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Abstract 

The growing amount of electronic data collected from patient care and clinical trials is motivating the creation of 

national repositories where multiple institutions share data about their patient cohorts. Such efforts aim to provide 

sufficient sample sizes for data mining and predictive modeling, ultimately improving treatment recommendations 

and patient outcome prediction. While these repositories offer the potential to improve our understanding of a 

disease, potential issues need to be addressed to ensure that multi-site data and resultant predictive models are 

useful to non-contributing institutions. In this paper we examine the challenges of utilizing National Cancer Institute 

datasets for modeling glioblastoma multiforme. We created several types of prognostic models and compared their 

results against models generated using data solely from our institution. While overall model performance between 

the data sources was similar, different variables were selected during model generation, suggesting that mapping 

data resources between models is not a straightforward issue. 

Introduction 

The research community has increasingly adopted the practice of sharing data resources across multiple institutions 

to prospectively gather data on diseases, aggregating information into common databases. Compiling data across 

many sites improves the ability to gather a range of representative patient data that can often be difficult for 

institutions to gather individually. Increasing the amount of available data provides opportunities for creating models 

that can improve the understanding of diseases, leading to tools to aid physicians in decision making and the 

prediction of patient outcomes. Nevertheless, researchers have not fully explored the inherent problems of utilizing 

multi-institutional models created with shared data when applying them back at an institutional level. Data 

collection and clinical trials tasks focus efforts on testing the internal validity of data and models, exploring the 

ability of the model to predict consistently on test cases collected in the same manner as the training dataset.  Testing 

models ability to generalize to cases outside the training population, or the model's external validity, is not straight 

forward and often demonstrates a substantial drop in prediction accuracy.  In addition, few papers presently provide 

results for both internal and external examinations, as outside datasets may not be available for an external 

comparison. Challenges related to external validation have been previously reported in epidemiology literature
13,14

; 

in this paper, we examine the issue in the context of developing predictive models from publicly available 

repositories that aggregate clinical data from multiple academic medical centers. 

A variety of issues exist that hinder the ability of researchers to apply a validated disease model constructed from a 

national data source to a local institution. First, differences in the new population being evaluated may reduce the 

accuracy of the original model’s predictions. There may be important disease characteristics for a target population 

that the model does not represent given a sampling bias. It has been standard in the past for each institution to 

generate a model from a dataset of their local population because their final model is not expected to be applicable 

elsewhere. But expecting all institutions to generate models from local data is an issue as many non-research 

hospitals will not realistically have access to datasets with sufficient statistical power to create their own model; and 

using a published model from a national dataset for predictions on their local patients may not be effective. Another 

issue is the amount of knowledge supplied concerning the design of the model and the required model inputs. 

Individual institutions currently have limited access to decisions such as the stratification techniques used during 

model creation by other groups unless they are reported in publications.  These design considerations are important 

for preparing a new dataset to run with a published model. Imaging findings like tumor size measurement, for 

example, can differ between institutions based upon standard hospital practices and radiologist preferences. 

Similarly, model features are important because an institution may not perform the same types of tests or evaluations 

as the original researchers and will have large amounts of missing data to contend with, without foreknowledge of 

the model design. In this analysis, for example, TCGA data does not include a variable describing the amount of 

tumor removed during resections, and reduces the available predictive elements when compared to the other datasets 

examined. Collectively, these issues are known to place restrictions on the use and adaptation of models generated 
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be separate research institutions. It is likely the same difficulties must be addressed when generating multi-

institutional models in order for them to provide predictive capabilities back to not only the institutions which 

supplied data, but also to those that did not. 

In this work we explore methods for evaluating and distinguishing the differences between multi-institutional 

models generated from shared data and single dataset models. Using publicly available data on glioblastoma 

multiforme patients from the National Cancer Institute’s (NCI) Rembrandt and The Cancer Genome Atlas (TCGA) 

initiatives, we have generated logistic regression and Bayesian belief models using clinical and imaging features. 

We examine the differences between the models related to their population differences, stratification techniques, and 

missing data concerns; and discuss the potential development of methods and tools to combat these issues when 

developing models in future work. 

