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Abstract 

The primary purpose of this study was to develop a clinical tool capable of identifying discriminatory characteristics 
that can predict patients who will return within 72 hours to the Pediatric emergency department (PED). We studied 
66,861 patients who were discharged from the EDs during the period from May 1 2009 to December 31 2009. We used 
a classification model to predict return visits based on factors extracted from patient demographic information, chief 
complaint, diagnosis, treatment, and hospital real-time ED statistics census. We began with a large pool of potentially 
important factors, and used particle swarm optimization techniques for feature selection coupled with an optimization-
based discriminant analysis model (DAMIP)  to identify a classification rule with relatively small subsets of 
discriminatory factors that can be used to predict — with 80% accuracy or greater — return within 72 hours. The 
analysis involves using a subset of the patient cohort for training and establishment of the predictive rule, and blind 
predicting the return of the remaining patients.  

Good candidate factors for revisit prediction are obtained where the accuracy of cross validation and blind 
prediction are over 80%. Among the predictive rules, the most frequent discriminatory factors identified include 
diagnosis (> 97%), patient complaint (>97%), and provider type (> 57%). There are significant differences in the 
readmission characteristics among different acuity levels. For Level 1 patients, critical readmission factors include 
patient complaint (>57%), time when the patient arrived until he/she got an ED bed (> 64%), and type/number of 
providers (>50%).  For Level 4/5 patients, physician diagnosis (100%), patient complaint (99%), disposition type when 
patient arrives and leaves the ED (>30%), and if patient has lab test (>33%) appear to be significant. The model was 
demonstrated to be consistent and predictive across multiple PED sites.   

The resulting tool could enable ED staff and administrators to use patient specific values for each of a small 
number of discriminatory factors, and in return receive a prediction as to whether the patient will return to the ED 
within 72 hours. Our prediction accuracy can be as high as over 85%. This provides an opportunity for improving care 
and offering additional care or guidance to reduce ED readmission. 

 
*Corresponding author: eva.lee@gatech.edu 
 
Introduction 

Among patients who are discharged from the ED, 3%-4% return within 72 hours. Revisits can be related to the nature 
of the disease, medical errors, and/or care during their initial treatment1-3.  

Early returns to the ED may involve patients who are in a high-risk population, but other factors, such as an 
overcrowded ED, which decreases efficiency, can also contribute to the problem2,4-6. Alessandrini et al analyzed 
unscheduled revisits and the similarity of return visit rates between pediatric ED and general ED7. Previous studies have 
identified risk factors for the early return to the ED, including diagnosis, complaints, and patient demographic factors8,9. 
Gordon et al. indicated that initial diagnosis may be a useful predictor of early ED return10. McCusker et al. developed a 
screening tool called the Identification of Senior at Risk (ISAR) to identify elderly patients at high risk of return to the 
ED11. Other efforts have focused on predictors of the return for pediatric mental health care12, Acute Pulmonary 
Embolism13, and chronic obstructive pulmonary disease (COPD) exacerbations14.  

Although these studies have identified factors that appear to be linked to return visits, little is known about actually 
predicting return visits.  Studies have applied prediction / classification methods to a variety of types of healthcare 
data15-17. In 1997, Gallagher et al. presented a mixed integer programming model (DAMIP) for constrained discriminant 
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analysis, an approach to classification with constraints to control the likelihood of misclassification18. Lee et al. 
subsequently demonstrated the capability of DAMIP on a wide variety of medical problems compared to other 
classification methods19-22. In this study, we leverage DAMIP along with swarm optimization to develop a clinical tool 
capable of identifying discriminatory characteristics that can predict patients who will return to the ED within 72 hours.  
We contrast the DAMIP results against other classification approaches. 

Methods 

This study was conducted in the EDs of two sites of Children’s Healthcare of Atlanta (CHOA): CHOA at Hospital 1 
and CHOA at Hospital 2. Included in this study are 66,861 patients who were discharged from the EDs during the 
period from May 1 2009 to December 31 2009. Patients were identified from the ED information system, including 
2519 patients (3.77%) who returned within 72 hours. The patients were classified into two groups as the input of the 
classification model: the patients who revisit within 72 hours, and other discharged patients.  

