note that   
    

    
  are 

vertical partitions of features corresponding to the same records. DPP-SVM 

can be summarized by three consecutive procedures, which are illustrated in 

Figure 3: 

1) Calculate local kernels using the dual form of an SVM.  

2) Send the local kernel matrix through secure channels to a central 

server that computes parameters   ’s.  

3) Calculate weights   for features at each site. 

 

 

Figure 3 DPP-SVM web-service framework. Three procedures are: (1) local kernel matrix calculation; (2) local 

kernel matrix transmission to the server; and (3) partial weights calculation. Local data are executed consecutively to 

build a global SVM from vertically partitioned data.  The web-service exchanges local kernel matrices (i.e., non-

sensitive intermediary results) between the server and the participants, and calculates global model parameters. 

Expensive matrix multiplications of high-dimensional data (i.e., whole genome features) are handled by powerful 

private server/clouds, but a local clinic without a lot of computation power can still build a global SVM model from 

calculations done on the cloud. In addition, the DPP-SVM framework enforces privacy because no participant ever 

leaks sensitive patient information to other participants or to the server (although a unique identifier needs to be 

agreed upon at all sites). 

Figure 2 Vertically distributed data 

matrix with   dimensions (features) 

and   rows (records). Each vertical 

slice represents a different site. 
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Let us look at the implementation of DPP-SVM. Figure 4 depicts the detailed structure of the DPP-SVM framework. 

We start our explanation with the task manager on the server side. 

 

 

Figure 4  The structure of the web application for our DPP-SVM learning framework. Tasks created by a single site 

(task creator) are stored in the trusted server (task manager). Signed applets sitting on the user’s side calculate and 

communicate with the trusted server to transmit privacy insensitive intermediary results, and the final SVM model is 

calculated using the kernel combiner and the partial sum combiner, both scheduled in the trusted server. 

 

The Task Manager 

The task manager resides on a central node (i.e., the trusted server), which instantiates, monitors, and stores the tasks 

created by users and check the completeness and validity of these tasks. To learn a global SVM from distributed 

data repositories, the task manager has the following functions, also illustrated in Figure 4: 

1) The task manager creates an event in the database after a user provides the necessary information for a 

learning task through our web interface. The required information includes task name, expiration date, 

participants’ email addresses, and the model parameter. The task manager invites all users to join the 

created task through emails.  

2) The task manager directs invited participants to unique webpages, where computation for local learning can 

be done within signed applets. The signature on an applet is to verify whether this applet is from a reliable 

source and can be trusted to run on a participant’s local web browser. These applets then send intermediary 

results (including the partial kernel matrix  , and model weights  ) to the task manager on the server that 

deposits this information.  

3) The task manager, acting as a coordinator, checks if all participants have completed the learning task and 

submitted their intermediary results. Note that the checking happens at a predefined frequency determined 

by a scheduler. When all tasks of participants are completed, the task manager combines the local kernel 

matrices into a single global kernel matrix.  

4) The task manager coordinates and gathers partially summed weight parameters from participants, and it 

sends the global classification labels back to participants.  

It is worth noting that the word “trusted” simply means that the head node is not malicious and that it does what it 

suppose to do (i.e., aggregate received kernel matrices and broadcast adjusted parameters back to the nodes). Recall 

that, since these partial kernel matrices are aggregated from n patients, there is little privacy risk in transmitting 

these intermediary results.  
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An Email-Driven Workflow 

Distributed privacy-preserving support vector machine involves a number of operations, processes, and 

computations that are carried out both locally and at the trusted server. Participants interact with the task manager 

once others have completed their tasks in the previous step. To improve the efficiency in collaboration, we propose 

an email-driven workflow in which the task manager coordinates and synchronizes tasks between multiple 

participants, as illustrated in Figure 5.  

