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Abstract 

The development of Electronic Health Record (EHR)-based phenotype selection algorithms is a non-trivial and 

highly iterative process involving domain experts and informaticians. To make it easier to port algorithms across 

institutions, it is desirable to represent them using an unambiguous formal specification language. For this purpose 

we evaluated the recently developed National Quality Forum (NQF) information model designed for EHR-based 

quality measures: the Quality Data Model (QDM). We selected 9 phenotyping algorithms that had been previously 

developed as part of the eMERGE consortium and translated them into QDM format. Our study concluded that the 

QDM contains several core elements that make it a promising format for EHR-driven phenotyping algorithms for 

clinical research. However, we also found areas in which the QDM could be usefully extended, such as representing 

information extracted from clinical text, and the ability to handle algorithms that do not consist of Boolean 

combinations of criteria. 

Introduction and Motivation 

The growing adoption of electronic health records (EHRs) is a crucial enabling step for the large-scale re-use of 

clinical data for research projects and for healthcare quality measurement. For clinical research, there is great 

interest in using EHRs to automatically identify patients that match clinical study eligibility criteria, making it 

possible to leverage existing patient data to inexpensively and automatically generate lists of patients that possess 

desired phenotypic traits by using EHR-driven phenotyping algorithms.
1,2

  For quality measurement, there is a 

strong push to use EHR data for generating much more comprehensive patient population metrics than is feasible 

with paper records and manual review.
3
  Yet the development of EHR-based phenotyping algorithms and quality 

measures is a non-trivial and highly iterative process involving domain experts and data analysts.
4
  It is therefore 

desirable to make it as easy as possible to re-use them across institutions in order to minimize the degree of effort 

involved, as well as the potential for errors due to ambiguity or under-specification. Part of the solution to this issue 

is the adoption of an unambiguous and precise formal specification language, imposing a standard representational 

syntax and semantics. In the domain of healthcare quality measurement, the non-profit National Quality Forum 

(NQF)
5
 has recently developed and released the Quality Data Model (QDM),

6
 which is an information model for 

representing EHR-based quality “eMeasures”.
3
  The primary objective of our current study is to investigate the 

suitability of the QDM for also representing EHR-driven phenotyping algorithms designed for clinical research. 

Our experience in the development of phenotyping algorithms stems from work performed as part of the electronic 

Medical Records and Genomics (eMERGE)
7
 consortium, a network of seven sites using data collected in the EHR 

as part of routine clinical care to detect phenotypes for use in genome-wide association studies. The successful first 

phase of eMERGE involved the development and validation of 14 phenotyping algorithms, which were shared 

among five separate sites with widely diverse EHR systems.
8
 Execution of these phenotypes has resulted in new 

genetic discoveries using data from one and across multiple sites.
9,10

 The second phase of eMERGE, beginning in 

2011, added two additional sites and has the goal of developing and disseminating a total of 35 EHR-based 

phenotyping algorithms. It has become abundantly clear to those involved in this effort that the adoption of an 

appropriate formal representation language for the algorithms would provide practical benefits for both portability 

and presentation of results. The work in this paper is framed by a pragmatic attempt to realize these benefits in the 

context of lessons learned from the eMERGE project. 

A variety of alternative possibilities exist for representing phenotype definition criteria,
11

 including the HL7 Arden 

Syntax,
12

 the SAGE guideline model,
13

 and the GELLO clinical decision support language.
14

  However, as described 

by Weng et al.
11

 and in our own prior work
4
 there is currently no definitive formal language to select for the purpose 
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of representing EHR-based phenotyping algorithms. Consequently, we investigate the suitability of the QDM for 

this purpose, given current momentum behind its adoption due to the implementation of Meaningful Use reporting 

requirements put into place by the Centers for Medicare & Medicaid Services (CMS).
15-17

  From our perspective, it 

is evident that there is substantial overlap between the representational needs of EHR-based quality measures and 

the needs of EHR-based phenotyping algorithms developed for clinical research. Quality measures and phenotyping 

algorithms both share the requirement of delineating sets of structured codes for defining inclusion and exclusion 

criteria, the requirement of combining such elements using complex Boolean logic, and the requirement for a 

temporal expression language that can express timing constraints on clinical events and states. The QDM provides 

these necessary core elements (among others), making it a promising representational scheme and information 

model for clinical research phenotyping algorithms. 

