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Abstract 

Background: The ability to identify the risk factors related to an adverse condition, e.g., heart failures (HF) 
diagnosis, is very important for improving care quality and reducing cost. Existing approaches for risk factor 
identification are either knowledge driven (from guidelines or literatures) or data driven (from observational data). 
No existing method provides a model to effectively combine expert knowledge with data driven insight for risk factor 
identification. 

Methods: We present a systematic approach to enhance known knowledge-based risk factors with additional 
potential risk factors derived from data. The core of our approach is a sparse regression model with regularization 
terms that correspond to both knowledge and data driven risk factors.  

Results: The approach is validated using a large dataset containing 4,644 heart failure cases and 45,981 controls. 
The outpatient electronic health records (EHRs) for these patients include diagnosis, medication, lab results from 
2003-2010. We demonstrate that the proposed method can identify complementary risk factors that are not in the 
existing known factors and can better predict the onset of HF. We quantitatively compare different sets of risk 
factors in the context of predicting onset of HF using the performance metric, the Area Under the ROC Curve 
(AUC). The combined risk factors between knowledge and data significantly outperform knowledge-based risk 
factors alone. Furthermore, those additional risk factors are confirmed to be clinically meaningful by a cardiologist. 

Conclusion: We present a systematic framework for combining knowledge and data driven insights for risk factor 
identification. We demonstrate the power of this framework in the context of predicting onset of HF, where our 
approach can successfully identify intuitive and predictive risk factors beyond a set of known HF risk factors. 

Introduction 

Heart Failure (HF) has become increasingly prevalent and is among the most costly diseases for Medicare patients. 
The annual direct cost is $33 billion [1,2,3,4]. The prevalence and cost trends will continue to rise unless novel and 
cost-effective strategies are developed to better manage this disease. While hospital admissions and readmissions are 
being reduced, the cost benefit is modest, self-limiting, and too infrequently does little to improve patient quality of 
life. The persistent challenge is in the failure to detect HF at stage that is early enough to implement proven lifestyle 
and pharmacologic interventions that can delay and possibly even prevent disease progression. The ultimate goal of 
our study is to develop robust, valid, and practical means of early detection that can be applied in primary care 
practices that use electronic health records (EHR). To construct such predictive models, the key is to identify 
predictive risk factors and extract them from data. 

Risk factors for HF have been previously studied [5] but with a stronger focus on primary prevention. EHRs 
typically document those relevant risk factors from clinical knowledge like literature, including Age, Hypertension, 
MI, Diabetes, Valvular heart disease, Coronary heart disease, and Chronic kidney disease. The advantage of this 
knowledge driven approach is the interpretability of the risk factors, which is grounded in established evidence and 
based on features that are reasonably well understood. This approach is also computationally appealing, since the 
number of features involved in the model is usually relatively small (e.g., in the order of 10 to 100). The 
disadvantage of this approach is that resulting models may not adequately represent the complex disease processes 
that underlie the insidious emergence of HF. Not all risk factors have been identified, and many predictive features 
are yet to be constructed and tested.  Another subtlety is that most of knowledge driven risk factors describe high-
level clinical concepts, which do not directly map to the underlying EHR data. To construct and deploy a model in 
the operational setting, one need to connect those knowledge driven risk factors to the EHR data by constructing 
appropriate features, which is not trivial.  
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Recognizing the limitation of a purely knowledge driven approach, we can use a data driven approach that 
systematically constructs and tests a large number of features. Our evaluation results indicate that a data driven 
strategy outperforms a knowledge driven strategy (e.g., over 20% improvement in the area under the ROC curve). 
However unlike the knowledge driven strategy, the data driven approach is often computationally demanding since a 
large number of features have to be constructed, selected and tested. Another limitation of the data driven strategy is 
with interpretability, since the resulting models often involve more features and more complex relations.  

Knowledge driven and data driven strategies reflect two ends of the spectrum. More specifically, a knowledge 
driven approach is based on evidence of varying quality, guidelines, and experts’ opinions, while a data driven 
approach is solely based on the observational data. In this paper, we present a hybrid strategy that starts with prior 
knowledge, then extends to a more comprehensive model by selectively including an additional set of features that 
both optimize prediction and complement knowledge based features. We compare the hybrid approach to knowledge 
driven approaches to quantitatively judge the feasibility of combining two complementary strategies for model 
building. In particular, we extend a sparse feature selection method Scalable Orthogonal Regression (SOR) [6] to 
expand a set of knowledge driven risk factors with additional risk factors from data. Furthermore, the method is 
designed specifically to select less redundant features without sacrificing the quality, for which redundancy is 
measured by an orthogonality measure added as a penalty term in the objective function. 