 

Figure 5  Detailed workflow for distributed privacy preserving support vector machine (DPP-SVM). The entire 

process of the DPP-SVM is driven by emails (red blocks), which are sent by the task manager from the trusted 

server. There is no need for participants to disclose their data to others, and their data are only processed locally 

(yellow blocks). Task-related information (name, description and participants) and intermediary results are stored in 

the database on the server (parallelograms). 

In Figure 5, a learning task is initialized by Party 2. After he or she fills the basic information about the task, email 

invitations are sent out automatically to all participants with a link to the service, which computes the partial kernel 

matrices locally. In the first round of learning, only partial kernel matrices are sent back to the server. A scheduler in 

the task manager checks, at a pre-defined frequency, whether all the local kernel matrices have been collected, and 

sends emails to participants with a new link to the service, which computes the weight parameters using the 

combined kernel matrix and data owned by each participant. In the second round, data are still processed locally and 

only weight parameters are sent back to the server. For the third round of computation, participants can test 

additional data based on globally learned weight parameters to make predictions in a distributed and privacy-

preserving manner. 
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Results 

Web-Application Interface 

We used HTML and Java applets as our front-end to interact with the “task creator” (e.g., Party 1), which provides 

emails of other participating parties and sets the global parameter   of the SVM model, as shown in Figure 6. We 

used JSP and Java servlets to handle the server-side computation. 

  

                                (a)                                                                               (b)   

Figure 6 Snapshots of DPP-SVM web application interfaces. (a) The HTML form used to create a task: ① task 

name, ② expiration period, ③task description, ④ the creator’s email, ⑤ participant email(s), and ⑥ the global 

model parameter  . (b) The signed Java applet that processes data locally.   

Experiments 

We ran experiments on real data to validate DPP-SVM and evaluate the efficiency of it. All of our experiments were 

conducted on an Intel Xeon 2.4GHz server with 32GB RAM that hosts this application. Our goal is to verify that the 

proposed method generates exact the same answers as if the model were learned from data combined in a centralized 

repository. We also intended to check the computational cost of DPP-SVMs when different numbers of participants 

are involved. 

Dataset 

We used two data sets. The first one is the tic-tac-toe data set from UCI machine learning repository
27

. It is 

multivariate, which consists of 27 features for a complete set of possible board configuration and a target variable 

indicating “win for x” (i.e., true when "x" is one of 8 possible ways to create a "three-in-a-row"). The second is a set 

of real medical data for hospital discharge error prediction
28

. This de-identified data consists of 10 features (i.e., 

microbiology cultures ordered while patients were hospitalized) and a target variable indicating a potential follow-

up error (i.e., true if it was an error, and false if not). Because SVMs do not handle categorical features by default 

and 8 out of 10 features of hospital discharge are categorical, we binarized them and obtained a total of 22 features 

to be used for SVM training. The following table lists the record and feature sizes for both data sets. 

Table 1  Summary of data sets used in collaborative privacy-preserving framework for distributed SVM learning. 

Data set Number of features Number of records 

tic_tac_toe 27 958 

hospital discharge 22 8,668 

Fidelity Measure Using Ten-Cross-Validation 

We used ten-cross-validation29 to evaluate the performance of both the collaborative privacy-preserving SVM and 

the centralized SVM. The collaborative privacy-preserving SVM was constructed in a distributed manner by 
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learning   split† features. We conducted experiments, including two-split, three-split, and four-split privacy-

preserving SVMs. For tic-tac-toe data, linear SVMs with       were used to train and test, which showed that 

there was no difference between all these SVMs (i.e., privacy-preserving ones and the centralized one), and their 

discrimination performances, measured through ROC curves, are summarized in Figure 7.  

 

Figure 7 The discrimination performance of DPP-SVMs is the same as the centralized SVM, with precision 

 (    ), using the tic-tac-toe data set. The three subfigures correspond to (a) the ROC curves of 10 cross-

validation folds, (b) vertically averaged ROC curve with standard deviations for false positive rates, (c) AUC (Area 

Under the ROC Curves) for all 10 folds of both SVMs (i.e., distributed and centralized). Note that the color bar in 

(a) indicates cutoff values for different ROCs. 

