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Abstract

The need to maintain accessibility of the biomedical literature has led to development of methods to assist human  
indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature,  
it is essential that these methods be scalable. Document vector representations are commonly used for automated  
indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to  
implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document  
vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future  
documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic  
binary  variant  of  RI.  The  increased  capacity  demonstrated  by binary vectors  has implications for  information  
retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing  
the scalability of RI.

Introduction

MEDLINE/PubMed is often cited as the largest database of medical publications; as of early 2012 it contains more 
than 21 million articles  [1]. An important aspect of the accessibility of this repository is the process of indexing. 
Each  publication  is  assigned  a  set  of  keywords  from the  Medical  Subject  Headings  (MeSH)  which  facilitates 
searching and cataloging. Indexing has traditionally been performed by human indexers  [2], with a recent move 
toward  semi-automated  approaches  in  which  human  indexers  are  assisted  by  a  recommendation  system.  With 
hundreds  of  thousands  of  publications  added  each  year,  this  is  expensive,  labor-intensive,  and  delays  are 
unavoidable.

Thus,  much  research  has  been  done  on  developing  methods  that  automatically  recommend  MeSH  terms  for  
unindexed papers. A common characteristic of most methodologies for MeSH term prediction is that they require a 
training set. This training set consists of already indexed publications that are used to learn how to assign MeSH 
terms to new documents. In previous research [3], we have evaluated the utility of variants of Random Indexing [4] 
as means to support automated indexing. While these methods performed comparably to the state-of-the-art at the 
time, two obstacles exist that impede their application as a means to support a real-world indexing system. Firstly, as  
indexing in this manner requires comparing the vector representation of a document-to-be-indexed with the vector  
representations of all of the other documents in the training set, it is desirable to retain these vectors in very fast  
random access memory (RAM). However, as we will illustrate, the real-valued vectors used in traditional vector  
space implementations do not make optimal use of memory capacity. Secondly, as the name suggests, the initial  
vector representations used in Random Indexing are randomly generated.  In order to maintain an index as new 
documents  are  added,  it  is  necessary  to  maintain  these  randomly  generated  vectors  for  future  use.  This  is 
inconvenient, and limits the possibility for distributed implementations of Random Indexing and its variants.

In this paper we address these issues by (1) evaluating the utility of high dimensional binary vectors as an alternative  
to the real-valued vectors used in traditional vector space models and (2) by developing a variant of the RI approach  
that eliminates the need to retain a store of vectors for future indexing.

Background

Vector Space Models

In this paper we are concerned with vector space models for indexing. Vector space models (VSMs) were conceived 
to be instruments for information retrieval and document indexing [5]. They have been effectively applied to a broad 
range of  informatics  related  problem such  as  information retrieval  [5], automated indexing  [3], or  word sense 
disambiguation [6].
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A VSM is is a geometric model in which terms and documents are represented as high dimensional vectors of  
numbers.  Vector  representations  for  documents  are  derived  from the  terms  they  contain,  such  that  documents  
containing similar distributions of terms will have similar vector representations. Consequently a mathematically 
computed  distance  or  similarity  metric  for  vectors  represents  a  measure  of  the  relatedness  of  the  respective  
documents. This builds the semantic foundation on which new documents can be indexed based on index terms  
assigned by human indexers to their nearest neighbors.

The traditional approach to construct a VSM works by setting up a matrix where the columns represent terms and 
the rows represent documents [5]. Each entry of the matrix holds a scalar weight that represents how often a term 
occurs in a document, or some statistical transformation of this raw value. The size of the matrix is determined by  
the product of the number of unique terms and the number of documents the corpus contains. Since in most cases the 
storage  requirements  are prohibitively large,  a  dimension reduction is desirable.  In certain  models such as,  for 
example, Latent Semantic Indexing  [7], dimension reduction is conducted using a Singular Value Decomposition 
(SVD).

