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Abstract 

We aim to predict radiological observations using computationally-derived imaging features extracted from 
computed tomography (CT) images. We created a dataset of 79 CT images containing liver lesions identified and 
annotated by a radiologist using a controlled vocabulary of 76 semantic terms. Computationally-derived features 
were extracted describing intensity, texture, shape, and edge sharpness. Traditional logistic regression was 
compared to L1-regularized logistic regression (LASSO) in order to predict the radiological observations using 
computational features. The approach was evaluated by leave one out cross-validation. Informative radiological 
observations such as lesion enhancement, hypervascular attenuation, and homogeneous retention were predicted 
well by computational features. By exploiting relationships between computational and semantic features, this 
approach could lead to more accurate and efficient radiology reporting. 

Introduction 

Liver lesions stem from a variety of causes and manifest in several variations on CT images; some are benign while 
others may be malignant, and the different diagnoses demonstrate a variety of visual appearances. The ability to 
differentiate these lesions efficiently and accurately is important to patient treatment and outcome. Contrast-
enhanced CT imaging is the dominant technology used for liver lesion diagnosis 1. This modality takes advantage of 
the fact that the liver receives blood from two main sources, the portal vein and the hepatic artery. The portal vein 
supplies about 80% of blood to the liver with the hepatic artery providing the other 20%. Due to varying physiology 
among liver lesions, differing lesion types may not share the same blood intake proportions as the surrounding liver 
tissue. Multi-phasic contrast-enhanced imaging takes advantage of this by obtaining images of the liver at multiple 
time points after injection of contrast agent. This allows for visualization of lesions due to the difference in time 
between the arrival of contrast agent in the hepatic and portal circulations. This difference causes several distinctive 
imaging features on contrast-enhanced imaging. As an example, primary liver cancer tumors receive all blood from 
the hepatic artery, so they contain higher concentrations of contrast agent than surrounding liver parenchyma during 
the arterial phase 2,3. Arterial-phase contrast-enhanced CT, therefore, may be helpful in finding masses that exhibit 
malignant tumor characteristics. Other phases may be useful for differentiating tumor types. For example, metastatic 
tumors appear less dense compared to the normal liver during the portal venous phase. 

The difference in density between a lesion and its surrounding tissue at various times after the injection of iodine in 
a peripheral vein in multi-phasic imaging is called the temporal enhancement pattern. Analysis of a lesion's temporal 
enhancement pattern through the different phases of image acquisition helps radiologists to make diagnoses. 
Unfortunately, the specificity of this method is a function of the size of the lesion and prone to a high false positive 
rate because several types of liver lesions, including benign ones, have similar manifestations on CT images 4. 
Human variability has also been shown to be a challenge for lesion differential diagnosis, and automated methods 
are being investigated to improve diagnosis of these lesions 5.  

Recent research has investigated computer-aided methods to support diagnosis by providing a database of annotated 
images that can be retrieved by similarity6 and further indicates that radiological observations drawn from a 
controlled vocabulary can lead to accurate diagnoses of liver tumor types from CT images7. These observations can 
be treated as features of the image derived from human semantic annotations. As a result, we refer to them as 
semantic features. These semantic features allow radiologists to make their observations consistent, explicit, and 
machine-accessible. Radiological tools such as the ePAD (formerly iPad) 8 have been implemented with the purpose 
of recording these annotations in a facile manner. 
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Computational analysis of these images may overcome this issue by creating quantitative and unbiased descriptors 
of image features. These computational features can be computed directly from the image's pixel values, 
independent of the semantic features. Digital image processing techniques have been used to extract features 
indicative of lesion attenuation, texture 9,10, edge and shape 11-14. We hypothesize that these computational features 
can be coupled with methods in statistical machine learning to form a framework to predict semantic features. This 
could be useful in building a decision support system to aid radiology interpretation. 

In this study, we compare the performance of two widely used machine-learning methods to achieve this: logistic 
regression and L1-regularized logistic regression (LASSO). From these results, we can determine which semantic 
features are predicted by computational ones, and which computational features are the most useful for this purpose. 
Knowledge of which semantic features are not predicted well could lead to the development of new computational 
features for this purpose. Ultimately, prediction of semantic features from computational ones could lead to reduced 
variability in image interpretation. 

Materials and Methods 

  
Dataset 

With IRB approval, we obtained 79 de-identified CT images 
of liver lesions in the portal venous phase, including eight 
types of lesion diagnoses: metastasis, hemangioma 
(abnormal buildup of blood vessels in the liver), 
hepatocellular carcinoma, focal nodular hyperplasia 
(unknown cause), abscess (inflammation), laceration (injury 
or tear), fat deposition and cyst. For the initial development 
of image processing algorithms, we chose to focus on the 
most commonly used phase of imaging, the portal venous 
phase. Later studies will incorporate unenhanced, arterial, 
and delayed-phase images, which are important in the 
diagnosis of many liver lesions. For each scan, the axial slice 
with the largest lesion area was selected for analysis. A 
radiologist drew and recorded a Region of Interest (ROI) 
around the lesion on these images using the freely available 
OsiriX workstation 15. 
Semantic Features 

A radiologist annotated the ROI with the Electronic 
Physician's Annotation Device (ePAD; formerly iPAD) 8. 
The ePAD system is based on a controlled radiological 
vocabulary called RadLex to define semantic features 16, and 
enforces complete description of the required aspects of the 
visualized lesion. We extended the RadLex terminology to 
include a broader array of descriptive terms for this study 
that more comprehensively describe liver lesions. Each 
annotation resulted in the creation of a binary semantic 
feature vector of length 76 to indicate positive or negative 
observations. 

