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Abstract 

We consider the task of predicting which patients are most at risk for post-hospitalization venothromboembolism 

(VTE) using information automatically elicited from an EHR. Given a set of cases and controls, we use machine-

learning methods to induce models for making these predictions. Our empirical evaluation of this approach offers a 

number of interesting and important conclusions. We identify several risk factors for VTE that were not previously 

recognized.  We show that machine-learning methods are able to induce models that identify high-risk patients with 

accuracy that exceeds previously developed scoring models for VTE.  Additionally, we show that, even without 

having prior knowledge about relevant risk factors, we are able to learn accurate models for this task. 

 

Introduction 

The proliferation of electronic health records (EHRs) is providing unprecedented opportunities to analyze the 

medical histories of large patient populations in order to improve clinical practice in areas such as prognosis, 

adverse event detection, and risk assessment.  The promise of this type of analysis is that by considering associations 

between patient histories recorded in the EHR and clinical outcomes, we can detect previously unknown risk factors, 

identify important interactions among the variables considered, and learn decision rules that can be applied in 

clinical settings. 

Here we consider the task of predicting which patients are most at risk for post-hospitalization1,2 

venothromboembolism (VTE).  Using representations of patient histories that are automatically elicited from an 

EHR, we apply machine-learning methods to induce models that classify patients according to their risk of VTE. 

Our models consider variables representing demographics, vital signs, diagnoses, procedures, medications, and 

several relevant genetic markers.  

The contributions of this work are severalfold.  First, we show that we are able to identify high-risk patients with 

high accuracy using patient representations that are automatically extracted from EHRs.  Second, we demonstrate 

that our learned models exceed the predictive accuracy of previously devised scoring systems for VTE.  Third, we 

show that, even without having advance information about relevant risk factors, we are able to learn accurate models 

for this task.  Fourth, we identify a number of risk factors that were not previously used in VTE risk assessments or 

discussed in the relevant literature. 

 

Background 

Venothromboembolism, including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a significant 

health care problem causing considerable morbidity, mortality, and health-care expenditures3. VTE is estimated to 

affect 30 million persons in the USA with an annual incidence of 1.17 per 1,0004. According to the 2008 U.S. 

Surgeon General’s Call to Action, the problem is often unrecognized and the actual incidence rate is likely closer to 

2 per 1,0005. Hospitalization for an acute medical illness is associated with over a 10-fold increase in risk of VTE2,6.  

The seriousness of these conditions is underscored by an estimated hospital mortality rate of 10% attributed to 

pulmonary embolism7 and an annual mortality rate exceeding that attributed to prostate and breast cancer combined. 

VTE also presents a strong economic burden due to hospitalization costs and a high rate of hospital readmission3.
 

Current medical practice involves administration of prophylactic anticoagulation with subcutaneous heparin 

(unfractionated or low-molecular weight) to hospitalized patients identified at moderate to high-risk for developing 

VTE. However, prophylactic anticoagulation is often discontinued upon discharge by providers, without regard for 

the continuing risks of VTE in post-discharge settings. 
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Recent research has highlighted the significance of post-hospitalization management to avoid VTE.  A 1992 

retrospective study utilizing data from the U.S. claims database revealed that of 92,162 hospitalized medical patients 

followed over 90 days from their hospital admission date 1,468 (1.59%) developed a VTE with 18% occurring after 

hospital discharge1. These data suggest that significant risk of VTE persists after hospital discharge. 

Since prophylactic anticoagulation can help diminish the risk of post-hospitalization VTE, there is a substantial 

benefit to being able to predict which patients are most at risk.   Although many well-known risk factors have been 

identified, minimal progress has been made in decreasing the mortality and morbidity of this condition. 

A number of studies have investigated the task of inferring risk-assessment models from EHR data.  These studies 

have considered predicting risk for outcomes such as clinical deterioration8, mortality from type 2 diabetes9, heart 

failure10, virologic failure11, hospital-acquired infections12, and pancreatic cancer13.  A number of recent studies have 

also considered the problem of using automated methods to identify patients who are at high risk for VTE14,15,16.  

However, to our knowledge, the present study is the first to address the coupled tasks of learning a model and 

predicting VTE risk directly from EHR-extracted variables. 