In order to evaluate the suitability of the QDM for expressing and sharing phenotype selection algorithms developed 

for clinical research, we selected nine algorithms that have previously been developed as part of the eMERGE 

project and represented them in terms of the QDM. We have done so by making use of the web-based Measure 

Authoring Tool (MAT) that has been provided by the NQF to support the creation of QDM-based eMeasures.
18

 In 

the following sections, we describe our experiences performing this exercise, including an analysis of both the QDM 

and the MAT. Our analysis of the QDM highlights the elements of the model that are particularly useful to our 

endeavor. We follow up this analysis with a discussion of areas in which the QDM could be usefully augmented, 

paying particular attention to the problem of representing the extraction of information stored in clinical text, and to 

the issue of extending the QDM to types of classification models that are not based solely on Boolean combinations 

of inclusion and exclusion criteria. We conclude with a discussion on issues related to the mapping from formal 

QDM specifications to executable code, including the possibility of automating these mappings. 

Background 

The growing adoption of EHR systems
19,20

 opens the door to secondary uses of large quantities of clinical data for 

quality improvement efforts and for clinical research on patient populations. These two use cases share some 

common requirements, including at the most basic level the need to extract relevant cohorts of patients using 

selection criteria based on information stored in the EHR. For quality improvement efforts, these cohorts serve as 

inputs to various quality metrics and reporting tools. For clinical research, these cohorts can be linked to 

biorepository data,
7
 and can be used as input to statistical analysis tools for data mining purposes.

21
 The basic flow 

of extracting cohorts from the EHR is essentially the same across these use cases, and can be thought of abstractly in 

terms of the schematic workflow shown in Figure 1. 

 

 

Figure 1. Schematic workflow for executing EHR-based phenotyping algorithms. 

 

Executing a phenotyping algorithm broadly involves two steps: (1) translating an algorithm specification into 

executable code, and (2) extracting data from multiple information sources (EHRs, data warehouses and other 

clinical information systems) and converting it into the format required by the algorithm. In the first phase of the 

eMERGE project, algorithms were specified using free text descriptions, tables, flowcharts, and lists of structured 
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codes.
4
 Mappings to executable code involved the work of data analysts and informaticians at each individual site 

where the algorithm was implemented, a time consuming process that had to be repeated for every site and every 

algorithm. Members of the eMERGE consortium had the advantage of being able to collaborate and consult across 

institutional boundaries with other eMERGE members when questions arose regarding implementational details. 

This advantage would not accrue to external institutions attempting to implement these algorithms, highlighting the 

need for a more structured approach to this task.  

The second algorithm execution step involves the extraction of data from data source systems, transforming these 

data into the required format, and feeding them into the implemented algorithm. At a high level, there are two main 

sources of EHR data available: structured codes (diagnoses, medications, lab values, etc.) and unstructured clinical 

text (radiology reports, encounter notes, discharge summaries, etc.). The process of extracting and transforming data 

typically includes queries against a relational or SAS database, and natural language processing (NLP) software for 

extracting structured information from text. A formally defined target specification language would benefit this data 

extraction and transformation process by allowing for more consistent patterns of data extraction and transformation 

that could be at least partially automated. 

Given these evident advantages, the adoption of a standardized formal representation for phenotyping algorithms is 

a logical next step to pursue. This step is particularly salient in the context of eMERGE phase 2, which involves the 

collaboration of seven institutions and the development of many new phenotyping algorithms. The need to adopt a 

standard formal representation in the context of the eMERGE project was discussed in our prior work (Conway et al. 

2011),
4
 which this paper builds upon. In order to determine which features a formal representational format would 

need to support, the Conway et al. paper analyzed 14 eMERGE algorithms in terms of their structure, the types of 

data elements they used, and the types of logic employed. Conway et al. found that these algorithms commonly used 

Boolean logic (86%), nested Boolean operators (64%), temporal constraints on criteria (71%), structured codes from 

external vocabularies (100%), and NLP or indicative keywords (57%). In the current study, we investigate whether 

the QDM and the NQF’s measure authoring tool (MAT) can adequately represent these types of features. The QDM 

has already been heavily tested by the NQF, which supported the re-tooling and release of 113 NQF-endorsed 

quality measures into the QDM format. Here we determine if the QDM can be easily extended to represent the 

eMERGE phenotyping algorithms that have been specifically developed for clinical research. 