The data included 96 factors for each of the patients, including chief and secondary complaint, physician diagnosis, 5 
factors related to demographic information, 8 factors related to patient arrivals, 44 factors related to the treatment and 
procedures received, and 35 factors related to the hospital environment.  

Factors of patient information, diagnosis, and treatment have been used in previous studies to analyze the early return 
patients7-11. In this study, the demographic factors include age, sex, race, and weight; the hospital environment factors 
include day of week, time of arrival, method of arrival, payor status, triage category (acuity level), number of patients in 
the ED, number of patients waiting for triage, number of available physicians, and number of available beds when the 
patient arrives; and the treatment factors include length of service, waiting time before a physician arrives, number of 
orders, number of requested resources, and whether they have taken CT scan, lab tests, radiology test, or IV therapy.  

The hospital environment data was extracted from the ED electronic medical record and tracking system (Picis ED 
PulseCheck) into the hospitals enterprise Oracle database. For ED descriptors and available patient level details, this 
occurred on an hourly basis. During extraction, variables were recorded and calculations for aggregate indicators were 
written to an Oracle datamart. Final patient data determined after the visit (final icd-9 codes) were written to the 
datamart when they became available. 

Early return of patients is considered a measure of quality of health care23. Many studies have indicated that the errors 
in medical care or patient education may increase the risk of early return. However, studies have not adequately 
analyzed the effect of the hospital environment on the patient’s decision to revisit.  Previous studies have used logistic 
linear regression models to find patients at increased risk of return. However, these models fail to accurately predict a 
return visit since the association between the Boolean value of return and the risk factors is more complicated than 
linear association. In order to predict the revisit patients among the discharged patients, we used a classification model 
as the predictive model. The implemented classifier is discriminant analysis via mixed integer program (DAMIP) which 
realizes the optimal parameters of the Anderson’s classification model18,19,24. DAMIP aims to maximize the overall 
prediction accuracy using a set of factors, subject to an upper bound on the misclassification rate. In the next section, 
we describe the DAMIP-based machine learning framework. 
 
Machine Learning Framework for Establishing Predictive Rules 

The computational design of our machine learning framework focuses on the ‘wrapper approach’, where a feature 
selection algorithm is coupled to the DAMIP learning/classification module. The feature selection, classification and 
cross validation procedures are coupled such that the feature selection algorithm searches through the space of attribute 
subsets using the cross-validation accuracy from the classification module as a measure of goodness. The attributes 
selected can be viewed as critical clinical/hospital variables that drive certain diagnosis or early detection. This allows 
for feedback to clinical decision makers for prioritization/intervention of patients and tasks.  

Optimization-Based Classifier: Discriminant Analysis via Mixed Integer Program 

Suppose we have  entities from  groups with  features. Let 1, 2, … ,  be the group index set, 
1, 2, … ,  be the entity index set, and 1, 2, … ,  be the feature index set.  Also, let ,  and , be 

the entity set which belong to group .  Moreover, let , , be the domain of feature j, which could be the space of 
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real, integer, or binary values.  The th entity, , is represented as , , , … , , 
where  is the group to which entity  belongs, and , … ,  is the feature vector of entity .  The classification 
model finds a function :  to classify entities into groups based on a selected set of features. 
  
Let  be the prior probability of group  and  be the conditional probability density function for the entity  

 of group , .  Also let 0,1 , , , , be the upperbound for the misclassification 
percentage that group h entities are misclassified into group .  DAMIP seeks a partition , , … ,  of , where 

 , , is the region for group , and  is the reserved judgement region with  entities for which group assignment 
are reserved (for potential further exploration).  
 
Let  be the binary variable to denote if entity  is classified to group  or not.  Mathematically, DAMIP can be 
formulated as    
 
(Nonlinear DAMIP)18,19 
 

max   (1) 

s.t. 