Background 

Glioblastoma multiforme (GBM) is an aggressive malignant primary brain tumor, and accounts for almost half of 

the 45,000 newly diagnosed cases of adult brain tumor seen annually in the United States. Recent NCI SEER 

(Surveillance, Epidemiology, and End Results) data show that there has been no effective change in the survival of 

GBM patients during the last 20 years. The average survival time for GBM patients is between 12-24 months when 

receiving specialized care at academic centers; but for many patients, survival time is often much shorter. The 

treatment of brain cancer frequently includes a combination of surgical resection, chemotherapy, and radiation. The 

increasing numbers of available chemo- and adjunctive therapies makes it unclear which treatments will be effective 

for each individual. Moreover, genetic studies are making it clearer that despite similar diagnosis at outset, there are 

variations in tumor biology that may require different treatment responses
1,2

.   In addition, recent statistical papers 

covering GBM present differing results on what variables are relevant to the prediction of GBM outcomes
3-6

. Our 

current understanding of this cancer and effective treatments are still limited; and working towards an integrative 

model of GBM can facilitate prognosis and treatment decisions in the clinic. 

Present efforts to provide prospective observational databases containing brain cancer data include two projects 

form the NCI: the Repository for Molecular Brain Neoplasia Data (Rembrandt) Project, and TCGA. Rembrandt, 

available through caIntegrator, focuses specifically on the study of clinical, genetic, and proteomic correlates in 

gliomas
7,8

. There are currently 639 total cases in its database, covering all glioma types (astrocytoma, GBM, mixed, 

oligodendroglioma) and a few unmatched non-tumor controls. TCGA is a large-scale effort to collect data on over 

20 different cancers and is available through dbGaP
9
. The TCGA dataset contains primarily clinical and genomic 

(copy number, DNA methylation, gene expression, single nucleotide polymorphisms) data with ongoing efforts to 

make radiological and pathological images available. As of March 2012, the GBM subset of TCGA comprises 599 

patients, with 582 downloadable tumor samples. The public availability of these data sources makes them prime 

candidates for use in developing predictive disease models. Both Rembrandt and TCGA include variables for 

demographics, clinical history, tumor diagnosis, performance status, treatments (chemotherapy, surgical, and 

radiotherapy), gene expression, and outcome. Both datasets combine cases submitted by institutions from across the 

United States. Notably, magnetic resonance imaging (MRI) for cases in Rembrandt and TCGA are available through 

the National Biomedical Imaging Archive, with a combined total of 302 unique patients with studies available. A set 

of 30 imaging features (e.g., multi-focality, satellites, proportion of contrast enhancement, etc.) have been defined 

for annotating imaging characteristics based on the NCI Vasari (Visually Accessible Rembrandt Images) effort. The 

In Silico Brain Tumor Research Center (ISBRTC) has reported on efforts to correlate radiologic imaging, pathology, 

and genetic data from TCGA to identify molecular variables that are strong prognostic indicators of overall survival 
10

. 

While national data repositories allow research hospitals to contribute disease information, patient data collection 

and medical decision-making process is ultimately performed in individual clinics governed by local protocols and 

practices. By way of illustration, the problems, findings, and attributes of neuro-oncology patients that are reported 

in clinical records may differ between institutions. And while each site may gather information on the same disease, 

there are variations in the study design and data collection which complicate the ability to integrate and compare 

subjects directly. Arguably, while the collaborative efforts spanning multiple institutions seek to pool data to 

improve statistical power and population metrics, the resulting knowledge and models of such an endeavor must be 

made applicable to any given site. As models are generated from federated collections of observational patient data, 

inter-site differences must be mapped and described so that additional patient data from other institutions will match 

the previous design or can be modified appropriately when collected under different methods. To begin to 

understand these challenges, we compared the process of constructing an array of different prognostic models from 
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Rembrandt and TCGA relative to a local GBM dataset garnered from past work with the UCLA Neuro-oncology 

Program.  