Materials and Methods 

We selected 9 of the 14 phenotyping algorithms analyzed in Conway et al.
4
 to be translated into the QDM format 

(listed in Tables 1 and 2). To perform this task, we used the NQF web-based Measure Authoring Tool (MAT)
18

 as 

the user interface. Several authors (WKT, LVR, JAP, PLP, JP) registered for and were granted access to the MAT, 

and subsequently reviewed the MAT documentation. These algorithms were originally developed and evaluated as 

part of the eMERGE network, and are publicly available on the web.
22

 We chose these nine algorithms for the 

current study due to their diverse combinations of logical operators, temporal criteria, and data element types. While 

the focus of this study is on the ability of the QDM to represent the various constructs utilized in phenotyping 

algorithms, our evaluation of the MAT also informs others of the applicability of this tool to develop such 

algorithms. 

The selected algorithms were translated to the QDM by at least one author using the MAT, and shared with the other 

authors for review via the MAT. If the MAT did not seem capable of representing a component of a phenotyping 

algorithm, it was brought up to the group for review where a final determination was made if the QDM as a model 

would support the concept, or if it was a limitation of the MAT itself. Thus, for each algorithm an evaluation was 

made for the ability of the QDM to represent each component, and the ability of the MAT to graphically create the 

algorithm. 

Once developed, the algorithms were exported from the MAT as XML documents. These documents were then 

analyzed for various metrics used as proxies for the complexity and richness of the algorithm representation. We 

automated this document analysis with a Python script that read in each of the XML documents, iterated through the 

nodes of the QDM tree, and calculated the various metrics. The MAT uses value sets (collections of code values 

from terminologies) as a core building block, and allows the value sets to be shared across algorithms. For each 

algorithm, the number of value sets was counted. The MAT also supports grouped value sets – collections of value 

sets which may represent multiple vocabularies (e.g., all ICD-9 and all ICD-10 diagnostic codes for the same 

disease), or a higher-level grouping of more granular value sets (e.g., value sets for specific severity codes of 

diabetic retinopathy may be grouped into a diabetic retinopathy value set). We used both kinds of grouped value sets 

in our QDM representations. For each algorithm, the number of grouped value sets was collected. Counts for value 
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set metrics (Tables 1 and 2) are tabulated separately by the type of clinical information (diagnosis, procedure, 

medication, laboratory test) and by specific terminologies. The NLP component of algorithms most often defined 

lists of keywords, or UMLS CUIs (common output from many NLP systems) that should be detected. The MAT did 

not, however, provide UMLS CUIs or keywords as a “terminology” to associate with value sets. Instead, attempts 

were made to create a reasonable representation using available terminologies as placeholders. These are listed in 

Tables 1 and 2 as “Keywords” and “UMLS CUI” terminologies, but were manually curated separately from the 

algorithm definition and added here for discussion purposes. 

An important part of algorithm development also includes the use of temporal logic to define a window of time in 

which certain conditions must be met, and to relate the order in which events occurred (e.g., Diagnosis X before 

Medication Y). For all the algorithms, we determined whether or not the QDM could express the types of temporal 

relationships specified in the eMERGE algorithms, and the number of temporal relationships in the resulting QDM 

documents was counted. 

Once the basic components of an algorithm are defined, they are then combined using Boolean logical operators 

(AND, OR, NOT). The number of AND and OR operators was counted for each algorithm, in addition to the 

maximum depth of nested Boolean conditions. For example, “x AND y” has a nesting depth of one, while “x AND 

(y OR z OR (a AND b))” has a depth of three. We excluded the unary operator NOT from this metric. 