Two difficulties introduced with this approach are the storage space requirements for the initial document-by-term 
matrix and the computational complexity of the SVD to alleviate the space problem, which is cubic to the size of the  
corpus with standard algorithms  [8]. Random indexing (RI)  [9] is an approach designed to circumvent these two 
problems.  Instead  of  starting  with  the  document-term matrix,  randomly  generated  vectors  with  a  much  lower 
dimensionality  are  used  as  the  initial  term  vectors.  These  vectors  are  constructed  such  that  they  have  a  high 
probability of being orthogonal, or close-to-orthogonal to one another, and therefore serve as a reduced dimensional 
approximation of the independent column assigned to each term in the original VSM approach. A document vector  
is created by combining the vectors of the terms that occur in a document (or vice versa if the intention is to generate 
term vectors,  as  was  the  goal  in  the  original  implementation  of  RI).  A  weighting  scheme  can  be  applied  to 
accentuate  the  contribution  of  individual  terms  according  to  their  relative  importance.  The  document  vector  
generation is described in detail in the beginning of the Methods section.

The RI approach has been proven to substantially alleviate space and computational complexity issues [9], and some 
variants of RI have also been shown to identify meaningful implicit connections between terms such that document 
similarity is measured on the basis of “latent semantics” rather than on the basis of identical content exclusively,  
while  bypassing  the  scalability  limitations  of  SVD  [10].  However,  while  these  models  confer  considerable 
scalability advantages during the process of vector generation, they are difficult to implement in real-world indexing 
systems.

Firstly, to index new documents (or to make experiments portable or accurately reproducible), it is necessary to keep 
copies of the initial random term vectors. If the indexing process were to be distributed across several machines, as 
is desirable in many real-world applications, a local copy of these term vectors would need to be retained on each 
machine, and synchronized with a central repository as new terms (and hence new term vectors) were encountered.  
Based on ideas that originated in the discussion group for Semantic Vectors [11], a widely used open source tool for 
automated indexing, we propose a simple extension to RI by introducing a way in which the term vectors are  
generated deterministically. Consequently they can be recomputed in a consistent manner and it is guaranteed that a  
term always is assigned the same vector. This makes it unnecessary to store the term vectors as they can simply be 
regenerated at any time. Consequently, in a distributed implementation newly encountered terms would receive an  
identical term vector without the need for synchronization across machines. From a research perspective, another 
advantage is that the results of different experiments are more readily comparable because the vectors for all terms 
that the experiments have in common are guaranteed to be the same. That is to say, any performance changes 
occurring  on  account  of  incidental  overlap  between  randomly-constructed  vectors  would  be  consistent  across 
experiments.

Secondly, we examine the format of the term and document vectors. VSMs in information retrieval in general, and  
for  RI  in  particular,  have  almost  exclusively  employed  vectors  that  consist  of  real-valued  numbers.  However,  
classification in VSM-based approaches to automated indexing requires comparing the vector of the document-to-
be-classified to the vector representations for all of the documents in the training set. To keep this process fast, it is  
desirable to retain these vectors in RAM. With large document collections like MEDLINE/PubMed, it is essential 
that available memory be used effectively, and as we will explain subsequently, there is evidence that real-valued  
vectors are suboptimal with respect to their ability to store information. Within the cognitive science community,  
high-dimensional binary vectors have been used as means to encode information as an alternative to real-valued  
vectors [12]. We propose the use of binary-valued vectors for RI as they were introduced by Pentti Kanerva in [13] 
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as the Binary Spatter Code. In this paper we evaluate the capacity of real and binary-valued vectors in the context of  
an automated indexing task.

MEDLINE/PubMed Indexing

On account of the human-intensive nature of the indexing process, a number of researchers have developed and 
evaluated approaches  that  aim to assist  human indexers  by recommending MeSH terms for  newly-encountered 
MEDLINE/PubMed citations. A detailed review of all of the approaches that have been applied to generate indexing 
recommendations is beyond the scope of this paper. However, to provide context we include a brief overview of 
existing approaches here, and refer the interested reader to the publications referenced for further details.

These  approaches  can  be  broadly  categorized  into  distributional  and  vocabulary-based  approaches,  although 
combinations of these approaches are utilized in several instances.