Methods 

Prior to statistical analysis, the clinical and imaging variables from the three datasets (Rembrandt, TCGA, UCLA) 

were examined to determine which of the available variables were appropriate for analytic use.  In order to make our 

initial analysis manageable, focus was placed on a small subset of the available variables.  From the complex set of 

available variables presented in Table 1, we decided to focus on clinical, imaging and treatment variables. To 

simplify the analysis, genetic data was not used in the predictive modeling task due to the complexity of determining 

appropriate genetic markers to use as variables. In addition, complete Vasari imaging findings were only available 

for a small subset of each dataset; these imaging variables were therefore excluded until more data is available.  An 

imaging summary variable was used in its place.   

Category Variable T R U Variable T R U Variable T R U 

Patient information Demographics 

Presenting age  

● 

● 

● 

● 

● 

● 

Family & social history  

 

 ● ● 

 

Environmental exposure   ● 

 

Tumor presentation Tumor site ● ● ● Tumor size ● ● ●     

Histopathology Tumor grade ● ● ●         

Gene expression VEGF 

EGFR VIII 

● 

● 

● 

● 

● 

● 

PTEN  

TP53 

● 

● 

● 

● 

● 

● 

MGMT 

DNA methylation 

● 

● 

● 

● 

● 

● 

Chemotherapy Drug name ● ● ● Frequency/dosage ● ● ● Number of cycles ● ● ● 

Surgical resection Type of procedure ● ● ● Extent of resection ● ● ●     

Radiation therapy Type of radiation therapy ● ● ● Fractionation ● ● ● Total dosage ● ● ● 

Steroids Drug name ● ● ● Frequency ● ● ● Dosage ● ● ● 

Other medications Drug name ● ● ● Frequency ● ● ● Dosage ● ● ● 

Neurological 

assessment 

Karnofsky score ● ● ● Other  ●      

Imaging assessment Tumor volume 

Necrosis 

Contrast enhancement 

● 

● 

● 

● 

● 

● 

● 

● 

● 

Non-contrast enhancing region 

Multi-focality 

Edema volume 

● 

● 

● 

● 

● 

● 

● 

● 

● 

Mass effect 

Satellites 

ADC map 

● 

● 

 

● 

● 

 

● 

● 

● 

Outcomes Time to progression (TTP) ● ● ● Time to survival (TTS; death) ● ● ●     

Table 1: Partial list of potential predictive variables available from among the three data sources.  Data sources: (T) 

TCGA; (R) Rembrandt; (U) UCLA 

 

To make a determination on what clinical, imaging, and treatment variables to use, we first examined the availability 

of complete data for the available variables. Large amounts of missing data and cases of data not missing at random 

can make it impossible to use variables, even when using data imputation techniques. Within the Rembrandt data 

some of the participating institutions did not report clinical data for their subjects, leaving all fields blank. Cases 

with this characteristic were excluded from the dataset. Situations of non-reporting were also seen in the TCGA data 

and cases were excluded in the same fashion. In total, 70 (11%), 82 (15%), and 0 (0%) cases were excluded from the 

Rembrandt, TCGA, and UCLA datasets respectively due to this issue.  In addition, variables concerning treatment 

with radiation and chemotherapy were divided based on prior- and on-study treatment events in the Rembrandt data. 

Reporting of these variables for on-study work was inconsistent and only covered a small subset of the total number 

of cases. In addition, the on-study variables cover events of recurrence and our model design targets prediction on 

first presentation. Therefore, only prior-study data was used from the Rembrandt dataset. Similarly, data related to 

the first appearance of tumor in patients was also selected for both the TCGA and Rembrandt datasets and follow-up 

data was avoided. Following these steps, any cases still missing values for two or more of the target variables were 

excluded under the assumption that their data were not reported correctly (rather than being left out at random). This 

caused the removal of an additional set of 343 (54%), 8 (1.5%), and 28 (14%) cases.  In addition, 19 (3%), 0 (0%), 

and 0 (0%) of the remaining cases were only missing outcome data necessary for building and testing the predictive 

model were also excluded. Finally, the Rembrandt dataset contains cases for multiple grades of glioma and our 

predictive model targets only glioblastoma; therefore we excluded 109 (17%) cases of grade II and grade III gliomas 

from the dataset. 