Our study utilizes EHR data extracted from Geisinger’s Enterprise data warehouse on all primary care patients. We 
construct 4,644 heart failure cases and 45,981 control patients, which in total consist of over 20 million EHR records 
from 2003 to 2010. The data contains diagnosis, medication, symptoms derived from clinical notes, and lab results. 
To showcase the power of the proposed method, we start with a set of known comorbidities to HF as the knowledge 
driven features, then extend them with a set of optimal data driven features from the EHR data. The evaluation 
metric is the area under the ROC curve (AUC) measure. Our evaluation confirms that by including additional data 
driven risk factors, classification performance is significantly improved with respect to the AUC measure in 
comparison to the knowledge driven baseline.  Moreover, most of selected data driven features are clinically 
relevant to the development of HF, which further demonstrates the benefit of the proposed method. 

Background 

Feature selection 

The purpose of feature selection is to identify a subset of K most informative features from a pool of candidates. 
There are two major problems in feature selection. One is the measurement of how informative a given subset of 
features is, and the other one is how to obtain the optimal subset of features. Given a measurement of the quality of 
features, the feature selection problem becomes a combinatorial optimization problem. Because of its computational 
complexity, finding the optimal subset is usually solved by an approximation or greedy search. In general, there are 
two types of feature selection methods in the literature: (1) filter methods [7] where the selection is independent of 
the classification or regression model and (2) wrapper methods [8] where the selection is tightly coupled with a 
specific model. 

Filter methods evaluate features one by one and select the top K features according to their scores. This type of 
scheme can be interpreted as a greedy approach by iteratively selecting one feature from the remaining unselected 
feature set. Within this category, one can implement it using two approaches. Univariate filtering, e.g. Information 
Gain, or multivariate filtering, e.g. Minimum Redundancy-Maximum Relevance (mRMR) [9].  

Wrapper methods provide an alternative way to obtain a subset of features by incorporating the classifiers, e.g. 
directly approximating the area under the ROC curve [10] or optimization of the Least Absolute Shrinkage and 
Selection Operator (LASSO) model [11,12].  

Methodologies for learning of non-redundant features have also been discussed in literature. For example, mRMR 
explicitly prefers low redundancy features [9], and non-redundant codebook feature learning method was also 
proposed [13]. Beyond searching orthogonal features, our focus in this paper is to systematically address the 
redundancy between a preselected set of features (the knowledge driven features) and potential additional data 
driven features. 
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Heart failure risk factor identification 

Several risk prediction models have previously been developed for HF.  However, they are limited in that the 
populations used to develop the models included restricted, generally healthier populations enrolled in clinical trials 
or observational studies [14,15]. In addition the number of incident HF cases was relatively small with the largest 
including only 500 HF cases [16]. Also, the amount of data available to engineer features and develop the models 
was primarily limited to baseline variables captured at baseline.  Our study includes nearly 10-fold more real-world 
patients routinely followed in a primary care setting with extensive longitudinal healthcare data. Therefore, feature 
selection is extremely important in our setting because of abundance of data and features that are potentially useful 
for predicting HF. 

Methods 

We propose a framework for identifying and combining risk factors from knowledge and operational data. We first 
introduce the components involved in this system, and then describe the computational core SOR feature selection 
method. 

System Overview 

Our analytic system takes two different paths to identify risk factors, and merge them at the end to construct the 
combined set of risk factors. The system architecture, as illustrated in Figure 1, shows the analytic components and 
the required input and output. The blue path indicates the analytic process for obtaining knowledge driven risk 
factors. The red path indicates the analytic process for gathering potential data driven risk factors. Finally, through 
the risk factor augmentation module, both sets are merged into the combined set of risk factors. Next, we describe 
each component in more details. 

Knowledge driven risk factor gathering 

The objective here is to identify risk factors from knowledge base or experts for a given disease scenario, for 
example, HF prediction in our case. This can be achieved using two approaches. In the first approach, we take direct 
input from experts for a given disease condition through interviews. The expert inputs are compiled into a list of risk 
factor concepts, which are often high-level concepts of those relevant risk factors. These concepts are not yet risk 
factors that we can directly use for predictive modeling. We still need to map those concepts to the EHR data in 
order to extract the instances of those risk factor concepts. For example, hypertension is a risk factor concept for 
predicting heart failure. However, we need to map hypertension to diagnosis codes 401.x-405.x in diagnosis tables 
in the EHR database. We need to decide whether individual codes should be mapped to separate features (one-to-
one mapping) or aggregated into a single feature variable (many to one mapping). We found when sample size is 
large (i.e., the number of samples are much greater than the number of features), one-to-one mapping leads to better 

Figure 1: System Overview for Risk Factor Combination 
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performance, since features are created at the finer diagnostic level and can often lead to better discriminating 
power. In this approach, ICD-9 codes 401.x will be treated as a set of different features from ICD-9 405.x. However, 
when sample size is small (i.e., the number of samples are smaller than the number of features), many-to-one 
mapping can lead to smaller number of features and better prediction results, since a simpler model is more robust 
against over-fitting. In this case, 401.x-405.x will be mapped to the same feature. 