,

   , 
 (2) 

 1
0  if arg max 0, :

otherwise                             
  , 0  (3) 

 1   (4) 

 
: 

  , ,  (5) 

 0,1    , 0   
  unrestricted in sign  ,   
 0  , ,   

 
 
DAMIP has many appealing characteristics including: 1) the resulting classification rule is strongly universally 
consistent, given that the Bayes optimal rule for classification is known22; 2) the misclassification rates using the 
DAMIP method are consistently lower than other classification approaches in both simulated data and real-world data; 
3) the classification rules from DAMIP appear to be insensitive to the specification of prior probabilities, yet capable of 
reducing misclassification rates when the number of training entities from each group is different; 4) the DAMIP model 
generates stable classification rules regardless of the proportions of training entities from each group.18-22 
 
In the ED readmission classification experiments and analysis, there are two groups of patients: Group 1: non-returning, 
Group 2: return within 72-hour. Each entity is a patient, and each feature is the factor. Patient data from the period May 
1 2009 to December 31 2009 were randomly divided into two sets: a training set and an independent set for blind 
prediction. The DAMIP classifier is first applied to the training set to establish the classification rule. The accuracy of 
the rule is first gauged by performing 10-fold cross validation, and can be further gauged by applying the rule to the 
independent set of patient data for blind prediction. Blind prediction is performed only when the 10-fold classification 
for the training set satisfies a pre-set minimum accuracy criteria. To gauge the performance of our classifier, we 
compare the results with linear discriminate analysis, Naive Bayesian classifier, support vector machine, logistic 
regression, decision tree, random forest and nearest shrunken centroid approaches that are implemented in the R© 
language/environment. 
 
By design, the machine learning process strives to identify the smallest set of discriminatory features that offers reliable 
prediction. In our application, a data stream can be fed automatically into our machine learning framework. In other 
applications, e.g., using hand-held device for early diagnostics etc, it is desirable that the final prediction rule depends 
on relatively few factors so that it is not a burden on the healthcare staff to enter the information.  Regardless of the 
input of data stream, these discriminatory features impact decisions for hospital policy, and thus should contain only the 
critical factors.  

497



 
Incorporating the Feature Selection Algorithm  
 
We developed a heuristic algorithm using particle swarm optimization (PSO) to iteratively search among subsets of 
factors. PSO, originally developed by Kennedy and Eberhart25,26, is an evolutionary computation technique for solving  
optimization problems.  Below, we describe the DAMIP/PSO machine learning framework.  
 
Let n be the desired number of factors to be selected. Let m be the size of the particles population.  Let xi and pi be 
binary vectors representing sets of chosen factors. Let vi be a real-value vector representing the velocity of particle i. vi 
is randomly assigned during initialization. 
 
Associated with each particle is a current set of factors, xi, and a record of the best classification accuracy with its 
corresponding factor set, pi, reached thus far by this particle. We use a Von Neumann topology with 36 particles (6 × 6 
block). Each particle’s neighborhood is defined by its top, bottom, left and right.   
 
At each iteration, the factor set for a particle is updated by the following algorithm: 
 

o Step 1 Perform DAMIP classifier for cross validation on the training data using the selected set of factors xi; 
o Step 2 If the overall accuracy and the accuracy of each group in the 10-fold cross validation are over a pre-set 

value (e.g., > 70%), perform blind prediction using this rule on the independent set and output results. 
Otherwise go to Step 3.  

o Step 3 Update the velocity of the particle: The new velocity vi is obtained from the current velocity, the current 
factor set, and the best accuracy of this particle and its neighborhood and their corresponding factor set: 

 
( ) ( ) ,)(2211 iiNiiii xprcxprcvv −⋅⋅+−⋅⋅+⋅←ω

 where ω, c1 and c2 are fixed positive coefficients, r1 and r2 are randomly generated in the range (0,1), N(i) is the 
neighborhood of particle i. 

o Step 4 The highest n velocity entries of this new vi form the associated new factor set of this particle. 
 
The algorithm updates the m particles sequentially in each iteration, and terminates when it reaches a pre-determined 
maximum number of iterations. 
 
We implemented the DAMIP classifier and PSO feature selection algorithm in C++.  In this study, the particle 
population is 36, and the machine learning process consists of 1000 DAMIP/PSO iterations (= one complete learning 
cycle). Each cycle requires an average of 1,080 CPU seconds. The experiment is repeated 100 times with randomly 
selected starting subsets of factors to strategize our search space and to avoid local optimum.  
 
The output of the algorithm is a collection of discriminatory subsets of factors that are good candidates for the 
prediction of return visits within 72 hours. While users can set the desired number of discriminatory factors, the size of 
factors reported herein < 10) is reflected from our experimental findings (see Figure 1).  