Distributional methods are based on the statistical distribution of terms and MeSH terms in previously encountered  
abstracts. This distributional information is utilized in one of two possible ways. Firstly, and most commonly, it is  
utilized to identify previously-indexed documents that are similar in nature to newly encountered documents. MeSH 
terms assigned to these previously encountered documents are then recommended for the document-to-be-indexed. 
Examples  of  this  approach  include  the  Expert  Networks  approach  [14] and  the  Reflective  Random  Indexing 
approach [3]. Rather than identifying similar documents, other approaches have leveraged similarity in distributional 
statistics between terms and MeSH terms across an index to map between terms and index terms directly. These 
approaches include the Linear Least Squares Fit (LLSF) approach  [15] and the Pindex program [16]. This sort of 
distributional information has also been utilized in combination with graph-theory approaches to improve aspects of 
the indexing process [17].

Vocabulary-based methods draw on domain-specific knowledge resources such as the UMLS Metathesaurus [18] to 
identify  similarities  between  the  terms  and/or  phrases  encountered  in  abstract  text,  and  canonical  forms  and  
synonyms of terms drawn from controlled terminologies, which can then be mapped to MeSH terms. These methods  
include MetaMap indexing [19], and Trigram Indexing [20] both of which are utilized in the Medical Text Indexer 
(MTI) system that is currently used to generate MeSH recommendations for human MEDLINE/PubMed indexers  
[21]. In addition to these fundamental approaches, attempts have been made to the use of information utilized by 
these approaches as features for supervised machine learning. Examples of this strategy include the use of a Naive  
Bayes Classifier [22], [23], and more recently the utilization of all three types of information discussed as features 
for the learning-to-rank algorithm, with impressive gains in performance  [24]. For the purpose of this paper, we 
focus on a nearest-neighbor based approach based on the similarity between vector representations of documents.  
These vector representations are calculated using a simple variant of the Random Indexing approach [25].

Methods

Initial Term Vector Generation

As explained above, the initial term vectors are generated randomly. As with any other software, random numbers 
are  generated  by  a  pseudorandom  number  generator,  a  deterministic  algorithm  that  generates  a  sequence  of 
“random” values  from a seed  value.  The resulting numbers  appear  random in that  their  distribution cannot  be  
distinguished from that of the uniform distribution. In Java, random numbers are also repeatable, which means that  
for the same seed, the same sequence of random numbers is generated.

The distribution of these pseudorandom numbers makes them suitable for the purpose of generating random vectors 
for RI. The property of reproducibility is what makes it possible to generate identical vectors for identical seed  
values. The only prerequisite is to compute the seed value from the term itself. This value is passed to the Java  
random number generator as seed, and so it is guaranteed that the same term will always be assigned the same 
vector. To determine a term's seed, we compute a hash value from the term's textual representation. For this purpose,  
we use “Bobcat” [26], a variant of the “Tiger” hash function [27]. It was chosen because it generates hash codes that 
are 48 bits long which matches the seed size of the Java random number generator. To assess its suitability for our 
purpose, we compared all hash values of the terms contained in our corpus and did not find any collisions.

Vector Space Model Generation

When real valued vectors are used in accordance with the RI paradigm, the initial term vectors are sparse  [25], 
where sparseness refers to the relatively small number of non-zero components of the vector. The total number of 
non-zero components is called the seed length. For example, initializing a real valued vector with 500 dimensions 
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one would set a number of randomly distributed components to 1 and the same number to -1. Choosing a number  
that is low ensures that all initial term vectors have a high probability of being orthogonal, or close to orthogonal to  
one another because the probability of overlap between non-zero entries is low. Binary vectors are dense: they are 
generated by randomly assigning either a 0 or a 1 at each dimension of the vector with equal probability, such that  
there are an equal number of 1's and 0's once assignment is complete. In the case of binary vectors this ensures that  
initial  term vectors  are orthogonal or  close-to-orthogonal.  In this space orthogonality is  defined as  a Hamming 
distance of a half of the dimensionality [12].