Another possible approach to obtaining knowledge based risk factors is to process medical guidelines and literature 
to extract known risk factors for a given disease condition. For example, some known HF risk factors are listed from 
published guidelines [5]. Again, we need to map them to actual EHR data so that they can be quantified and 
leveraged in the predictive models. In this study, we use the common comorbidities to HF as the knowledge driven 
features (see Table 1 for details). Moreover, Table 1 also presents the prevalence of those comorbidities in both 
cases and controls, where cases always have higher prevalence than controls.  
 
Table 1: HF Comorbidities among Cases and Controls (x is the wildcard character that indicates to include 
all the lower level ICD-9 codes) 
Comorbidity ICD-9 codes Cases Controls 
Hypertension 401.x-405.x 2874 (61.89%) 24939 (54.24%) 
Diabetes 250.x 1478 (31.83%) 11037 (24.00%) 
Prior Myocardial Infarction 410.x 34 (0.73%) 192 (0.42%) 
Known  Coronary Disease 413.x, 414.x 1183 (25.47%) 7240 (15.75%) 
Peripheral Vascular Disease 440.x-442.x 190 (4.09%) 1106 (2.41%) 
Cerebrovascular Disease 430.x-438.x 460 (8.74%) 3033 (6.60%) 
Valvular Heart Disease    

Aortic 424.1 111 (2.39%) 541 (1.18%) 
Mitral 424.0 83 (1.79%) 427 (0.93%) 

Chronic Obstructive Pulmonary Disease 490.x-496.x 855 (18.41%) 5621 (12.22%) 
Chronic Kidney Disease 585.x, 403.x 202 (4.41%) 1243 (2.70%) 

Data driven risk factor construction 

In addition to knowledge driven risk factors, there are rich sets of features that can be computed from EHR data. We 
systematically construct features from different data sources in EHR, recognizing that longitudinal data on even a 
single variable (e.g., blood pressure) can be represented in a variety of ways. The objective is to capture sufficient 
clinical nuances of heterogeneity of HF patients. A major challenge is in data reduction and in summarizing the 
temporal event sequences in EHR data into features that can differentiate cases and controls. In particular, we 
observe longitudinal sequences of measures based on diagnoses, medication, labs, vitals, and symptoms. The 
sparseness of the data will vary among patients and we expect the sequencing and clustering of what is observed to 
also vary.  Different types of clinical events arise in different frequency and in different orders. We construct 
summary statistics for different types of event sequences based on the feature characteristics: For static features such 
as gender and ethnicity, we use a single static value to encode the feature. For temporal numeric features such as lab 
measures, we use summary statistics such as point estimate, variance, and trend statistics to represent the features. 
For temporal discrete features such as diagnoses, we use the event frequency (e.g., number of occurrences of a ICD-
9 code).  

Besides constructing potential risk factors as features, we need to identify a target variable. In this case, we use the 
indicator variable to represent whether a patient has been diagnosed with HF by a certain date. 

The numbers of all features from different data sources can be large. For example, there are more than 9,000 distinct 
ICD-9 codes in our dataset, which could all become separate features. To focus on potentially relevant features for 
HF risk, we perform an initial feature filtering by discretizing the features, then using information gain to rank those 
discretized features with respect to the target indicator variable. We keep the features with information gain score of 
10-3, which include 387 diagnosis features, 403 medication features, 294 lab features, 30 symptom features.  Note 
that many of these features are not in the knowledge driven risk factors. Next we explain how to merge them 
systematically.  
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Risk Factor Augmentation 

The goal here is to combine knowledge driven and data driven risk factors systematically so that the resulting risk 
factors are interpretable as well as predictive. We start with knowledge driven risk factors since they are more 
intuitive and well accepted for assessing the risk of target condition. From there, we search for additional risk factors 
from the data driven risk factors and extend Scalable Orthogonal Regression (SOR) model [19] to perform the 
merge. The SOR model is specifically designed to ensure that:  

• The additional risk factors are highly predictive of the adverse condition of interest. 

• There is little or no correlation between the additional risk factors from data and knowledge driven risk 
factors, so that additional risk factors indeed contribute to new understanding of the condition, which could 
lead to new potential treatment/management options. 