Semantic features were not all equally likely and ranged 
widely in annotation frequency. The entropy of each 
semantic feature was measured using the binary entropy 
function in order to determine the distribution of positive 
versus negative observations. The binary entropy function is 
defined as: 

 

Where: 

Semantic Feature 
Binary 
Entropy 

smooth margin 0.9971 
ovoid 0.9971 
normal perilesional tissue 0.9804 
homogeneous 0.9804 
heterogeneous 0.9738 
enhancing 0.9738 
solitary lesion 0.9484 
nonenhancing 0.914 
homogeneous enhancement 0.8859 
hypodense 0.8702 
circumscribed margin 0.8702 
round 0.8163 
multiple lesions 1-5 0.8163 
lobular 0.8163 
homogeneous fade 0.727 
multiple lesions 6-10 0.7012 
peripheral discontinuous nodular 
enhancement 0.6739 

multiple lesions >10 0.6739 
homogeneous retention 0.6739 
centripetal fill-in 0.6739 
soft tissue density 0.6451 
poorly-defined margin 0.6451 
abuts capsule of liver 0.6451 
water density 0.5822 
hypervascular 0.5822 
irregularly shaped 0.548 
irregular margin 0.548 
heterogeneous enhancement 0.548 
lobulated margin 0.5116 
internal nodules 0.5116 

Table 1: Semantic features with entropy above 0.4 
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H(X) ranges from 0 to 1, achieving a maximum when a semantic feature has an equal number of positive and 
negative observations 17. To avoid degenerate classification cases, only features with entropy greater than 0.4 were 
considered for classification, resulting in a total 30 semantic features per lesion (Table 1). 

Computational Features 

The pixel data within the segmented liver lesions were processed to quantify contrast, texture, boundary, and shape 
(Table 2). Each lesion's extracted computational features were concatenated into a 431-dimensional feature vector. 

 
Table 2: Computational features and their dimensions 

Contrast Features: 2-element feature vector containing: (a) 
the proportion of pixels with intensity larger than 1100 
Hounsfield Units (HU) and (b) the difference in the mean 
intensity values for pixels inside the lesion and within a 5-
pixel rim outside the liver lesion. 

Texture Features: 349-element feature vector containing: 
(a) 13-element gray-level histogram-based, including the 9-
bin histogram itself, the low frequency coefficients of its 3-
level Haar wavelet transform, the abscissa of its peak, 
entropy, and its variance 9, (b) 12-element Gabor features 10 
including the mean of the Gabor energy in the frequency 
domain over 3 scales and 4 orientations in a total of 12 bins, 
and (c) 324-element Daubechies features with the dominant 
sub-band in a 2-scale Daubechies wavelet transform 18. 

Margin Sharpness Features: 61-element feature vector 
computed as follows: (a) We recorded the image intensity 
values along normals to the lesion contour at multiple points 
and then fit a sigmoid function to these values.  Two 
parameters for the fitted sigmoid, scale and window, were 
used to characterize each line segment. The scale measures 
the difference in intensities outside and inside the lesion, 
and the window measures the width of the transition from 
the liver lesion to the surrounding normal liver at the 
boundary. Two 30-bin histograms for the scale and window 

parameters were then created to form a 60-element feature vector. (b) We also recorded the number of modes in the 
histogram of all pixels recorded from each normal 14. 

Shape Features: 19-element feature vector describing: (a) compactness  19, (b) roughness 20, (c) local area integral 
invariant descriptor including the mean and standard deviation for 5 different scales 11,12, (d) radial distance 
signatures including mean and standard deviation 13.   

Classification 

Logistic regression was used to calculate the probability of a computational feature vector representing a positive or 
negative semantic feature. In order to mitigate the potential for over-fitting due to a large number of predictors (431 
computational features) compared to data points (79 lesions), we also used LASSO 21 to weight features given 
sparsity in the computational feature set. We measured classifier accuracy with leave-one-out cross-validation 
(LOOCV).  