Results 

Due to the diversity of patients in the two hospital sites, we ran the classification model separately for each site. There 
were 27,534 ED patients at Hospital 1, 996 (3.62%) of whom returned within 72 hours; and there were 39,327 at 
Hospital 2, 1523 (3.87%) of whom returned within 72 hours. All patients went home after the first ED visit. In our 
analysis, the training set is 15,000 and 20,000 respectively, and the blind prediction set consists of the rest of the 
patients.  
 
The patient factors were acquired from the patient records and the ED information system. Table 1 shows the selected 
patient information for the two sites. We categorized free text factors including method of arrival, patient complaint, 
physician diagnosis, race, payor code, financial class, and disposition type via natural language processing, and then 
ranked the categories for each factor based on the corresponding revisit rate.  
 
Table 1. Selected characteristics of patient information 
 CHOA at Hospital 1 CHOA at Hospital 2 
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 Total number Percent (%) % of return in 
72 hours (%) 

Total 
number 

Percent 
(%) 

% of return in 
72 hours (%) 

Total 27534 100 3.62 39327 100 3.87 
Day of week         
  Monday 4036 14.66 3.20 5835 14.84 3.75 
  Tuesday 3910 14.20 3.12 5514 14.02 3.46 
  Wednesday 3782 13.74 3.64 5481 13.94 3.45 
  Thursday 3794 13.78 3.61 5334 13.56 3.86 
  Friday 3683 13.38 4.13 5323 13.54 4.30 
  Saturday 4061 14.80 4.14 5660 14.39 4.47 
  Sunday 4268 15.50 3.51 6180 15.71 3.82 
         
Time of arrival           
  20:00-08:00 10681 38.79 3.95 16013 40.72 4.05 
  08:00-12:00 4110 14.93 3.58 5854 14.89 3.79 
  12:00-16:00 5772 20.96 3.50 8139 20.70 3.70 
  16:00-20:00 6971 25.32 3.23 9321 23.70 3.78 
         
Acuity Level         

1 1333 4.84 2.32 637 1.62 2.67 
2 8514 30.92 2.65 8382 21.31 3.30 
3 12060 43.80 3.91 18781 47.76 3.89 
4 5583 20.28 4.76 11372 28.92 4.36 
5 44 0.16 4.55 155 0.39 1.29 

.
Good candidates for revisit prediction are obtained by filtering the good results among the 100 complete learning cycles. 
These results are filtered using the criteria that the accuracy of cross validation and blind prediction for both groups are 
over 70%.  Based on the filtered criteria, we found 7 sets of discriminatory factors for Hospital 1 and 70 sets of 
discriminatory factors for Hospital 2 with set size less than 10. The most frequent factors appearing among these 
discriminatory sets are listed in Table 2.  The factors patient chief complaint, patient diagnosis, and provider type 
appear in the list of both sites.  

Table 2. Factors most frequently occurring among the 7 sets of discriminatory factors for predicting <72-hour returns at 
Hospital 1, and those most frequently occurring among the 70 sets of discriminatory factors for predicting <72-hour 
returns at Hospital 2. 

Hospital 1  Hospital 2 
Factor Name Frequency 

(%) 
 Factor Name Frequency 

(%) 
Patient diagnosis 7 (100%)  Patient diagnosis 68 (97.14%) 
Patient chief complaint 7 (100%)  Patient chief complaint 68 (97.14%) 
Training Physician: Resident or 
Fellow . 

4 (57.14%)  Physician Extender (i.e., nurse 
practitioners or others) 

51 (72.86%) 

If IV  antibiotics was ordered. 4 (57.14%)  If the patient received a radiological test 27 (38.57%) 
Attending Provider Ratio (The 
provider ratio (PR) determines the 
volume of patients that can be 
evaluated and treated by the 
physician providers)  see 
http://www.ncbi.nlm.nih.gov/pubmed
/11691670 for reference  

3 (42.86%)  Expectant Patient: This is a patient is on 
the way to the ED who was called in by a 
care provider. 