Following the removal of cases and variables for circumstances of non-random missingness, we selected the final set 

of modeling variables common to all three datasets. Demographic fields (e.g., gender, age) are typically 

straightforward to match. In addition, status variables such as Karnofsky performance score (KPS) are standardized 

and collected in the same way by all institutions. However, different naming schemes and a lack of documentation 

on data representations and formatting made it more difficult to determine when other variables were linked. For 

example, a general imaging status variable reported by the UCLA and Rembrandt teams was named differently 

between the datasets; and neither had documentation to indicate that both were using the same constraints for the 
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scale value. Longitudinal collection of many of the variables also required a simplification for this analysis as most 

of the clinical variables (KPS, imaging, therapeutic interventions) were all recorded over time, and varied dependent 

on the number of follow-ups for a given patient and/or tumor recurrence. Variables with longitudinal data were 

therefore controlled for by pulling the closest follow-up to the halfway point of median survival time for each 

dataset.  

Each ensuing dataset was then used to generate two predictive models: 1) a binary logistic regression model; and 2) 

a Bayesian belief network model. The end point for outcome was determined as survival past the mean survival time 

of the dataset. Logistic regression analysis was then performed using SPSS 20. The SPSS multiple imputation 

package generates missing values using an iterative Markov chain Monte Carlo (MCMC) method. The Bayesian 

belief network (BBN) predictive model was performed using BayesiaLab 5.0. For comparison, the prediction rates 

for a naïve Bayes classifier and “expert-derived” network were tested.  Learning algorithms in BayesiaLab was also 

attempted, seeking to derive network connections from the data directly.  The resulting network configurations, 

however, were not reasonable and some algorithms failed to produce a connected topology. Imputation for missing 

variables in these cases were computed by BayesiaLab using structural expectation maximization. Results from each 

of these methods were then compared to appreciate the differences in the datasets and the predictive rates possible 

based on the available data. 

 

Figure 1. Expert Bayesian Network 

Results 

After selecting a set of variables for evaluation and removing cases that did not have complete reporting, 98 

Rembrandt cases, 467 TCGA cases, and 176 UCLA cases were available for the generation of predictive models. 

The final set of variables selected for model building in this analysis are presented below in Table 2. The chosen 

variables represent key clinical and treatment variables, and include an alternative imaging score variable as Vasari 

imaging variables were excluded. While, the selected variables were all available for the Rembrandt and UCLA 

datasets, the TCGA database did not contain alternative neurological and imaging scores and data on resection 

events did not indicate the amount of tumor removed. Radiation and chemotherapy treatments are coded into binary 

variables indicating if the prescribed treatment was received by the patient. Tumor resection is coded into four 

classes covering the extent of surgical resection: complete resection, partial resection, unknown result, and no 

reported resection. Given that the outcome for our model is survival of the patient past the median survival time for 

the population in the dataset, this selection resulted in a survival prediction at 18 months for Rembrandt; 12 months 

for TCGA; and 12 months for UCLA. Below we review the results found for each dataset using logistic regression 

and Bayesian belief network models. 

Rembrandt 

Mean age of the patients was 50 (σ = 13). Patients survived for an average of 23 months (σ = 18) with a median 

survival time of 19 months. Missing data was present for the Karnofsky performance score, other neurological score, 

and imaging summary score variables. These variables were also measured for multiple patient follow-ups. To 
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Variable Range/Categorical Values Data Source 

  
 

Rembrandt TCGA UCLA 

Age 20-70 * * * 

Survival past median 0 (No); 1 (Yes) * * * 

Karnofsky Score 0-100 * * * 

Other neurological score  -2 – +2 (5-point scale) * 
 

* 

Summary imaging score  -3 –  +3 (7-point scale) * 
 

* 

Radiation treatment 0 (No); 1 (Yes) * * * 

Temodar treatment 0 (No); 1 (Yes) * * * 

Other chemotherapy treatment 0 (No); 1 (Yes) * * * 

Amount of tumor resected 1 (Complete); 2 (Partial); 3 (Unknown); 4 (Not reported) * 
 

* 

Table 2. Selected variables. 

 

normalize the value used for analysis, the values collected closest to the 12 month follow-up examination were used. 