 

Methods 

Patient population:  The patients we consider in this study are drawn from the Marshfield Clinic Research 

Foundation’s Personalized Medicine Research Project (PMRP) cohort. Participants were selected for inclusion in 

this cohort if they were over 18 years of age and lived in one of 19 zip codes surrounding the city of Marshfield, 

Wisconsin, and if at least one member of the household had received care at the Marshfield Clinic within the 

previous three years.  Over 90% of this population receives its all of its healthcare from the Marshfield Clinic 

System. These individuals agreed to provide blood for DNA, plasma, and serum collection as well as use of their 

dynamic medical record.  Over 60% of the participants over the age of 20 have 20 or more years of retrospective 

clinical data from the Marshfield Clinic system available for use.  For those over the age of 60, the percentage of 

individuals with retrospective clinical data available increases to 80%. Within the PMRP cohort, about 5,000 

individuals over the age of 40 have been genotyped with an Illumina 660 GWAS chip through the Electronic 

Medical Records and Genomic (eMERGE) network as part of a National Institute of Health initiative eMERGE 

project. 

 

Since individuals in this cohort receive care within the Marshfield Clinic system, a wide variety of health 

information characterizing them is available electronically.  The Marshfield Clinic uses a fully implemented EHR 

with an integrated data collection and validation system for medical information.  Data is captured from the Cattails 

Software Suite via an in-house electronic medical record.  This is a highly integrated system automating the 

financial, practice management, clinical, and real time decision-support processes of the clinic.  The EHR has been 

used for over two decades by clinical staff with 100% physician usage for patient care since 1994.  The EHR 

provides real-time access to a patient’s medical history and health-related events such as length of hospital stay.  

Most of the “coded” data captured in the EHR is transferred daily to the clinic’s data warehouse where it is cleansed, 

standardized, and integrated with other related patient information.  The data warehouse environment contains 

diagnostic, laboratory, procedure, practice-management, vital-sign, insurance, medication-inventory, and prescribing 

data on all patients.  To expand medication history, the clinic has applied natural language processing methods to 

more than 27 million clinically transcribed documents to extract medication-related information dating back to the 

early 1990s.   

 

Case and control selection:  The subjects selected for our study meet the following criteria: they had enrolled in the 

PMRP cohort between January 1992 and April 2011, were age 40 and over, and had been hospitalized and 

subsequently experienced a VTE within 90 days post hospitalization. VTE codes were identified in the data 

warehouse based on the following ICD-9 codes: 415.1, 415.11, 415.19, 451.1, 451.11, 451.2, 451.81, 451.83, 

451.89, 451.9, 452.0 and 453.0 – 453.9. These candidate cases were then manually adjudicated to ensure that they 

actually did experience a VTE within the 90-day window.  Controls were matched to cases such that the fraction of 

patients who were hospitalized for surgical and medical procedures is the same in both groups.  We excluded 

subjects who were pregnant or in their postpartum period. Within the eMERGE cohort, we identified a total of 720 

subjects (144 cases and 576 controls) who had genetic information available on the DNA variants of interest. 

  

Clinical data: The clinical data we use consists of six types of records: demographics, diagnoses, labs, medications, 
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procedures, and vitals.  The demographic data consists of each patient's gender, age at hospitalization, and age at 

VTE (if applicable).  Each diagnosis a patient has received over the course of their enrollment in the PMRP cohort is 

indicated by a record listing the corresponding ICD-9 code, age at diagnosis, and other relevant data. The diagnosis 

records cover a wide range of information, including not only conventional diagnoses such as pneumonia or cancer, 

but also smoking habits and family histories of various ailments.  Each lab-test record represents the patient’s age at 

the time of the test, an internal Marshfield-specific code indicating the category to which the test belongs, and a field 

stating whether the lab result is normal, abnormally high, or abnormally low.  A medication record is created each 

time a patient starts or stops taking a medication.  Each of these medication records also indicates the dosage and 

contains two internal Marshfield-specific codes indicating, at different levels of specificity, the category to which 

the medication belongs.  Each procedure record indicates the patient’s age at the time of the procedure and the 

procedure’s CPT-4 code.  The vitals records describe all of a patient's measured vitals, including blood pressure, 

height and weight. 

 

Genetic data: We selected 32 specific single nucleotide polymorphisms (SNPs) that had been previously associated 

with VTE, either as risk factors or protective factors, and extracted our patients' genotypes for each of these SNPs 

from the eMERGE data set.  

 

Representations for machine learning: We consider learning predictive models using two different sets of clinical 

variables. The first set, which we refer to as the curated representation, includes only a set of 119 variables based on 

78 risk factors for VTE or thrombophilia that were reported in the prior literature. The second set of variables, which 

we refer to as the unabridged representation, contains virtually all of the variables that we can extract from our 

patient records.   