Uses of NLP were also assessed from the original algorithms. Following the convention adopted in Conway, et al.
4
, 

a “Yes” or “No” indication was made for each algorithm if NLP was explicitly mentioned within the algorithm 

definition. Some institutions utilized NLP as a component of their data warehouse (i.e. a repository of extracted 

medications), however this was not counted unless explicitly mentioned in the algorithm. In addition, a “Yes” or 

“No” indication was made if any use of NLP looked for the presence of negation
23

 (e.g., the document must say “the 

patient did not have condition X”), or used negation as part of the found results (e.g., the patient has no documents 

which indicate condition X). While subtle, the difference in the use of negation has a potentially significant impact 

on the results returned by an algorithm. Finally, a “Yes” or “No” indication was made if any use of NLP was 

restricted to a particular section of a clinical document.
24

 

Results 

The analysis of value sets used by eMERGE algorithms can be seen in Tables 1 and 2. Table 1 shows the results for 

the algorithms that employed a case selection logic, assigning patients a “Case=True” or “Case=False” status. Three 

of the algorithms (Diabetic Retinopathy, Resistant Hypertension, and Cataracts) also have logic for assigning 

patients a “control” category. Table 2 shows the results of our analysis of values sets for algorithms that generate a 

continuous output measure for each patient, such as height or serum lipid level. All algorithms in both of these tables 

utilized more than one type of clinical information, which in turn meant each algorithm used more than one 

terminology. The number of value sets varied from 6 to 35 (avg=18.3) across all algorithms. Grouped value sets 

were used in 7 of 9 algorithms (78%). 

The analysis of Boolean operators and temporal expressions is shown in Table 3. All of the selected algorithms used 

Boolean operators, while 6 out of 9 (67%) used nesting of greater than depth 1. Eight out of 9 algorithms also used 

temporal operators (89%). We found the QDM temporal expression capability to be adequate to cover the temporal 

relationships used in our eMERGE algorithm set. For example, the QRS duration algorithm utilized the most 

temporal relationships (8), which center on the identification of a “normal” electrocardiogram (ECG) and relate 

inclusion and exclusion events around that event.  

The analysis of algorithm use of NLP is shown in Table 4. Seven of the 9 algorithms specifically described the 

execution of an NLP algorithm, the use of keyword detection, or regular expressions (78%). A requirement of term 

negation was described in 2 of the 9 algorithms (22%). Two of 9 (22%) algorithms also required absence of given 

concepts (e.g., “no evidence of heart disease”), and restrictions to specific clinical document sections (22%). 
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Table 1. Use of QDM Value Sets within eMERGE Case/Control algorithms. 

Algorithm Clinical 

Information 

Terminology No. of Value 

Sets Used 

Diabetic retinopathy 

    Cases 

 

     

    

  

    Controls 

 

Diagnosis 

 

 

 

 

Diagnosis 

 

 

 

 

Procedure 

 

ICD-9 

ICD-10 

SNOMED-CT 

Grouped 

Keywords 

ICD-9 

ICD-10 

SNOMED-CT 

Grouped 

Keywords 

CPT 

Grouped 

 

5 

1 

1 

1 

2 

5 

1 

1 

1 

1 

3 

1 

Peripheral arterial disease Diagnosis 

Laboratory 

Medication 

Procedure 

 

 

Physical Exam 

ICD-9 

LOINC 

RXNORM 

CPT 

ICD-9 

Grouped 

Grouped 

Keywords 

4 

1 

1 

4 

4 

4 

1 

2 

Resistant hypertension 

    Cases 

     

 

 

     

    Controls 

 

Diagnosis 

Diagnostic Study 

Laboratory 

Medication 

Physical Exam 

Diagnosis 

 

 

 

Medication 

 

Physical Exam 

 

ICD-9 

UMLS CUI 

LOINC 

RXNORM 

LOINC 

ICD-9 

ICD-10 

SNOMED-CT 

Grouped 

RXNORM 

Grouped 

LOINC 

Grouped 

 

1 

1 

1 

10 

2 

2 

1 

1 

1 

10 

1 

2 

2 

Type 2 diabetes Diagnosis 

Laboratory 

Medication 

Encounter 

 

Patient Char. 

ICD-9 

LOINC 

RXNORM 

CPT 

Grouped 

HL7 

3 

3 

1 

7 

1 

1 

Cataract 

    Cases 

 

     

    Controls 

 

Diagnosis 

 

Patient Char. 

Diagnosis 

Procedure 

Patient Char. 

