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Abstract 

Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural 

information provided by dependency parsers is useful for a variety of NLP applications. We present a 

biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. 

We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of 

task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%.We 

show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks 

relating to Named Entities and is more robust to changes in domain. 

Introduction 

Syntactic parsing is a process assigning tree or graph structure to a free text sentence. These structures are 

useful for application such as information extraction[1] , negation detection[2], entity disambiguation [3, 

4]and other applications[5, 6].   

Syntactic Dependency is a parsing scheme where we create edges between words in the sentence denoting 

different types of child�parent relations (e.g. in “IL-8 activates CXCR1” the proper noun “IL-8” is the 

child of the verb “activates” with relation type of noun-subject).  This scheme is very useful for many 

practical tasks: in protein-protein interaction (PPI) extraction[1] we may want to extract the subject and 

object of a verb such as “phosphorylates”, negation detection [7] can be achieved by finding the governor 

the negation word. 

In the past parsing was a lengthy and error prone process, in a former review of parsing techniques for the 

medical domain [8] the parsing time ranged from 2-20 seconds per sentence with accuracy of less than 

80%. Due to these drawbacks, syntactic parsing was not traditionally used in biomedical NLP pipelines 

such as: Medlee [9], MetaMap [10] or cTakes [11]. 

Recent advances in parsing change that reality with parsers which are both fast and accurate. These are 

complemented by new Gold standard training data in the medical domain[12] which allows training these 

parsers without the need for adaptation. 

The biomedical NLP suit cTakes [13] recently integrated Clear-Parser[14], a dependency parser using the 

CONLL scheme. The accuracy of Clear-Parser on Genia is 89.6% with running time of 1.8 milliseconds 

per sentence. 

In this paper we introduce a model of the Easy-First parser [15]  trained on the Genia biomedical corpus
1
 

for creating syntactic dependency trees in the Stanford Dependency scheme[16]. This parser produces parse 

trees with accuracy of 89.9% and with running time of 16 milliseconds per sentence.  

The different parse tree schemes of the two parsers (Stanford and CONLL) are based on different linguistic 

representation choices. To provide a meaningful comparison of the parsers we use the task specific 

approach as suggested by[8, 17]. We apply metrics specific to down the line applications such as PPI 
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extraction, negation detection, named entity recognition (NER) and disambiguation as well as the accuracy 

when applied in a different biomedical domain.  

The overall results are similar with accuracy approaching 90% for both parsers. For the different tasks we 

found variation between the parsers: Clear-Parser is more accurate in predicting the object of a negation 

word (88% compared to 85.5%) while Easy-First is more accurate at predicting the structure of multi-word 

named entities (90% compared to 84%) and in predicting the governor of the named entity (90.7% 

compared to 85.5%). These differences suggest that the different parsers may be useful for different tasks 

or by ensemble combination, especially when extracting features for down the line classifiers. 

Background 

Syntactic dependency parsers have been extensively studied in recent years [14, 15, 18-20]. Various 

parsing methods (MST, MALT, BEAM, EasyFirst, etc.) achieve high accuracy, 90-93%, on the Wall Street 

Journal derived Penn Treebank. Comparison of parsers is based on micro averaged accuracy of edge 

attachment. However, this metric is dependent upon the parsing framework used in training and design of 

parser features and the gold standard trees of different representations are significantly different. The two 

commonly used parsing representations for dependency parsers are CONLL and Stanford Dependencies 

(SD) though other representations are in use in some state of the art parsers[21]. The different dependency 

representations make different linguistic assumptions about the correct structure of a dependency tree. This 

leads to very different trees with agreement on only ~70% of the edges in the tree. Syntactic trees produced 

by using different representations can be compared using different metrics [22]or by using a task specific 

comparison [17]. 

We review two parsers.Clear-Parser [14] is based on the scheme of shift-reduce with beam search. In shift 

reduce parsing the sentence is processed left-to-right using a stack, each input word may be connected to 

the word on top  the stack (either as child or as parent) or pushed into the stack. This is a very quick, O(n) 

complexity, greedy approach. The beam search version allows remembering key choices an enabling roll-

back for some of the greedy decisions. Easy-First [15] uses a greedy approach to parse the sentence, at each 

stage it connects to words with an edge by choosing the decision with minimal risk. This allows quick 

parsing, O(log(n)) complexity, combined with decision making in a broader context than the left-to-right of 

shift-reduce parsers. Both parsers yield state of the art results in the newswire domain. 

Syntactic parsing accuracy is measured by comparing the produced syntactic tree to a gold standard. 

Accuracy is measured as the percentage of pair of parent-child words connected in the gold standard tree 

which are connected in parser output.   