Five imputation groups were generated using the SPSS Multiple Imputation package to provide complete values for 

the regression algorithm. A binary logistic regression was then run with forward conditional selection. Variables 

were added to the model when reaching 95% significance. Models for each imputation group selected Karnofsky 

score, other chemotherapy treatment, and MRI exam score for the model.  The predictive rates of outcome ranged 

from 65.7% to 69.2% for the five imputations. A full listing of results for each imputation run is provided in Table 3.  

The Rembrandt data was analyzed using two probabilistic models: a naïve Bayes classifier and a Bayesian belief 

network derived from an expert-derived topology of the selected GBM variables. The former method predicted 

patient survival outcome correctly at a rate of 76.53%. The expert model’s predictive success was 76.53% 

TCGA 

Patients from the TCGA dataset had a mean age of 53 (σ = 13). Average survival time was 16 months with a median 

time of 11 months. Only values for the Karnofsky performance score were missing for this dataset. Again, five 

imputations were generated from the available data. Selection for the TCGA dataset chose the same variables for all 

imputations: age, Karnofsky score, radiation treatment, and other chemotherapy treatment. Predictive rates of 

outcome ranged from 65.7% to 69.2% for the five imputations. Naïve Bayes prediction for the TCGA dataset was 

67.45%. Performance from the expert model reached a success rate of 68.95%. 

UCLA 

Average age for patients seen at UCLA was 51 (σ = 13). Average survival time for patients was 14 months (σ = 12) 

with median survival falling at 11 months. Values were imputed to fill missing data for the Karnofsky performance 

score and other neurological score variables. All subjects in the UCLA dataset were prescribed treatment with 

temozolomide (Temodar). Therefore, Temodar treatment was not included for variable selection by the logistic 

regression analysis. Selected variables were consistent from the five generated imputations yielding Karnofsky score 

and other chemotherapy treatment as predictive variables for the model. Predictive rates of outcome ranged from 

69.9% to 72.2% for the five imputations. Prediction of survival outcome for the UCLA dataset by the naïve Bayes 

model was 70.45%. Survival outcome prediction when applying the expert model reached 71.59%. 

Following the generation of these models, prediction of UCLA outcomes was testing using the expert BBNs 

generated from Rembrandt and TCGA data.  In both cases, the multi-institutional models were less accurate than the 

UCLA specific model.  Prediction rates for the Rembrandt and TCGA models were 31% and 59% respectively.  

These results indicate additional considerations must be made in order to predict outcomes for patients from the 

local dataset beyond our efforts to control variable selection and model design.  

Discussion 

Our initial efforts to create a predictive model utilizing Rembrandt, TCGA, and UCLA data sources revealed several 

challenges related to data collection, representation, and analysis. We attempt to explain 1) the observed variability 

of the GBM datasets during the variable selection process despite their common disease ties; 2) the significant 

challenges related to the standardization and semantic representation of variables across these data sources; and 3) 

the issue of handling missing data. Finally, we describe future work aimed at understanding the nuances about 

combining study populations and applying theoretical approaches to address these issues. 
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Table 3. Variables chosen for each dataset by logistic regression analysis. 

 

The logistic regression process tests the variables supplied for prediction and includes variables when they are 

deemed significant in their contribution to the decision making task. In our design, we attempted to choose a set of 

clinical variables that are common between the datasets. However, when the models were constructed, each 

regression equation was built around a different set of predictors. Some overlap exists between the resultant models, 

but the final selections cannot be considered equivalent. For the Bayesian models, the variable selection process 

assumed either full independence under naive Bayes or was dictated by an expert derivation of the topology.  When 

we applied the UCLA data to expert Bayesian models generated using multi-institutional data, we found the final 

prediction rate fell below the observed rates seen using the UCLA-specific model. This pattern has been true for 

institution-specific models researchers are used to seeing in past research: they do not generalize well when used 

with data from a separate institution. When considering a multi-institutional model, researchers have anticipated that 

the diverse nature of the data resource might provide enough coverage of a population to create a generalizable 

model that could be supplied to many outside institutions. 