 

In a given representation, we use a vector of binary variables to characterize each patient’s history. Most events 

(diagnosis, lab, medication, procedure or vitals measurement) of interest are represented by two variables in a 

patient's vector – one indicating whether or not the patient experienced the event at any time before the relevant 

hospitalization, and the other indicating whether or not the event occurred recently (generally, within six months of 

the relevant hospitalization). For some of our curated variables, we have specific knowledge about the time-

sensitivity of the event and we adjust the time window of the second variable accordingly (e.g. angioplasty causes 

the highest risk within three months).  When instantiating the vector for a given patient, all variables represent 

events that occurred before the relevant hospitalization of the patient. 

 

To extract patient vectors for our unabridged representation, we use the following process. As mentioned above, 

every record in the data warehouse contains some sort of code, whether it is from ICD-9, CPT-4 or a Marshfield-

specific vocabulary. We consider every code present our patient histories as a potential pair of variables. However, 

we prune from the representation any variable that occurs with very low frequency (in fewer than 10 patients’ 

histories) or very high frequency (in all but 10 patients’ histories).  After this frequency pruning, we end up with 

3330 unique variables in our unabridged representation.  

 

To extract patient vectors for the curated variable set, we manually identify the set of codes that correspond to each 

risk factor in our curated list. Many of these risk factors correspond to multiple codes within one type of record (e.g. 

a risk factor describing a diagnosis may map to multiple ICD-9 codes) or to multiple codes in different types of 

records. For example, oral contraceptive use can appear in a medications record, or it can be indicated by a specific 

ICD-9 code in a diagnosis record. Using this procedure, our 78 risk factors map to a set of 128 variables, which is 

then reduced to 119 variables after frequency pruning. 

 

We represent our genetic data using three binary variables for each SNP of interest.  For a given patient, these 

variables represent the mutually exclusive cases of the patient being heterozygous at the SNP, homozygous for the 

minor allele, or homozygous for the major allele.  Altogether, our experiments evaluate four different variable sets: 

we consider using the curated and unabridged variable sets alone, and in conjunction with the set of genetic 

variables.  Figure 1 provides a graphical overview of the process through which we generate patient vectors. 

 

Single variable analysis:  The first analysis we conduct is to discern which individual variables, if any, have a 

significant influence on VTE risk. We assess this in two ways. First, for each variable we compute the Kaplan-Meier 

curve (percent survival against time) for those patients who have the variable set to 1, and we compare these curves 

to the survival curve of our whole cohort. Here, “survival” means not having a VTE post-hospitalization.  We 
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quantitatively compare a pair of curves using a log-rank test and we compute a p-value for each variable where the 

null hypothesis is that the survival curve for the selected patient subset is no different than the curve for the entire 

cohort.  To adjust for the large number of multiple comparisons, we perform the Holm-Bonferroni correction to 

determine an adjusted p-value for each variable. A limitation of using survival curves in this way is that they do not 

make readily apparent the fraction of cases covered by a given variable.  Therefore, we also measure the predictive 

accuracy of each variable by computing its precision and recall.  In this context, precision is the fraction of patients 

having a given variable set to 1 that are cases (i.e. experienced a post-hospitalization VTE), whereas recall 

(sensitivity) is the fraction of cases that have the given variable set to 1.  More formally, precision is defined as P = 

TP / (TP + FP), and recall is defined as R = TP / (TP + FN), where TP indicates a true positive (a case that is 

predicted to be a case), FP indicates a false positive (a control predicted to be a case), and FN denotes a false 

negative (a case predicted to be a control).  

 

Machine-learning analysis: The second type of analysis we do is to apply machine-learning methods to our data set 

in order to determine if there are functions of multiple variables that have more predictive value than individual  

variables alone. With this goal in mind, we run several standard machine-learning algorithms on our different 

variable representations, using the Weka machine learning toolkit17. The primary algorithms we use are naïve Bayes, 

k-nearest neighbor (k-NN) (with filtered variables), support vector machine (SVM), C4.5, and random forest (using 

REPTree, a form of regression tree). 

 

Figure 1. A graphical overview of the data-extraction process. From the data warehouse, which 

contains six types of records, and the genetic data, we extract histories for each patient.  We 

represent each patient history using a vector of binary variables.  Pairs of variables are used to 

represent recent and not-necessarily-recent diagnoses, procedures, etc.   We vary the 

representations considered by optionally (i) using a set of curated risk factors to limit the 

variables included in each patient vector, and (ii) adding the variables that represent the genetic 

profile of each patient. 
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Additionally, we evaluated several ensemble learning methods. We used bagging and boosting in conjunction with 

several of the best-performing learning algorithms, and we evaluated a stacking approach in which we considered 

the average and the sum of the confidence scores given by models learned using a variety of algorithms. However, 

none of these ensemble approaches resulted in significantly improved predictive accuracy, and we do not report 

further results here. 