In any case, the document vectors are built from the term vectors by superposing term vectors of the terms that occur 
in the respective document. Terms have to pass a frequency and a stop word filter. In addition, a term weight is  
applied  that  can  be  computed  from local  and  global  distributional  statistics.  This  is  done  by  a  scalar  weight 
representing the weight to the vector of the term concerned prior to superposition. The weighting scheme to be used 
is usually determined empirically; not all corpora expose the same characteristics with the same weighting schemes.

The vector superposition with real valued vectors is straightforward; it is conducted component wise by addition. 
With binary valued vectors the process is more involved. A real valued1 voting record keeps track of the scalar 
additions at each component of the vector. The voting record for a dimension is incremented by the term weight if 
the added vector has a 1 at the respective dimension. Conversely, it is decremented by the term weight if the added  
vector has a zero at the respective dimension. The superposition of term vectors concludes with a normalization of 
the voting records, yielding a binary vector2. A positive voting record results in a 1 and a negative record results in a 
0 for each component of the resulting vector. Ties are split at random.

Table 1 summarizes the differences between real and binary implementations.

Table 1. Differences between Real and binary implementations

Real Vector Implementation Binary Vector Implementation

Elemental Vectors Sparse  real  vectors  with  mostly  0 
elements  and  a  small  number  of  +1 
and -1 values randomly distributed.

Randomly  generated  dense  binary 
vectors, with a 50% probability of a 0 
or 1 in each dimension.

Superposition Vector addition, and normalization. Tally  “votes”  in  each  dimension.  If 
more 1's, assign 1, if more 0's assign 
0. Split ties at random 

Orthogonality Perpendicular (Cosine=0) Hamming distance of dimensionality/2

Documents about similar topics have many more words in common than documents about different topics. Thus, it 
can easily be seen that vectors representing similar documents are closer to each other (in multi-dimensional space) 
than vectors derived from unrelated documents. The similarity is computed mathematically as the cosine of the  
angle between real valued vectors, and as Hamming distance between binary valued vectors.

For  the  purposes  of  this  paper,  we  built  a  VSM  as  training  set  for  index  term  recommendation  from  a 
MEDLINE/PubMed Baseline  Repository  from the  year  2009  [29].  From this  corpus,  we  extracted  10,898,894 
articles that have an abstract, excluding articles from the test set (see below). A preliminary step is to index this  
corpus with Lucene [30], which facilitates easy and efficient extraction of all terms along with their local and global  
frequencies within the whole corpus. To build the document vectors, we use the Semantic Vectors package  [31]. 
Terms from the title and the abstract are encoded into the vectors with the following parameters. The minimum 
global frequency for a term is 10 and the maximum is 2,000,000. Terms with global frequencies beyond these  
thresholds are ignored. The stop word list applied is one developed by Salton for his SMART information retrieval 
system  [32],  and  we  use  the  log  entropy  term weighting  scheme  (as  described  in  [33])  for  document  vector 
construction:

1 In fact, the Semantic Vectors package uses a space optimized implementation approximating a real valued voting record [28].
2 The voting records are discarded after the normalization process finishes.

LogEntropy (i , j) = GlobalWeight (i)  ∗ LocalWeight (i , j),  where

LocalWeight(i , j) = log(1− frequency of term i  in document j ),  and

GlobalWeight (i) = 1+∑
j

pij log2( pij)

log2(n)
   with   pij=

frequency of term i  in document j
global frequency of term i
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Our indexing method chooses MeSH terms from the set of most frequently occurring ones within a set of nearest  
neighbors to a given document. That set of nearest neighbors is determined as follows. For a given test document 
(not contained in the training set) a vector is built using the parameters described above. An exhaustive search of the 
training set is performed that identifies the 40 nearest neighbors of the test document. Using Lucene, the MeSH 
terms for each of those 40 nearest neighbors are extracted. For each of the neighbors, one minus the normalized  
Hamming distance (for binary vectors) or the cosine distance (for real vectors) to the test document is computed, and 
this value is assigned as score to each of its MeSH terms. For MeSH terms that occur in connection to more than one 
document all scores are added. Finally the test document is assigned the 25 highest scoring MeSH terms.