It is apparent that simply matching the variable selection between datasets will not ensure that outside datasets can 

“plug-in” cases into another model to obtain predictions, even in the multi-institutional case. On the surface, even 

from a demographics perspective, the populations appear to be the same.  Yet underlying differences in the 

population must be contributing to the inability to use the predictive information from a multi-institutional model to 

predict values from the local data.  One potential cause of these issues is the coverage of the datasets used in model 

generation.  For example, the standard Karnofsky score ranges from 0 to 100 in steps of 10.  While scores in 

Rembrandt covered this full range, TCGA and UCLA data had minimum reported scores of 20 and 40 respectively.  

Similarly, while an instance of both 0 and 100 scores exist in Rembrandt, it is quite possible some scores are not 

represented in the training dataset or are underrepresented.  When a future input from UCLA falls outside of the 

available training data, the prediction is more likely to be incorrect.   

When working towards a working dataset for this study, concerns were also raised regarding the lack of 

standardization on the types of information collected within each dataset. Part of the difficulty is the lack of 

documentation associated with variables: a data dictionary that explicitly defines each variable or maps them to a 

controlled vocabulary would be a step in the right direction. Furthermore, it is important when working with public 

research data to understand contextual information such as the under what conditions were the data collected and 

what assumptions were made in recording the data (e.g., grading scale used). While TCGA provides a data 

dictionary with standardized terms (linked to the NCI Common Data Elements) and definitions, no equivalent 

resource is provided for Rembrandt data. In addition, while certain variables, such as Karnofsky score, are taken 

using a standardized scale, other variables nominal and ordinal variables are more difficult to interpret. For example, 

UCLA and Rembrandt have variables ranging from -3 to 3 that refer to a qualitative assessment of the patients 

imaging exam, "TumorStatus" and "MRIDesc" respectively, so the assumption was made that both variables were 

 Run Variables chosen Constant Accuracy 
(%) 

R
em

b
ra

n
d

t 

1 Karnofsky score Other chemotherapy MRI exam  -2.636 79.6 

2 Karnofsky score Other chemotherapy MRI exam  -2.803 74.5 

3 Karnofsky score Other chemotherapy MRI exam  -2.509 71.4 

4 Karnofsky score Other chemotherapy MRI exam  -2.040 74.5 

5 Karnofsky score Other chemotherapy MRI exam  -2.904 77.6 

TC
G

A
 

1 Age Karnofsky score Radiation treatment Other chemotherapy -3.653 66.8 

2 Age Karnofsky score Radiation treatment Other chemotherapy -3.006 67.0 

3 Age Karnofsky score Radiation treatment Other chemotherapy -1.774 65.7 

4 Age Karnofsky score Radiation treatment Other chemotherapy -3.254 66.8 

5 Age Karnofsky score Radiation treatment Other chemotherapy -2.883 67.5 

U
C

LA
 

1 Karnofsky score Other chemotherapy   -5.062 71.0 

2 Karnofsky score Other chemotherapy   -5.588 70.5 

3 Karnofsky score Other chemotherapy   -5.087 69.9 

4 Karnofsky score Other chemotherapy   -6.400 72.2 

5 Karnofsky score Other chemotherapy   -6.300 69.9 
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describing the same type of evaluation of imaging data (and, based on discussions with a practicing neuro-

oncologist, this assumption is true).  Similarly, for variables describing chemotherapy treatment, there was no 

indication if contributing institutions should report when no therapy was prescribed or if a blank entry in the 

database indicated this trait.  Without documentation to describe the intended variable states it is left up to a 

researcher unfamiliar with the original design to make assumptions for facts such as scale variable ranges or when 

empty database entries imply no treatment or should be considered as an unreported fact. In addition, while 

Rembrandt data captures temporal ordering of certain variable measurements (e.g., Karnofsky performance score), 

no details about the number of days occurring between measurements and how the measurements relate to one 

another (e.g., are all temporally-dependent variables measured on the same day?); this information needs to be 

provided before meaningful temporal models can be built from the data. 