 

ICD-9 

UMLS CUI 

LOINC 

ICD-9 

CPT 

LOINC 

 

1 

1 

1 

1 

1 

1 
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Table 2. Use of QDM Value Sets within eMERGE continuous measure algorithms. 

 

Algorithm Clinical 

Information 

Terminology No. of Value 

Sets Used 

Height Diagnosis 

 

Laboratory 

Medication 

 

Patient Char. 

Physical Exam 

ICD-9 

Grouped 

LOINC 

RXNORM 

Grouped 

SNOMED-CT 

LOINC 

SNOMED-CT 

Grouped 

12 

2 

1 

5 

1 

1 

1 

1 

1 

Serum lipid level Diagnosis 

 

 

 

Laboratory 

 

Medication 

ICD-9 

ICD-10 

SNOMED-CT 

Grouped 

LOINC 

Grouped 

RXNORM 

Grouped 

4 

2 

2 

3 

4 

1 

8 

2 

Low HDL cholesterol level Diagnosis 

 

 

 

 

Laboratory 

 

Medication 

ICD-9 

ICD-10 

SNOMED-CT 

Grouped 

Keywords 

LOINC 

Grouped 

RXNORM 

Grouped 

4 

2 

2 

3 

1 

1 

1 

7 

1 

QRS duration Diagnosis 

Diagnostic Study 

Laboratory 

Medication 

Physical Exam 

ICD-9 

UMLS CUI 

LOINC 

RXNORM 

SNOMED-CT 

2 

1 

3 

2 

1 

 

 

Table 3. Use of Boolean and temporal relationships within eMERGE algorithms implemented in the QDM 

Algorithm Boolean 

Operators 

Max 

Depth 

Temporal 

Relationships 

Diabetic retinopathy 

    Cases 

    Controls 

 

8 

6 

 

2 

2 

 

0 

0 

Height 8 1 4 

Serum lipid level 6 1 5 

Low HDL cholesterol level 6 1 5 

Peripheral arterial disease 17 4 1 

QRS duration 28 4 8 

Resistant hypertension 

    Cases 

    Controls 

 

172 

26 

 

5 

4 

 

2 

5 

Type 2 diabetes 15 3 5 

Cataract 

    Cases 

    Controls 

 

9 

3 

 

3 

1 

 

2 

2 
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Table 4. Use of Natural Language Processing (NLP) as specified within eMERGE algorithms. Results indicate if the algorithm 

mentions the use of NLP at all, required that negation be factored into the inclusion/exclusion criteria (e.g., presence/absence of 

“Patient does not have condition X”), requires that no evidence of a concept be found (e.g., no presence of “Patient has X”), or if 

the NLP required searching in specific document sections. 

Algorithm Uses NLP 
Term 

Negation 
No Evidence Of 

Document Section 

Restriction 

Diabetic retinopathy Yes Yes No Yes 

Height Yes No No No 

Serum lipid level No - - - 

Low HDL cholesterol level Yes No Yes No 

Peripheral arterial disease Yes No No No 

QRS duration Yes Yes Yes Yes 

Resistant hypertension Yes No No No 

Type 2 diabetes No - - - 

Cataract Yes No No No 

 

Discussion 

Implementing the selected eMERGE phenotyping algorithms using the MAT yielded insights on the suitability of 

this tool and the QDM overall for representing phenotyping algorithms for clinical research. In our estimation one of 

the core strengths of the QDM is its ability to represent phenotyping algorithms for both machine and human 

consumption. In addition to supporting the export of structured XML file descriptors of algorithms, the MAT also 

allows users to export a style sheet for executing an XSL transform of the XML source into human-readable HTML 

(Figure 2). The source XML permits the algorithm developer to add structured human-readable visual aids such as 

tables and lists that become part of the generated HTML, as well as hyperlinks to external images, flowcharts, and 

other supporting documents. In the eMERGE project we found these types of documentation to be an invaluable 

means for communicating algorithm logic to external institutions,
4
 and the ability of the MAT to support this is very 

welcome. 

The representation of value sets within the QDM as lists external to the measure definition, which are assigned a 

globally unique identifier, allows for the re-use of value sets. Furthermore, the MAT facilitates the sharing of value 

sets across algorithms by providing a centralized, searchable repository of value sets for authors. This capability was 

employed in several of the eMERGE algorithms, indicating the usefulness of this feature for algorithm development. 