 

We use a 10-fold cross-validation methodology to evaluate the predictive accuracy of the models induced by the 

machine-learning methods.  After pooling the test-set predictions from all 10 iterations, we create both survival and 

precision-recall curves. Survival curves, which are more commonly used in clinical applications, have the advantage 

of showing the extent to which a predictor is able to isolate the patients at highest risk.  In our application, however, 

the 90-day post-hospitalization window we consider is probably too short to differentiate cases according to their 

degree of risk at the time of their release from the hospital.  Moreover, there are two limitations of survival curves 

for this type of application. First, they do not make apparent the level of recall (sensitivity) of a predictor. Second, a 

survival curve can characterize a fixed decision rule, but not how predictive accuracy varies as a threshold on the 

confidence of the model making the predictions is varied. Therefore, we also evaluate our models by constructing 

precision-recall curves, which portray the accuracy of the models at all possible confidence thresholds. The survival 

curves that can be generated for a learned model look different depending on the confidence threshold chosen to 

classify patients. To standardize our survival curves for comparison, we generate them by choosing thresholds that 

control recall at 50%.  

 

We compare the predictive accuracy of our learned models to two existing risk-prediction questionnaires.  One of 

these questionnaires was developed by Sanofi18, and one developed by the University of Chicago19. These risk 

assessments, which we note were not designed for the specific context of predicting post-hospitalization VTE, 

operate by assigning point values to a number of risk factors. The sum of the points for a given patient represents the 

predicted magnitude of VTE risk.  We implement these questionnaires as automated processes by mapping the 

indicated risk factors to specific codes in the clinical records, as we do with our curated variable set.  

 

Results 

Assessing the predictive value of individual variables: The first question we consider is whether there are previously 

unrecognized risk factors that are highly predictive of VTE occurrence.  We address this question by measuring the 

predictive accuracy of every variable in our unabridged 

representation.  This assessment of predictive accuracy is 

done using two methodologies, as discussed previously.  

First, we use a log-rank test to compare the Kaplan-Meier 

curves for single-variable predictors against the curve for 

the entire patient cohort.  We compute adjusted p-values 

(via the Holm-Bonferroni method) to determine the 

significance of the differences between these curves.  

Second, we compute precision and recall of the single-

variable predictors. 

This analysis identifies 339 variables that have adjusted p-

values  0.01.  Figure 2 shows the survival curves for four 

of these significant variables as compared to the survival 

curve for the entire patient cohort.  Table 1 lists the 

precision and recall values for these variables and several 

additional ones, along with their adjusted p-values.  These 

results indicate that there are a number of previously 

unrecognized risk factors that can be identified by 

analyzing patient histories elicited from EHRs. 

Many of the significant variables can be grouped into 

several distinct categories: low blood volume, infection, 

inflammation, immobilization, and malnutrition.  The use 

of diuretics (e.g. furosemide) and hypovolemia may be 

Figure 2. Survival curves for four relevant individual 

variables: E.coli infection, hypovolemia, levofloxacin 

use, and pathologic fracture of vertebrae.  The solid 

curve shown at the top of the figure represents the 

survival curve for the entire patient cohort. 
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markers for the treatment of an underlying volume overload state, such as that found in patients with congestive 

heart failure, liver failure or nephrotic syndrome.  Hypo-osmolarity is often ascribed to hypotonic state seen in 

patients with hyponatremia (hypotonic hyponatremia).  Hypo-osmolarity with hypovolemia is most commonly 

caused by diuretics.  Anemia caused by acute blood loss (hemorrhage) may be another potential cause for 

hypovolemia.  Other predictive variables for VTE include E. coli infection, and the antibiotics levofloxacin and 

cephalexin, which indicate treatment for an underlying infection.  This finding is in accord with a recent study that 

found that infection was the most common exposure in the 90-day period before hospitalization for VTE20.   