To assess and be able to compare the performance of our scheme, we evaluated it using the 200-document test set  
from 2007 [34] published by the NLM that was developed for the purpose of evaluating their own indexing software 
[21]. Accuracy  was  measured  against  index  terms  assigned  by  human  MEDLINE/PubMed  indexers  using  the 
standard performance metrics of precision and recall. The F1,2 measures were calculated as:

For each document, any time a human indexed term is retrieved, the precision is computed. Taking the mean from 
these measurements results in the average precision for the document. The mean average precision (MAP) is the 
mean of all average precisions.

Comparison of binary and real valued vector capacity

To assess the capacity of the different vector types (i.e. in terms of how many units of information can be encoded  
into the vector), we conducted a series of experiments. We initialized an origin vector and iteratively superposed it  
with random vectors. After each superposition, we measured the overlap of the superposed product with the origin  
vector. The overlap is a measure of relatedness between vectors. Once the overlap between the superposition and the 
origin  vector  reaches  the  level  of  the  average  overlap  between  random  vectors,  there  is  no  longer  a  useful 
distinction.With both the indexing and the superposition experiments, we compare real and binary valued vectors 
that occupy the same amount of memory. In the Semantic Vectors package, real  vectors are assigned one float 
variable of 32 bits per dimension. This means the ratio of dimensionality for binary to real vectors occupying the  
same amount of RAM is 1:32.

Results

Figure 1 illustrates how the performance of real vectors drops as their dimensionality decreases. From 500 to 250 
dimensions the precision and recall loss (and consequently, the F1 and F2 measures and the mean average precision)  
is marginal. From 250 to 128 the drop is more pronounced bit still somewhat moderate. Below 128 dimensions 
performance decays drastically.

Figure 1. Real vector automated indexing performance
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Figure 2 shows the corresponding results for binary vectors. Clearly as dimensionality falls to 4,096, the loss in  
performance is  insignificant.  From 4,096 to 2,048 dimensions,  the performance drops only marginally.  At 512 
dimensions, the lowest dimension we measured at, binary valued vectors still perform reasonably well, which stands 
in stark contrast to the real vectors' performance at equivalent space requirements. We observe that above 4,096 
dimensions3, binary vectors achieve no gain in performance.

It is worth adding that although on the x-axis of Figures 1 and 2 the dimension count is different, at each x position 
the space the different vector representations occupy in RAM is equivalent.

Figure  3 shows the result  of  the  capacity  assessment  for  binary  valued vectors.  On the x-axis,  the number of  
additions  of  a  random  vector  (“superposed  vector”)  to  the  original  vector  is  counted.  The  y-axis  shows  the 
normalized overlap of origin with the superposition vector (upper curve) and the overlap of the random vector (that 
is added to the superposition) with the original vector (lower curve). From the point on where the two curves meet, 
at around 2,000 superpositions, the overlap between superposition and original vector becomes so small that the risk 
of incidental overlap with random vector emerges.

3 The reason for choosing 4,096 instead of 4,000 dimensions (and correspondingly for the smaller values) for binary vectors is that the 
underlying implementation for binary vectors requires numbers that can be divided by 64.

Figure 2. Binary vector automated indexing performance

0
2000

4000
6000

8000
10000

12000
14000

16000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

precision

recall

f1

f2

MAP

dimensionality

sc
o

re

Figure 3. Capacity of 16,000 dimensional binary vectors
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Figure 4 shows the same measurement for 500-dimensional real valued vectors. Their capacity is exhausted after 
200 terms. This works well with the MEDLINE/PubMed corpus since most abstracts do not have significantly more 
words than this.  However,  with lower dimensionality than this,  we would anticipate the model being unable to 
recognize some of the term vectors that compose a document representation, as their contributions to the superposed  
product will have become distorted to the point at which they can no longer be distinguished from random vectors  
representing other terms.