21 (30%) 

Patient has been in ED in last 72 
hours 

3 (42.86%)  Time it took when the first medical doctor 
arrived until the attending arrived 

19 (27.14%) 

Primary nurse involved 2 (28.57%)  Patients who arrived ambulance 14 (20%) 
Time when the patient got an ED bed 2 (28.57%)  Number of triaged patients at time 13 (18.57%) 

499



to time until first medical doctor 
arrived 
Number of nursing resources 
requested 

2 (28.57%)    

 
 
Figure 1 depicts the highest accuracy values achieved in DAMIP/PSO cross validation and blind prediction. The 
classification accuracy increases as the number of factors selected in the classification rule increases, and the highest 
accuracy was achieved when 4 to 10 factors were used.  Figure 1 also shows that performance levels off as the number 
of factors increases. We include both the cross-validation and the blind prediction results to reflect the consistency of 
predictive power of the developed classification rules.  
 
Figure 1. The highest prediction accuracy obtained via DAMIP/PSO for the two hospital sites. The solid lines represent 
the accuracy of cross validation, and the dashed lines represent the blind prediction accuracy. H1: Hospital 1, H2: 
Hospital 2, CV: 10-fold cross validation, BT: blind prediction.  

 
 
Table 3 contrasts DAMIP/PSO results with other classification methods. Uniformly other classification methods suffer 
from group imbalance and the classifiers tend to place all entities into the Non-return group. In particular, linear 
discriminant analysis, support vector machine, logistic regression, classification trees, and random forest placed almost 
all patients (> 99%) into the “Non-return” group, by sacrificing the very small percentage of “Return” patients. This 
table also showcases the importance of reporting the classification accuracy for each group, in addition to the overall 
accuracy.  
 
Acuity level is a crucial indicator of ED patient treatment resource and service needs. To better understand the 72-hour 
readmission characteristics of patients across different acuity levels, we perform DAMIP/PSO classification on patients 
with acuity level 1, 2, 3, and 4/5 – level 1 being the highest acuity.  We combine Levels 4 and 5 patients in this analysis 
since there are only 44 and 155 Level 5 patients in each hospital respectively. The classification results, reported in 
Table 4, show higher classification and predictive accuracy for  Level 1 and Level 4/5 patients. This may be explained 
by the fact that these patients have less diagnosis uncertainty than those in Levels 2 and 3.  
 
Specifically, patients with Level 1 acuity have the lowest re-admission percentage (Table 1). These patients have the 
highest acuity, and thus require the most urgent rapid service. The prediction accuracy for these patients can be as high 
as 88%. Patients at Levels 4 and 5 have the highest re-admission percentage (Table 1). These patients have less pain 
severity, and are more concerned with quality of service. The most frequent factors shown in the discriminatory sets at 
the two hospitals are listed in Tables 5a, and 5b. We observe similarities between the two hospital sites for Level 1 
patients (and Level 4/5 patients) critical readmission factors. For Level 1 patients, among the acquired discriminatory 
sets with good predictive results, time when the patient arrived until he/she got an ED bed, patient complaint, 
type/number of providers, and patients receive radiologic/CT scans are common and most frequent factors in both sites.  
For Level 4/5 patients, patient diagnosis, patient complaint, disposition type when patient arrives and leaves the ED, if 
the patient has a lab test, and if an IV was ordered are among the most critical readmission factors in both hospitals.  
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Table 3. Comparison of DAMIP/PSO results against other classification methods. 
Hospital 1 Training Set: 15,000 Blind Prediction Set: 12,534 
 10-fold Cross Validation Accuracy Blind Prediction Accuracy 
Classification Method Overall Non-return Return Overall Non-return Return 
Linear Discriminant Analysis 96.3% 99.6% 5.5% 96.1% 99.6% 5.3% 
Naïve Bayesian 51.6% 50.3% 87.0% 51.7% 50.2% 89.2% 
Support Vector Machine 96.5% 100.0% 0.0% 96.2% 100.0% 0.0% 
Logistic Regression 96.5% 99.8% 5.9% 96.3% 99.8% 8.3% 
Classification Tree 96.6% 99.9% 4.4% 96.3% 100.0% 3.0% 
Random Forest 96.6% 100.0% 1.5% 96.3% 100.0% 1.9% 
Nearest Shrunken Centroid 62.7% 62.9% 50.0% 48.7% 48.2% 64.7% 
DAMIP/PSO 83.1% 83.9% 70.1% 82.2% 83.1% 70.5% 
Hospital 2 Training Set: 20,000 Blind Prediction: 19,327 
 Overall Non-return Return Overall Non-return Return 
LDA 96.2% 100.0% 0.1% 96.0% 100.0% 0.3% 
Naïve Bayesian 53.4% 52.2% 83.9% 54.4% 53.2% 84.2% 
SVM 96.3% 100.0% 0.0% 96.0% 100.0% 0.0% 
Logistic Regression 96.3% 100.0% 0.0% 96.1% 99.9% 3.3% 
Classification Tree 96.2% 100.0% 0.0% 96.0% 100.0% 0.0% 
Random Forest 96.2% 100.0% 0.5% 96.1% 100.0% 0.5% 
Nearest Shrunken Centroid 60.5% 60.6% 50.1% 45.8% 45.1% 61.2% 
DAMIP/PSO 80.1% 81.1% 70.1% 80.5% 81.5% 70.0% 
 