Increased alpha-1 globulin protein may be indicative of acute or chronic inflammation.  Although non-specific, 

acute or chronic inflammation caused by infection, malignancy or other conditions is associated with VTE.  We also 

found that the presence of acute renal failure (ARF) and pathologic fracture were predictive of VTE.  ARF can be 

caused by a number of conditions including hypovolemia due to diuretic use as well as infection, inflammation, or 

connective tissue disease.  The presence of pathologic fracture contributing to VTE may be due to the underlying 

medical condition (e.g. malignancy) or related to bed rest and immobilization caused by acute pain.  Immobilization 

is a well-known factor leading to venous stasis and increased risk of venous thrombosis especially of the lower 

extremities. 

 

Category Risk Factor Precision Recall Adjusted p-value 

Low Blood Volume 

Furosemide 0.515 0.243 2.099910
-9

 

Hypovolemia 0.575 0.160 3.018810
-8

 

Hypo-osmolarity 0.688 0.153 2.934810
-12

 

Posthemorrhagic Anemia 0.600 0.146 3.015510
-7

 

Acute Renal Failure 0.824 0.097 1.307910
-9

 

Infection 

E.Coli Infection 0.867 0.090 4.549910
-11

 

Levofloxacin 0.507 0.264 2.115510
-10

 

Cephalexin 0.441 0.313 2.928610
-8

 

Inflammation 
High Alpha-1 Globulin Count 0.909 0.069 6.597510

-8
 

Angina Pectoris 0.430 0.299 1.793410
-7

 

Immobilization Pathologic Fracture of Vertebrae 0.778 0.097 4.8275710
-10

 

Malnutrition Protein Caloric Malnutrition 1.000 0.083 <2.220410
-16 

Table 1. Precision, recall, and adjusted p-values for several relevant variables. 

Assessing the predictive value of learned models: Although there are numerous variables that have notable 

predictive value, the recall of these variables is generally quite low, as indicated in Table 1.  Using machine-learning 

methods, however, we can learn models that combine evidence from numerous variables.  To assess the value of 

representing VTE risk as a function of multiple variables, we evaluate models learned by a set of standard machine-

learning algorithms, representing five different classes of methods – SVM, k-nearest neighbor, C4.5 decision tree 

induction, naïve Bayes, and random forest. 

Our C4.5 trees and naïve Bayes classifiers are learned using the default Weka parameters.  The k parameter for k-

NN is selected using internal cross-validation (cross validation within each training set) with the maximum k=20, 

and the variables are filtered using correlation-based feature subset selection21.  Our random forest models use 

default parameters, except for the number of trees generated, which is set to 100.  The SVMs (learned with 

LibSVM22) use a radial basis function kernel, and the parameters  and C are chosen for each fold using a grid search 

( from 0.005 to 0.1, step size 0.005, and C from 2.5 to 50, step size 2.5) using internal cross-validation within each 

set. 

Figure 3 shows precision-recall curves for the five learning algorithms using the curated variable representation.  

Figure 4 depicts survival curves for the same algorithms and variable representation, along with the survival curve 
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for the entire patient cohort.  As both figures indicate, the predictive accuracy of the learned models is notably better 

than random guessing (i.e. since 20% of our patient cohort consists of cases, a predictor with random performance 

would be expected to have 20% precision at any level of recall).  Some learning algorithms learn significantly more 

accurate models than others for this task, however.  Naïve Bayes, random forest and SVM are among the best 

learners in this experiment and demonstrate comparable levels of accuracy.  Moreover, comparing the precision-

recall values from these curves to those reported in Table 1, we conclude that we can attain predictors with notably 

higher accuracy than our best single-variable predictors by learning models that incorporate multiple variables. 

 

Figure 3. Precision-recall curves for learned models 

on the curated representation. 

 

Figure 4. Survival curves for learned models on the 

curated representation. 

 

Figure 5. Precision-recall curves comparing models 

learned using the curated variable set and the 

unabridged variable set. 

 

Figure 6. Survival curves comparing models learned 

using the curated variable set and the unabridged 

variable set. 
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Assessing the value of a curated variable set: To determine how important it is to have a curated variable set, we 

compare the predictive accuracy of models learned using the curated and unabridged representations.  Figure 5 and 

Figure 6 show the precision-recall and survival curves, respectively, for models learned using naïve Bayes and 

random forest.  The accuracy of the naïve Bayes is markedly worse with the unabridged representation than with the 

curated representation.  This is not surprising given that 

naïve Bayes is generally not robust when given a large 

number of highly dependent variables.  The random 

forest models, on the other hand, are more accurate with 

the unabridged representation.  Similarly the SVM 

models (not shown) are also more accurate with the 

unabridged representation.  From these results, we can 

draw two important conclusions.  First, there appear to 

be important, additional risk factors represented in the 

clinical records that were not included in our curated list 

of risk factors.  Earlier in this section we discussed the 

discovery of additional risk factors (as highlighted in 

Figure 2 and Table 1), but the present result 

demonstrates that these additional risk factors are not 

merely redundant with previously identified ones.  A 

second conclusion we can make is that, even when task-

specific background knowledge is not provided, it is 

possible to induce accurate predictive models from EHR 

records. 