We conducted a series of experiments to assess the capacity  of real-valued vectors with varying seed length in 
comparison  to  the  capacity  of  binary  vectors.  The  horizontal  bars  in  Figure  5  illustrate  the  mean  number  of 
superpositions until a collision occurred. A collision is defined as the event in which the distance of the origin vector 
(i.e. the vector before any superpositions) to the superposed product is the same as, or more than, the distance of the 
origin vector to a random vector. At this point, the superposed vector cannot be distinguished from a random vector. 
Thus,  it  is  possible  that  information  has  been  lost,   and  we say  that  the  capacity  of  the  superposed  vector  is 
exhausted.  We conducted  this  experiment  1000 times for  real-valued  vectors  of  different  dimensionality  while 
varying the seed length. The same was done for binary vectors that occupy the same amount of RAM as the real-

Figure 4. Capacity of 500 dimensional real vectors
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Figure 5. Mean number of superpositions until first collision (n=1000). Vector descriptions are of the 
form vector  type  (real/binary),  dimensionality  (100-32,000) and,  for  real  vectors,  seed length (“10” 
means 10 non-zero values, “10%” indicates a seed length of 10% of the dimensionality, and “dense” 
indicates a real vector in which all dimensions are randomly assigned a value between -1 and 1. Error  
bars show one standard error above and below the means.
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valued vectors concerned. In addition, we included real-valued vectors in which each dimension was initialized at 
random to a value between -1 and 1, which we have termed dense real vectors.

While the superiority of the binary vectors in this respect is clear, there is another interesting fact to be observed. At  
the seed length of 10, which is widely used as a default value by the RI community, the real vectors perform much  
worse than when a seed length of 10% of the dimension is used (with the exception of the 100-dimensional vectors,  
where these parameter choices are identical). On account of the variability in the data and the large sample sizes  
(n=1,000), the differences in the figure between binary and real vectors are statistically significant, as are some of 
the  differences  between  real  vectors  of  the  same  dimensionality  with  different  seed  length  at  500  and  1000 
dimensions, notably those between vectors using the standard (10 or 20) and proportional (10% and above) seed  
lengths. In addition, as the mean number of superpositions to the first collision for real vectors of 100 dimensions is  
between 52 and 55 depending on seed length, their capacity does not appear adequate to store sufficient term vectors 
to account for the average number of unique words in an abstract  (+- 85 words), which explains the decline in 
performance of these vectors observed on the indexing task.

Discussion

In this paper we introduced and evaluated the utility of high-dimensional binary vectors as a basis for automated  
indexing. Using a Random Indexing paradigm, we found that binary vectors provide a substantial advantage in  
performance at lower dimensionality, when compared with real-valued vectors occupying an equivalent number of 
bits in RAM. This finding is of practical importance for automated indexing systems based on the vector space 
model, as document vectors can be retained in RAM for rapid nearest neighbor search with limited computational 
resources.  For  example,  with  4,096-dimensional  binary  vectors  occupying  a  total  of  4,096  bits  we  obtained 
performance equivalent to that obtained by 500 dimensional real valued vectors occupying 16,000 bits. For practical 
purposes, this means that rather than requiring memory resources beyond the reach of many researchers, efficient  
nearest-neighbor  search  can  even  be accomplished  on a well-furnished  laptop computer.  At  2,048 dimensions, 
10,000,000 documents require approximately 2.5 GB of RAM.

Studies comparing the ability of the different vector representations to preserve relatedness to an elemental vector as  
other elemental vectors are superposed were conducted. It was shown that binary vectors have greater capacity than 
real valued vectors occupying the same amount of memory. As new vectors are added, the similarity between the  
superposition and the original elemental vector approaches that between randomly-constructed elemental vectors. 
This happens with real vectors sooner than it does with binary vectors occupying the same amount of memory. The  
point at which this occurs is the point at which noise due to incidental overlap between random vectors interferes  
with the recognition of the encoded elemental  vector.  Therefore,  the number of vectors that can be superposed  
before this occurs is a measure of the capacity of the vector representation concerned. The increased performance of  
binary vectors at lower dimensionality is consistent with their increased capacity. One explanation for this may be  
that the even distribution of information across the entirety of the vectors confers greater robustness in the case of  
binary vectors, however it is also important to consider that in the case of real vectors, the representational capacity 
must accommodate both the exponent field and the significand. 