The number of instances where data appears to be unreported in the Rembrandt and TCGA datasets further 

demonstrates the need for meta-documentation. In Rembrandt, for example, a few institutions contributed genetic 

data from their patients, but the remaining section on clinical data is empty except for information on end survival 

outcome (i.e., time to survival). Though the focus of the Rembrandt and TCGA initiatives is on genetic findings, 

clinical information is relevant to comparing cases for statistical analysis. Thus, when examining additional cases 

with partially complete clinical reporting, it became unclear if certain variables contained null values due to 

unreported facts missing at random; facts intentionally withheld based on some criteria; or were cases where the 

variable was not relevant because a particular treatment or reading was not performed on that patient. In handling 

missing data, it is important to understand the differences between when data is missing completely at random, 

missing at random, or missing not a random. There is no indication made if there are circumstances where this 

information is allowed to be excluded. Currently, we are removing cases from the datasets when it is unclear 

whether fields are empty due to data missing at random (MAR) or missing not at random (MNAR); however, this 

reduces the sample size of our cohort. If the data is MAR or MNAR, we potentially could use imputation techniques 

such as expectation maximization to estimate missing values. It is important for public data resources to document 

the expected format of submitted data since data is coming from many locations. Few research hospitals gather data 

in the same formats or with the same systems, meaning all data requires some amount of alteration or mapping for 

submission. Proper understanding of the data format and reporting can help indicate when missing values are due to 

an institution not having the appropriate data to submit. 

Even if perfect documentation for all future resources were possible, some of these issues will still persist. 

Therefore, additional work must be done to examine methods which may examine these problems of external 

validly. Transportability theory provides a framework for determining under what circumstances integrating 

information from many different studies is possible
11

. Since study populations differ, a level of generalization is 

required to make the data comparable. In traditional meta-analysis as well as our current analysis, this process is 

done by selecting studies based on some ad hoc criteria. Using the paradigm of transportability, one can use 

knowledge of the respective study designs and populations to bridge the gaps between study variables in order to 

compare and combine them in a principled way. Proper application of transportability rules describe the causal 

relations between the model variables and indicate where differences in populations will block the ability to 

generalize findings when predicting across populations.  Therefore,  applying this theory presents a challenge 

concerning how to translate our qualitative understanding of the data collection procedures into a causal model that 

explicitly describes the variables, relationships, and differences in populations. Within the theory, population 

differences for a variable are handled utilizing selection nodes which dictate when data is accessible from each 

differing group using the model for prediction.  As part of future work, we intend to explore methods that would 

provide modelers with guidelines for applying transportability theory to a causal model and permit analysis of which 

model assumptions derived from one population are applicable to another without need to control for population 

differences. These guidelines require robust techniques for specifying the causal model and probabilities for each 

study population which is another open problem; we are currently exploring methods that utilize information 

reported in literature (e.g., randomized controlled trials) to provide estimates.  Natural language processing (NLP) 

techniques are commonly employed to handle the task of matching data elements to controlled ontologies providing 

opportunities for term standardization.  In addition, if elements of the data source are tied to a high level data source 

(e.g., neuroradiology reports, oncology results, labs), NLP tasks could be designed to pull relevant variable data 

from patient records directly to fill missing and unreported values and complete a dataset for an institution.  

Conventional statistical methods do not always make situations of bias obvious when working with observational 

data as gathered from our datasets.  Using propensity scoring methods, we can more accurately test for potential bias 

across the large multi-institutional datasets and reconstruct our models accordingly
12

.  Finally, given the progression 
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of disease in a patient, temporal aspects must be included in the design of future models.  Dynamic belief networks 

(DBN) can be extended from baseline BBNs in order to model a disease progression over time. 

Conclusion 

This analysis is preliminary in examining the full scope of the relationships between these GBM resources. Results 

from the predictive analysis indicate that a selection of clinical variables is not powerful enough to predict outcomes 

for a clinical setting. Performance rates are similar between the different models and datasets, but variable selection 

in the models differs. This variation is expected to increase as more data is included to cover the entire scope of 

imaging and genetic variables. Therefore, additional work must be performed to understand the complex 

relationships between datasets and discover the proper techniques to relate evidence from individual institutions for 

use with multi-institutional models. 
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