Table 4. DAMIP/PSO classification results for patients in each of the acuity levels.  

Acuity 
Training 
set size 10-fold Cross Validation Accuracy 

Blind 
Prediction  

set size 
Blind Prediction Accuracy 

Hospital 1  Overall Non-
return Return  Overall Non-

return Return 

1 700 87.9% 82.9% 92.8% 633 85.1% 85.3% 76.4% 
2 5000 76.0% 76.4% 71.4% 3514 73.2% 73.6% 71.6% 
3 6000 80.2% 81.0% 70.2% 6060 80.3% 81.1% 70.3% 
4 and 5 3000 85.2% 81.1% 89.2% 2627 81.0% 81.0% 81.3% 

Hospital 2  Overall Non-
return Return  Overall Non-

return Return 

1 350 77.2% 75.6% 78.8% 287 76.4% 76.4% 75.0% 
2 4500 74.8% 75.3% 70.0% 3882 74.2% 74.7% 70.5% 
3 10000 77.5% 78.2% 70.1% 8781 77.5% 78.2% 70.0% 
4 and 5 6000 80.1% 83.7% 76.5% 5527 78.3% 78.4% 76.2% 
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Table 5a. Factors most frequently occurring among the 236 sets of discriminatory factors for predicting <72-hour 
returns for acuity-level 1 patients at Hospital 1, and those most frequently occurring among the 42 sets of 
discriminatory factors for predicting <72-hour returns for acuity-level 1 patients at Hospital 2. 
Hospital 1  Hospital 2 
Factor Name Frequency 

(%) 
 Factor Name Frequency 

(%) 
Patient diagnosis 230 (97.46%)  Time when the patient arrived until 

he/she got a bed 
27 (64.29%) 

Time when the patient arrived until he/she 
got a bed 

228 (96.61%)  Number of beds reserved at time 24 (57.14%) 

Payor type 180 (76.27%)  Patient chief complaint 24 (57.14%) 
Patient chief complaint 178 (75.42%)  Physician extender (ie. Nurse 

Practitioners or others). 
22 (52.38%) 

Number of residents in ED 129 (54.66%)  Month 16 (38.1%) 
Number of medical students in ED 106 (44.92%)  If the patient received a radiologic 

test 
12 (28.57%) 

If the patient received a CT scan for 
his/her head 

80 (33.9%)  Patient’s weight 11 (26.19%) 

If the patient had a rapid strep test 77 (32.63%)  If the patient received Chest X-Ray 11 (26.19%) 
Number or waiting patients divided by the 
number of available beds29  

66 (27.97%)    

 
Figure 5b. Factors most frequently occurring among the 246 sets of discriminatory factors for predicting <72-hour 
returns for acuity-level 4/5 patients at Hospital 1, and those most frequently occurring among the 491 sets of 
discriminatory factors for predicting <72-hour returns for acuity-level 4/5 patients at Hospital 2. 
Factor Name Frequency (%)  Factor Name Frequency (%) 
Patient diagnosis 246 (100%)  Patient diagnosis 491 (100%) 
Patient chief complaint 246 (100%)  Patient chief complaint 487 (99.19%) 
Disposition type when patient first 
arrives 