Practices for adapting syntactic parsers trained in the newswire domain to the biomedical domain have been 

studied in depth resulted in low accuracy compared to the newswire domain [19, 23, 24]. However, the 

amount of training data available for some biomedical domains make it possible to integrate syntactic 

parsers trained for these domains into biomedical NLP pipelines and practical tasks. Even without accurate 

domain specific models, the Stanford Dependency Parser is already in use for PPI extraction[1, 25], Noun 

Phrase identification[26], disease dictionary construction [27]and Negation Detection [28]. 

Clegg and Shepherd (2007) [8]compared syntactic parsers on a number of task oriented metrics as: 

accuracy of verb, object and subject edges (a measure on the accuracy of features used for PPI extraction if 

we concentrate only on verbs pertaining to protein interactions) and correct identification of the head of a 

negation (i.e.the negated term). They also explored the known Achilles heel of dependency parsers, 

prepositional attachments where the object is connected to its governor through a preposition (in “the effect 

of IL-2 in Jurkat Cells” the entity “Jurkat Cells” should be connected to “effect” through the preposition 

“in”, however, the parser may connect “in” to “IL-2” instead). 
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The representation scheme of a syntactic parser affects its usefulness for other applications. Miyao et 

al.[17]compared 3 parsing schemes (dependency, phrase structure and deep parsing) and 8 parsers on the 

task of PPI extraction. They concluded that the parser compared produced similar accuracy which was 

improved by training with in-domain data. Another observation made was that the speed advantage of 

dependency parsers is not offset by any decline in accuracy. 

Methods 

Experimental Settings 

We split the Genia Treebank in two parts for training / testing, each part comprised of 9K sentences. For 

Clear-Parser, the treebank was transforms into CONLL dependency representation using the Clear Penn-to-

Dependency converter [29]. For EasyFirst, we used the Stanford Parser[16] module for converting into 

Stanford Dependencies. See Table 1 for corpus statistics. 

The same conversion process is used for the PennBioIE  Treebank[30]. See Table 1. 

Each parser was trained on the aforementioned training data portion of Genia TB (both parsers were trained 

using 20 iterations). The model was then used to parse the test portion of the treebank.  

For control we use EasyFirst and Clear-Parser models trained on sections 2-22 of the Penn Treebank 

(WSJ). 

To assess the accuracy for Named Entity related tasks we used the Genia Entity Recognition corpus from 

the 2004 NER shared task [31]. We extracted 5,974 parse trees from the test portion of Genia that correlate 

to a sentence from the named entity challenge. This portion of the Treebank was used for NER evaluations. 

See Table 1. 

 

Genia Genia-NER WSJ PennBioIE 

Trees 18,419 5,954 41,532 3,320 

Tokens 482,548 138,226 990,145 85,144 

Distinct Tokens 22,354 10,737 44,389 7,945 
Table 1 - Corpus statistics for the corpora used in this paper. 

 

Results 

The accepted method for calculating parser accuracy is the number of edges predicted correctly by the 

parser compared to the gold standard. We first compare unlabeled accuracy (UAS) of both parsers over the 

Genia test set (9K sentences). See Figure 1.  

Evaluating the parsers using task specific metrics 

For the task of PPI extraction we look at the accuracy of verb�object and verb�subject pairs for verbs 

pertaining to interaction, such as: “activate","modulate”,"phosphorylate", ”regulate”,“upregulate”, 

“downregulate”, “antagonize”, “suppress”, “stimulate”, “facilitate” and “induce”.These are common verbs 

in the Genia domain that pertain to biological activity. See Figure 1. 

To estimate parser usefulness for negation detection we report the accuracy of predicting the head of a 

negation (the negated object) for negation words such as: “not”, “no”, “absent”, “none”, “negative”, 

“cannot”, “without”, “disprove”, “exclude” and “unlikely”  (we use the heuristic rule list suggested by 

Clegg and Sheperd). See Figure 1. 
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Figure 1–Attachment accuracy: for all edges (average accuracy), for edges relevant for PPI extraction and for 

negation words. 

Named entities play important role in understanding biomedical texts. We evaluate the following metrics 

using the Genia BioNLP NER data (See Figure 2). 

Accuracy for predicting the correct parent for each token in the entity (See Table 2). 

NE type Clear-Parser EasyFirst 

DNA 89.6% 92.5% 

RNA 81.8% 85.5% 

Cell Line 91.9% 93.4% 

Cell Type 93.3% 93.1% 

Protein 85.4% 88.5% 

Table 2- Accuracy on predicting the parent for all tokens which are a part of a named entity by entity type. 

There are 5 entity types in the Genia NER data. 

Accuracy in connecting all the words in a multi word entity (e.g. in “Jurkat Cells” we expect the two words 

to be connected by an edge), in this case we only examine the inner edges of the entity (i.e. we ignore the 

edge connecting head of the entity to its parent node). 

Accuracy in predicting the governor of the head of the entity (e.g. in “IL-2 affects Jurkat Cells” the head of 

the entity “Cells” should be connected to “affects” as the object). This dependency edge was shown to be a 

useful feature for predicting the type of a named entity (Gene/Protein etc.) [4] 

Accuracy in predicting the governor of the head of the entity in the more complex case of prepositional 

attachment (e.g. “the effect of IL-2 in Jurkat Cells”, “Cells” should be governed by the preposition “in” and 

through it to “IL-2”).  