Shared value sets were used in several instances for the case vs. control population definitions within a single 

phenotyping algorithm (e.g., the Diabetic Retinopathy case and control populations shared diagnosis value sets). 

Sharing also occurred at a more significant level, such as diagnosis value sets between the Type 2 Diabetes and 

Diabetic Retinopathy algorithms, and laboratory value sets between the Low HDL and Serum Lipid Levels 

algorithms. We were also able to re-use pre-existing value sets that the MAT allowed us to discover with its search 

capability. For example, the Resistant Hypertension algorithm re-used a pre-existing grouped value sets for “ACE 

Inhibitor/ or ARB medications” from the American Medical Association - Physician Consortium for Performance 

Improvement, and the Serum Lipids algorithm re-used the HDL, LDL, Total Cholesterol, and Triglycerides 

laboratory tests value sets from the National Committee for Quality Assurance.  This kind of re-use is another major 

benefit of using the QDM and MAT.  One author alone used pre-existing value sets for more than a third of the total 

used across four phenotyping algorithms. In addition, the QDM requires strict definitions of value sets – code sets, 

code set version, a code and description for each entry – which are not imposed in the current free-text document-

based representation of the eMERGE algorithms. These strict definitions impose high standards on the algorithm 

developer to perform more work up front to provide precise definitions, which in turn decreases potential 

downstream errors due to ambiguity and under-specification. It also provides the potential for future automation of 

the algorithms. 

A limitation of the QDM, however, is the lack of support for sharing logic (whether partial components or entire 

algorithm) between algorithms. An example is within the eMERGE Diabetic Retinopathy algorithm, which utilized 
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the output of the Type 2 Diabetes algorithm. This requires algorithm developers to completely re-implement logic, 

which makes maintainability and portability difficult. 

An immediate observation during the implementation of the algorithms surrounded a key difference in the way that 

quality measures and research-oriented phenotyping algorithms are defined: the former often use proportion or ratio 

relations among sets of patients, while the latter are often defined in terms of non-overlapping case and control 

populations. The MAT, developed for quality measure authoring, enforced stricter rules around eligible populations 

that did not give us the freedom to define a “case” population and a “control” population in the phenotyping 

algorithm specification. However, the underlying XML format and schemas do not prohibit us from defining the 

desired case and control populations. In this situation, the MAT is imposing restrictions that go beyond what is 

required by the underlying format, and a modification of the tool would help resolve the issue. 

 

 
 

 

Figure 2. QDM document for the Type 2 Diabetes algorithm in XML and transformed into HTML using XSLT. 

The use of relationships (Table 2) varied in complexity across algorithms. However, both the QDM and MAT easily 

handled the nesting of Boolean conditions. A nice feature of MAT is the ability to view the nested Boolean logic in 

graphical form, almost like a flowchart. We have found graphical representations like this to be very useful for 

eMERGE sites to communicate the overall logic of an algorithm. However, we experienced a limitation to the QDM 

when algorithms go beyond basic Boolean combinations of criteria. For example, in phenotyping algorithms such as 

PAD and Resistant Hypertension, groups of criteria are defined and combined using a counting rule (e.g., “at least 2 

of the 4 criteria must be true”). This type of algorithm cannot currently be directly defined within the QDM, 

necessitating a much more complex and redundant formulation using Boolean operators. At a more fundamental 

level, Boolean combinations of inclusion and exclusion criteria are just one way to express classification algorithms 

that rely on EHR data. There are a multitude of other approaches, such as decision trees, logistic regression, neural 

networks, and support vector machines. As a concrete example of this in the clinical domain, a successful 

rheumatoid arthritis algorithm based on logistic regression has recently been developed and ported to multiple 

institutions.
25,26

 In the eMERGE network, logistic regression was also used for an alternate form of the rule-based 

PAD algorithm analyzed in this paper. While representing these more advanced types of classification algorithms is 

undeniably a thorny issue, it should be kept in mind that Boolean rules are just one of many ways to approach the 

implementation of EHR-based phenotyping algorithms, and may not be the most accurate. 