With  respect  to  automated  indexing,  the  relatively  straightforward  approach  we  have  employed  in  this  paper 
obtained results that are comparable to those achieved by other VSM model implementations and the Medical Text  
Indexer.  As the purpose of this evaluation was to compare real  and binary valued vectors rather  than optimize 
indexing performance,  we did not experiment extensively with parameters other than dimensionality and vector 
representation.  We also deliberately did not preprocess  the text concerned as other researchers  approaching the 
indexing problem have done in the past. Therefore we did not evaluate the extent to which further performance  
enhancements  might  be  obtained  by  utilizing  stemming,  normalization  or  concept  extraction  techniques. 
Nonetheless, even at a dimensionality of 4,096, which is the equivalent in space requirements to the utilization of  
128-dimensional float-valued, or 64-dimensional double-valued vectors, we obtained performance comparable to 
that obtained with relatively high-dimensional real-valued vectors previously. We acknowledge, however, that the 
best-performing approaches to automated indexing using this test set rely on information beyond that captured by 
the simple reduced-dimensional approximation of the VSM we have utilized here. In particular, Huang et al.  [35] 
obtained greater accuracy than our approach, combining elaborate preprocessing with a machine learning algorithm 
that used as additional features surface similarity between document terms and MeSH terms, and statistical metrics  
derived from the distribution of terms and MeSH terms. It is probable that the accuracy of our method could be 
augmented by incorporation of this additional information, and utilization of the learning-to-rank algorithm. We will 
explore the extent to which these additional features can enhance performance in future research efforts.
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In addition to demonstrating the relative effectiveness of binary vectors, we introduced a deterministic approach to 
generating elemental vectors. This approach eliminates the need to maintain a vector store of elemental vectors to  
enable the addition of further documents. This is of particular importance when considering the development of a 
distributed implementation of Random Indexing. With the requirement to maintain an elemental vector store, a set 
of vectors representing all terms thus far encountered would need to be retained and shared between instances of the  
indexing system. Furthermore, as new terms were encountered, newly generated vectors for these terms would need 
to be added to the communal vector store, and steps would need to be taken to ensure that two indexing instances do 
not generate a different vector for the same newly-encountered term. The deterministic approach eliminates these  
concerns,  allowing  for  convenient  implementation  of  a  distributed  indexing  system,  as  well  as  meaningful  
comparison between variants of Random Indexing across experiments by maintaining the consistency of incidental 
overlap between elemental vectors.

A limitation of our study is the fact that we used the default number of non-zero values that is given in the Semantic 
Vectors package for real values vectors for the MeSH term indexing. Although the contributions of this paper would 
not be affected, it would be good to investigate as to how much the overall indexing results can improve.

It should also be mentioned that the hashing algorithm that is used to compute seed values for the deterministic 
vector generation has not undergone a closer examination in our study. As the algorithm's author pointed out, it is 
worth considering an established hashing algorithm whose robustness was mathematically scrutinized.

Conclusion

In this paper,  we document the development and evaluation of two refinements to the Random Indexing based 
approach to automated indexing. Firstly, rather than the traditional real valued vectors, we utilize high dimensional  
binary vectors as a representational approach. These are shown to have greater capacity, which allows for equivalent  
performance  with  considerably  reduced  memory  requirements  when  compared  with  real-valued  vectors.  This 
finding has implications for information retrieval applications in general.

In  addition,  we  introduce  a  deterministic  approach  to  the  generation  of  elemental  vectors  that  eliminates  the 
requirements for maintaining a vector store of elemental vectors for the purpose of indexing future documents. An 
additional advantage of this development is the ability to distribute processing across machines conveniently. These  
developments provide the means to negotiate fundamental obstacles to the utilization of Random Indexing in the 
context of a real-world automated indexing system without sacrificing recommendation accuracy.

In  order  to  enable  other  researchers  to  reproduce  our  results,  both  our  binary  vector  and  deterministic  vector 
implementations will be made available as open source code as a part of the Semantic Vectors [31] package.
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