124



 

Figure 2 – Accuracy of NER related tasks: accuracy over all NE tokens, accuracy of edges within the entity for 

multi-word entities, accuracy of predicting a correct governor for the head of the NE and accuracy for 

predicting the governor of the head when it is within a prepositional attachment. 

 

Evaluating the impact of training in-domain 

We evaluate the parsers using models trained in the newswire domain for two reasons: parsers trained for 

the newswire domain in biomedical domains are already widely in use (see Background) andfor assessing 

the portability of the two parsers inside the different biomedical domains.  

To address the usefulness of newswire trained models for biomedical problems we evaluated both parsers 

on the same metrics described above. We note a dramatic difference in the accuracy with overall accuracy 

of EasyFirst dropping by over 10% and Clear-Parser accuracy by 16%. See table 3. 

Clear-Genia Clear-WSJ Change EasyFirst-Genia EasyFirst-WSJ Change 

All edges 89.60% 73.60% -16.00% 89.80% 78.30% -11.50% 

PPI (v->subj,v->obj) 88.60% 78.70% -9.90% 90.10% 80.90% -9.20% 

Negations 88.00% 77.90% -10.10% 85.50% 78.30% -7.20% 

All NE tokens 84.60% 74.30% -10.30% 90.40% 79.70% -10.70% 

Inner tokens of NE  88.60% 77.96% -10.64% 90.10% 77.97% -12.13% 

Governor for head of NE 85.50% 70.80% -14.70% 90.70% 81.30% -9.40% 

PP attachment of the head 76.80% 69.92% -6.88% 83.30% 76.20% -7.10% 

Table 3- Accuracy of models trained in the newswire domain (Wall Street Journal) on the Genia domain. 

Due to the lexicalized nature of the parsers (i.e. the model incorporates knowledge on specific words during 

training) words appearing in the test corpus but missing from the training corpus (out of vocabulary or 

OOV) are a major source of errors[32].  The proportion of OOV tokens is very high with 24% when 

training on newswire and applying to Genia compared to only 4% when training on newswire and applying 

to the test set of newswire or 6.6% when training on the Genia test set and applying to the development set. 
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We examine the accuracy of the Genia trained models on a different biomedical domain, the PennBioIE 

corpus, a corpus composed of abstracts pertaining to cancer and enzyme inhibition (Genia corpus pertains 

to transcription factors in human blood cells). The proportion of OOV tokens in PennBioIE when training 

on Genia is 13%, markedly lower than the difference from the newswire corpus. Both parsers’ performance 

was degraded in the new domain, EasyFirst by 6% to 83% and Clear-Parser by 12% to 77% (see Table 4). 

 WSJ-test Genia-test PennBioIE-test 

WSJ-Train 4% 24% 23% 

Genia-Train 

 

6% 13% 

PennBioIE-Train   8.5% 
Table 4–OOV expressions for different train/test sets. The smaller sized biomedical treebank PennBioIE, only 

2,931 trees in total, leads to a lacking coverage of the vocabulary. 

Parsers Running Time 

The training and running time of both parsers appear in Table 5, compared to state of the art MST parser, 

both parsers are faster by an order of magnitude in training and parsing (Clear-Parser is ~100 times faster at 

parsing time). 

 

Clear-Parser EasyFirst MST 

Train (s/sentence) 0.3 0.6 2.6 

Parse (ms/sentence) 1.8 16 166 

Table 5- Training and parsing speed for Clear-Parser, EasyFirst and MST parser.  

Discussion 

We have shown that Clear-Parser and EasyFirst provide state of the art accuracy on biomedical text 

combined with parsing speed faster by orders of magnitude than that of previously used parsers. 

The parsers use different schemes for representing syntactic dependency trees. We have shown that this 

leads to different accuracy in different tasks: Clear-Parser is more useful for negation detection while 

EasyFirst is more accurate in tasks concerning named entities. Both parsers performance is similarly high 

in the average accuracy and in accuracy in predicting edges relevant to PPI extraction. 

Training in domain has a vast impact on the results of the two parsers with a sharper decline in accuracy for 

Clear-Parser when out of domain. EasyFirst shows greater robustness when migrating to another domain 

within the biomedical domain with a lesser reduction in accuracy. 

Syntactic dependency parsers provide information useful for a variety of down the line applications. 

Integrating these parsers would be useful for improving many of these tasks, the choice of parser is task 

dependent and due to the different representation, some information may be gained from ensemble use of 

both parsers. 

Creating an available resource for training syntactic parsers for the clinical domain would greatly improve 

the availability of syntactic parsing technology for extracting information from clinical notes. This is 

compounded by the need for annonimization, this problem should be addressed by future studies. 
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