The use of temporal relationships was also supported by the QDM and MAT, but did exhibit some limitations. The 

Resistant Hypertension algorithm, for example, required the definition of a “qualification event” – defined as the 

earliest date a set of criteria were met. Given that the criteria were in turn temporally related to each other, there is a 
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need within phenotyping algorithms to easily chain together events temporally. While the QDM does support this, it 

was not as easily or directly accomplished using the MAT. In addition, the Resistant Hypertension algorithm 

required the detection of multiple medications being taken concurrently, and that this concurrent definition be met 

multiple times. Although the QDM does provide the constructs to define concurrency, counting and temporal 

relationships, it was not clear to the authors if the definition would be interpreted as such. Given that the QDM does 

support a way to represent the algorithm, additional work may be needed in describing the implementation to ensure 

a consistent interpretation. 

Given the prevalence and thus importance of NLP within the algorithms (Table 3), support for NLP constructs is a 

critical component of a formal specification. As it was lacking UMLS as a valid code set, the MAT did not directly 

support value sets of UMLS CUIs. In addition, requiring an explicit code set made it difficult to directly translate 

lists of keywords into a value set. Behind the MAT, however, the QDM specification would allow the representation 

of these value sets. In addition, the requirement of QDM value sets to be assigned a specific category (e.g., 

Procedure, Condition/Diagnosis/Problem) could help algorithm developers clarify aspects of their NLP 

requirements. The Cataract algorithm, for example, contained an NLP term list, which mixed procedures and 

diagnosis terms as indicators that a cataract is or was present. While the algorithm is valid as defined, splitting the 

term list into two procedure and diagnosis categories and then combining them as a grouped value set can not only 

impose a stricter definition, but may potentially improve the chance of reusing these code sets (e.g., a new algorithm 

seeking just terms related to cataract procedures). Another example of this was PAD, which uses lists of keywords 

indicating both diagnosis (atherosclerotic disease) and anatomical location (arteries of the lower extremities). We 

also see a need for richer constructs within an authoring tool and the QDM for NLP-specific purposes. The 

distinction between types of negation (Table 3) is a prime example. While the MAT and the QDM currently support 

a simple negation (“NOT” function), it is ambiguous as to how that level of negation is applied to a list of keywords.  

We note some limitations to our study: Our metrics demonstrate the implementation of the algorithm as released in 

the eMERGE Phenotype Library, and do not purport to be “optimized” for the QDM. For example, it may be 

possible to reduce the number of nested Boolean conditions by modifying the algorithm; however this was outside 

the scope of this study. In addition, the authors purposely entered the study from a naïve point of view as to the 

capabilities of the MAT to construct measures. It is possible that consultation with an expert on the tool may yield 

additional suggestions on how to implement the algorithms. Conversely, the naïve point of view may raise potential 

areas of ambiguity that an expert may not otherwise note. Moreover, it is also important to note that such meaningful 

modifications must be undertaken with care, as alterations in the algorithm could affect accuracy. 

Conclusions and Future Work 

In this study we used the NQF Measure Authoring Tool to represent nine phenotyping algorithms within the NQF 

Quality Data Model. Despite differences in the intent between electronic phenotyping for research and quality 

measurement from EHRs, we believe there are significant overlapping technical requirements between the 

algorithms to warrant convergence on a common data model. Our findings suggest that the QDM may provide such 

a common platform for sharing electronic phenotyping algorithms across diverse sites, with some modifications.  

We identified potential areas for improvement in both the QDM and MAT to support robust representation of 

phenotyping algorithms, which we anticipate may also support representation of related quality measures. In 

particular we identify the need for improved handling of unstructured data and flexible methods to incorporate non-

Boolean logic. In future work, we will aim to adapt and create common libraries of downloadable phenotype 

algorithms. By authoring these as formal structured representations, such algorithms could easily be shared across 

multiple institutions, “implementation ready”. Furthermore, as mentioned in the Introduction, our eventual goal is to 

create an environment that can facilitate the translation of the QDM represented phenotyping algorithms into 

executable codes and scripts that can be implemented on existing EHR systems. To this end, our group is currently 

investigating several open-source technologies, including the JBoss® Drools
27

 business logic integration platform.
28
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