Similarly, we applied both the collaborative privacy-preserving SVM and the centralized SVM to the hospital 

discharge data. Like before, the collaborative privacy-preserving SVM was constructed using two-split, three-split, 

and four-split features. Linear SVMs with          were used for training and testing. Again, there was no 

difference between all these SVMs. Their discrimination performances were summarized in Figure 8.  

 

Figure 8 The discrimination performance of DPP-SVMs is the same as that of the centralized SVM, with precision 

 (    ), using the hospital discharge data set. The three subfigures correspond to (a) the ROC curves of 10 folds, 

(b) vertically averaged ROC curve with standard deviations for false positive rates, (c) AUC for all 10 folds of both 

SVMs (i.e., distributed and centralized). Note that the color bar in (a) indicates cutoff values for different ROCs. 

Time Comparison 

We also compared the computational cost of a centralized SVM and DPP-SVMs. Because actual communication 

time depends on the network and also on how soon participants respond to emails, we only considered 

computational costs based on total time that were spent on the ten-cross-validation for each of the experiments 

described in the previous section. For a centralized SVM, the computation only happened in a single site. For DPP-

                                                 
†
 In practice, it is not always possible to split features evenly. For example, tic-tac-toe has 27 features and our two-

split is to divide them into 13 and 14 features to form two local subsets for learning. 
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SVMs, the computational cost was dominated by the participant that processed the most of the data, since the 

computation was parallelized. We expected a decrease of computational time when more participants were involved 

(but at the same time, an increase in communication cost, which is not discussed here). Figures 9 and 10 show the 

actual time spent on ten-fold-cross-validation using both the tic-tac-toe and the hospital discharge data sets.  

 

Figure 9 Time comparison between centralized SVM and DPP-SVMs with various numbers of participants using 

the tic-tac-toe data. The left figure plots the time and the right figure shows their box plots. The red square brackets 

on the right figure indicate differences that were not significant. Black brackets indicate significantly different times. 

 

Figure 10 Time comparison between centralized SVM and DPP-SVMs with various numbers of participants using 

the hospital discharge data. The left figure plots the time and the right figure shows their box plots. All time 

differences were statistically significant. 

As the experiments above indicated, DPP-SVM can significantly save time if multiple parties join a learning task 

that involves a relatively large data set (i.e., hospital discharge), but the gain for a small data set like tic-tac-toe is 

relatively small. 

Discussion and Conclusion 

We presented a collaborative framework for distributed privacy preserving support vector machine (DPP-SVM). In 

this framework, one party does not need to disclose his or her local data to other parties and a global SVM model 

can be learned from distributed, vertically partitioned data.   
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Some healthcare institutions are prohibited from sharing patient data with outside collaborators. In these cases, 

multiparty computation allows them to still participate in certain types of research networks, without sharing 

specific patient data. For example, we showed in another work that it is possible to share information to create 

accurate predictive models across institutional barriers without sharing the original data
30

. 

The server/client design and email-driven workflow relieve the participants from spending time on coordinating and 

synchronizing tasks. It provides a practical way for researchers with data-sharing barriers to learn a global SVM 

model without having to transmit their data to another site. From the perspective of data privacy, DPP-SVM 

provides an alternative method for privacy-preserving data sharing to methods based on data perturbation (e.g., 

noise addition
31–33

, cryptographic techniques
34,35

, and table generalization techniques
36,37

).  

Our solution has important limitations. First, our current algorithm only supports a linear kernel SVM. Some 

applications require nonlinear classification, which requires the utilization of more sophisticated kernels
38

. Second, 

we only deal with vertically partitioned data, in which patient features are distributed, instead of patients with 

similar features are distributed. The former can be imagined as different institutions hosting different pieces of 

information (i.e., demographics, genotypes, phenotypes, and etc.) about the same patients. We are currently 

developing similar server/client architecture for the second case. 
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