206 (83.74%)  Disposition type when patient leaves 399 (81.26%) 

if the patient comprehensive 
metabolic panel 

122 (49.59%)  Called in, patient is on way  210 (42.77%) 

Disposition type when patient 
leaves 

72 (29.27%)  If the patient had any lab tests done  166 (33.81%) 

Number of patients in bed waiting 
to be discharged 

69 (28.05%)  Disposition type when patient first 
arrives 

163 (33.2%) 

Time when patient arrived until a 
first medical doctor arrived on 
scene 

44 (17.89%)  Month 145 (29.53%) 

Arrival method 43 (17.48%)  Acuity level when the patient leaves 138 (28.11%) 
If an IV of ondansetron was 
ordered 

42 (17.07%)  If an IV of fluids was ordered 117 (23.83%) 

 
Discussion and Conclusion 

In this study, we developed a machine-learning framework combining a PSO feature selection algorithm and a DAMIP 
classifier to predict patients who will return to the ED within 72 hours. We used this model to select sets of 
discriminatory factors to establish classification rules, and to develop prediction criteria based on these rules that 
differentiate the revisit patients from the rest of the patients with predictive accuracy over 80%.  

The input factor pool included patient information, patient complaint, physician diagnosis, operations and treatment, 
and hospital real-time utilization records. For Level 1 patients, among the acquired discriminatory sets with good 
predictive results, time when the patient arrived until he/she got an ED bed, patient complaint, type/number of providers, 
and patients receive a radiologic/CT scan are common and most frequent factors in both sites.  For Level 4/5 patients, 
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physician diagnosis, patient complaint, disposition type when patient arrives and leaves, if the patient has a lab test, and 
if an IV was ordered are among the most common factors across the two hospitals. We also note that some key hospital 
environment factors (e.g., time when the patient arrived until he/she got an ED bed, type/number of providers) appear 
among the most frequently chosen factors. Besides the common factors, the predictive factors for the two sites are 
different due to the diversity of the patients and the hospital characteristics. This supports the point indicated by Joynt et 
al. that the hospital location may affect readmission of the patients25.  

Our classification model was demonstrated to be consistent when the hospital environment varies, and its objective can 
be extended from short-term revisit to any class of revisit. The DAMIP/PSO machine learning framework is 
generalizable for predictive analytics across different hospital sites. It can adapt to different feature input and identify 
the appropriate set of discriminatory features for consistent prediction.  

Among the ED patients, about 3-4% are return patients. Their returns may be related to their first visit experience. 
Being able to anticipate and predict return patterns may facilitate quality of ED service and quality of patient care and 
allow ED providers to intervene appropriately.  The DAMIP/PSO classifier is able to blind predict with over 80% 
accuracy, and outperforms other classifiers.  

Based on the set of discriminatory factors with high accuracy, we developed a decision support tool for predicting 
patients returning within 72 hours. When implemented in clinical settings, the tool can potentially acquire data in real-
time from the ED database and acquire the current hospital resource status. As the relevant factors for a patient are 
entered by the ED staff or through automated data-streaming, the system will return readmission prediction status of the 
patient.  Since each discriminatory set of factors corresponds to a delivery or policy change, and requires action from 
ED staff, we would expect the set of discriminatory factors to be rather small, as discovered in our study.    
 
Figure 2 shows a simple user interface based on a set of factors that predicted return visits with accuracy over 80%. 
After the required patient data is entered, and the employee clicks the “predict” button, the tool will retrieve the hospital 
related factors from the hospital database system, and present the revisit prediction result based on the implemented 
criteria. Such a computerized system allows real-time decision making, and ongoing learning and retraining of the 
predictive rule (and thus the discriminatory factors) as the ED data evolves over time.  
 

Figure 2. A sample user interface of a prediction tool for 72-hour return. Key features are typed in or selected. 

 
 
 
We caution that these are only preliminary results based on a subset of patients in predicting readmission cases. 
Currently, we are conducting more detailed analysis where different patient cases will be drawn for training, and 
consistency among the discriminant features will be analyzed. Although we obtain better predictive accuracy (> 85%) 
when more discriminatory factors are selected, it is important to keep in mind that using too many factors is impractical.   
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