 

Assessing the predictive value of the genetic variables: 

The empirical results we have presented so far consider 

only the clinical variables.  We also conduct experiments 

to test the predictive value of the genetic variables. 

Figure 7 shows the precision-recall curves for random 

forest models learned using the curated variable set alone, the genetic variable set alone, and the two representations 

in conjunction.  The genetic representation alone has little predictive value, except for a small number of cases that 

are represented in the low-recall, high-precision part of the curve.  Moreover, when combined with the curated 

variables, the genetic representation does not offer a predictive advantage.  The results shown here are representative 

of what we observed with all of the learning algorithms we evaluated. 

Because several of the SNPs we used have been shown to be associated with VTE risk23,24, we expected the genetic 

variables to provide more predictive value than they did.  The lack of predictive value, however, is likely due to two 

issues: the risk/protective alleles for most of these SNPs are relatively rare, and our patient cohort is fairly small.  In 

future work, we plan to incorporate additional risk-associated SNPs, and to investigate other representations of the 

SNP data that might make risk-prone genotypes more apparent to the learning algorithms. 

Comparison against existing VTE scoring models: Finally, we compare the predictive value of our learned models 

against the previously developed Sanofi and Chicago risk assessment questionnaires.  We generate precision-recall 

curves for the two questionnaires by varying a threshold on the patient scores tabulated by the questionnaires.  We 

generate survival curves by picking a recall value (here, 50%), determining the confidence threshold that results in 

this recall value, and plotting all patients who fall above that threshold.  Figure 8 and Figure 9 show the precision-

recall and survival curves, respectively, for these approaches compared against the curves for our best models on 

curated (naïve Bayes) and unabridged (random forest) variable sets. 

The precision-recall curves of both assessment questionnaires are nearly dominated by both of our models, while the 

survival curves of our models completely dominate those of the risk assessment questionnaires.  From this result, we 

conclude that there is significant value in learning such risk-assessment models from EHR, as opposed to hand-

coding them. 

Additional information about the representations and results from our machine-learning experiments is available at 

www.biostat.wisc.edu/~craven/amia2012/.

Figure 7. Precision-recall curves comparing the 

curated variable set, the genetic variable set, and the 

combined curated-genetic variable set using the random 

forest learning algorithm. 
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Figure 8. Precision-recall curves comparing models 

learned using the curated and unabridged variable 

sets to the Sanofi and Chicago risk assessment 

questionnaires. 

 

Figure 9. Survival curves comparing models learned 

using the curated and unabridged variable sets to the 

Sanofi and Chicago risk assessment questionnaires. 

 

Conclusion 

We have addressed the task of predicting which patients are most at risk for developing a post-hospitalization VTE.  

Given a set of cases and controls, we used machine-learning methods to induce models for making these predictions 

from patient histories automatically elicited from an EHR.  Our study offers a number of interesting and important 

conclusions.  First, our analysis of the variables extracted from patient records identifies a number of risk factors 

that were not previously used in VTE risk assessments or discussed in the relevant literature.  Second, we show that 

we are able to use machine-learning methods to induce models that identify high-risk patients with relatively high 

accuracy.  Third, we show that, even without having prior knowledge about relevant risk factors, we are able to learn 

accurate models for this task.  Fourth, we demonstrate that our learned models exceed the predictive accuracy of 

previously devised scoring systems for VTE. 

There are a number of directions that we plan to explore in future research.  First, we have recently acquired a larger 

set of cases and controls that we can use to further validate our findings.  Second, we plan to incorporate additional 

VTE-implicated SNPs in our genetic representation, and investigate alternative representations for the SNP variables 

that better expose the VTE predisposition of a given patient to the learning algorithms.  For example, we might 

include variables that count the numbers of risk and protective alleles that a given patient has.  Third, we plan to 

explore ways to discover and represent groups of risk factors that seem to represent common themes, such as the low 

blood volume and infection groups identified in our analysis of individual variables.  The potential advantage of 

discovering such themes is that they might enable more accurate models to be learned from sparse patient records 

and infrequently occurring record types. 
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