Receiver operating characteristic (ROC) curves were calculated over the probability of a semantic feature being 
recorded. The resulting areas under the curves (AUC) were measured to quantify the predictive value of these 
classifiers. Classification accuracy for a probability threshold was measured by: 

 

Computational Feature Group Dimension 
Contrast 2 

Proportion of pixels with 
intensity larger than 1100 1 

Difference of means 1 
Texture 349 

Histogram 9 
Histogram - Peak Position 1 
Histogram - Entropy 1 
Histogram - Haar 1 
Histogram - Daubechies 324 
Variance 1 
Gabor 12 

Edge 61 
Edge Sharpness 60 
Histogram on Edge 1 

Shape 19 
Compactness 1 
Roughness 1 
Local Area Integral Invariant 15 
Radial Distance Signature 2 

All Features 431 

259



  

 

 

Thresholds were determined empirically over a range from 0 to 1. These thresholds were then used to calculate the 
misclassification rate of a classifier for a semantic feature. 

All programming was performed in MATLAB. LASSO classification was done using the glmnet package for 
MATLAB 22. 

Results 

Classifier Performance 

Figure 1 (a) shows the area under the ROC curve (AUC) and (b) shows the misclassification rate (MCR) of LASSO 
and logistic regression. Table 3 shows the mean and standard deviations of the AUC and MCR. 

 
Figure 1: (a) Calculated area under the ROC curve given the probability of a semantic feature occuring for each lesion. (b) 
Misclassification rate using optimally determined threshold. Semantic features are ordered from highest to lowest entropy. ENH* 
= enhancement, ENH** = discontinuous nodular enhancement. 
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Table 3: Aggregate classification statistics 

We used a two-sample t-test to compare the AUC and 
MCR of the classifiers. The difference in classifier 
performance was statistically significant using both AUC 
and MCR as evaluation metrics (pauc = 7.2*10-10 and pmcr 
= 6.2*10-4). Both metrics indicated that LASSO was a 
stronger classifier. 

 

 

 

Semantic Features of Interest 

Using the LASSO classifier, several semantic features were shown to be well predicted given computation features. 
Five were found to have an AUC greater than 0.95: water density, homogeneous retention, non-enhancing, 
heterogenous, and homogenous. 

Conversely, four semantic features were shown to have an AUC under 0.6: multiple lesions 1-5, round, normal 
perilesional tissue, and ovoid. 

There were interesting results with regards to which semantic features were predictable. While we had developed 
several computational features to quantify shape, two of the most difficult semantic features to predict were round 
and ovoid. One possible reason for this discrepancy between computational and semantic features is that round and 
ovoid are inherently subjective terms. Hence, there might exist human variability in such descriptors that cannot be 
accounted for computationally. This explanation lends credence to further use of computational features for 
characterizing lesion shape, as there is no variability in our methods. 

Another interesting result is our system’s ability to predict seemingly impossible semantic features from one lesion. 
For example, “multiple lesions > 10” was very well-predicted even though analysis was carried out on only one 
lesion. Such results might be possible because there is an explanatory disease behind both lesion morphology and 
multiple lesions. Thus, we can indirectly predict number of lesions based on analysis of a single lesion’s physical 
characteristics alone. 

 

Computational Feature Analysis 

Computational features were fitted to each semantic feature vector using the LASSO model. Each fit produced a 
431-dimensional set of weights for the computational features. Features with large magnitude weights were deemed 
most informative.  The L1 norm regularization in the model imposes a sparse weight selection; most features have 
zero weight. To quantify the model complexities, we fit a lasso model to each semantic feature group and counted 
the number of non-zero coefficients. This corresponds to the number of relevant computational features in each 
semantic feature group. On average, each semantic feature only employed 12.6 (± 4.3) computational features. 
Moreover, of the entire set of 431 computational features, only 126 computational features had non-zero for any 
semantic feature vector.  

Computational features that consistently had high magnitude weights were considered as characteristic features of 
these lesions. Characteristic features were found by taking the sum of the absolute value of weights across all 
semantic features. The 20 features with highest sum of weight magnitudes were categorized according to their 
associated algorithms. Daubechies Wavelets, Edge Sharpness, Gabor Transform, and the Local Area Invariant 
Descriptor were found to be the most informative feature groups. 

Discussion 

In this study we present a framework for predicting radiological observations of liver lesions using computational 
image features. We computed a wide array of computational features from CT images of liver lesions and used these 
features to train logistic regression and LASSO classifiers. We experimented with other classifiers such as k-nearest-

Area under curve statistics 
Classifier Mean Standard Deviation 
LASSO 0.816 0.141 
Logistic 0.584 0.098 
   

Misclassification rate statistics 
Classifier Mean Standard Deviation 
LASSO 0.1443 0.0881 
Logistic 0.2367 0.1085 
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neighbor, support vector machines, and latent discriminant analysis. These methods were severely hampered by such 
high dimension/low sample sized data, either not reaching any model convergence in training phase, or 
demonstrating poor results. As a result, we only focused on unregularized and regularized logistic regression. We 
evaluated the classification results using the area under the ROC curve and misclassification accuracy as metrics. 
From these results we were able to establish correlations between our computational feature set and radiological 
observations.  

Our approach can be used to evaluate the predictive value of computational features as well as to determine 
radiological observations that are difficult to predict from computational image features. While computational 
analysis is not likely to replace the trained eyes of a radiologist, this work can be used to develop decision support 
tools to increase accuracy and efficiency of radiological diagnosis. 
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