• There is little or no correlation among the additional risk factors from data, to further ensure quality of the 
additional factors 

The SOR model achieves nearly linear scale-up with respect to the number of input features and the number of 
patients as shown in [19]. SOR is formulated as an alternative convex optimization problem with theoretical 
convergence and global optimality guarantee. In [19], we compare SOR with several existing feature selection 
methods to show its scalability and stability. In this paper, we focus on the SOR extension that searches for an 
optimal set of data driven features to augment knowledge driven risk factors. 

Knowledge Driven Scalable Orthogonal Regression 

Let !! = [!!, !!, . . . , !!] ∈ !!×! denote the data driven features, which contain n patients and p features. Each 
patient has a target variable, which in our case is whether patient is HF case or not. Let ! ∈ !!×!  denote the target 
vector. In our case, !! contains features from diagnosis, medication, lab results and symptoms. In addition to the 
data driven features !!, we have q  knowledge driven features !! = [!!!!, !!!!, . . . , !!!!] ∈ !!×!. The entire 
features are represented as ! = [!!,!!]. 
 
The goal is to select a set of features from  !!, which can help predict ! and are also low-redundant to the existing 
knowledge driven features !!. To achieve that the objective function has the following parts: 

• The reconstruction error !
!
! − !! ! and ! is the regression coefficient. This term captures how accurate 

the data driven features can estimate the target variable through a regression model;  
• The regularization on coefficient ! ! is the !!norm of  α:   ! ! = |α!|

!
!!! , which enforces a sparse 

solution and features with nonzero coefficient are selected. 
• The redundancy among data driven features α!α!!!!!!

!!
!!!

!
!!! ; 

• The redundancy between data driven features and knowledge driven features: α!α!!!!!!
!!!!

!!!!!
!
!!! . 

With the above terms, we define the following objective function: 

f ! =
1
2
! − !! ! +

β
4

α!α!!!!!!
!

!

!!!

!

!!!

+ α!α!!!!!!
!

!!!

!!!!!

!

!!!

, 

where  ! is the regression coefficient , ! ∈ !!×!, β is model parameter.  The corresponding gradient is  
∇f α = G + βA⨀G⨀G α + β XX!α! α,  (1) 

where  ! = !!!, ! = !!! and ⨀ is the matrix Hadamard (elementwise) product.  
 
The goal is to find the best ! that minimizes (! ! +   ! ! ! .  To do that, we apply the Lipschitz Auxiliary 
Function method [21] for the optimization, which is summarized in Algorithm 1. In terms of model parameter 
setting, we set λ and β to 1, and γ is a scaling parameter for increasing L when the Lipschitz condition is not 
satisfied and we set γ = 1.2. 
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_____________________________________________ 
Algorithm 1 
1: Initialize  α = 0 and  L = 1 
2: While not converged 
3: Compute the gradient of f: ∇f α  using Eq. (1). 
4: Let  a = α − ∇! !

!
. 

5: Solve  α = argmin! L   α − a + λ α !. 
6: If J α < J α , 
7:  α = α 
8: else 
9:  L = γL 
10: end if 
11:end while 
12:Output  α. 
_____________________________________________________ 

Results 

We first describe the EHR data and features used in this study. We then present the evaluation metric and results.  

EHR data 

Patient EHRs dating from 2003 to 2010 within the Geisinger Health System were utilized. The Geisinger Health 
System is an integrated health care system that provides health services in 31 counties of central and northeastern 
Pennsylvania and includes 41 Community Practice Clinics.  Data for this study were derived from approximately 
400,000 primary care patients served by these 41 clinics.  From these EHRs, we identified 4,644 incident HF cases 
with a clinical HF diagnosis based on meeting at least one of the following criteria: (1) HF diagnosis appearing on 
the problem list at least once; (2) HF diagnosis appeared in the EHR for two outpatient encounters; (3) at least two 
medications prescribed with an associated ICD-9 diagnosis of HF; or (4) HF diagnosis appearing on one or more 
outpatient encounters and at least one medication prescribed with an associated ICD-9 diagnosis for HF. The 
diagnosis date was defined as the first appearance of a HF diagnosis in the EHR [20]. Approximately 10 eligible 
clinic-, sex-, and age-matched (in five-year age intervals) controls were selected for each incident HF case (45,981 
group-matched controls). Primary care patients were eligible as controls if they had no history of HF diagnosis 
before December 31, 2010.  Control patients were required to have had their first Geisinger Clinic office encounter 
within one year of the incident HF case’s first office visit and had at least one office encounter 30 days before or 
anytime after the case’s HF diagnosis date. For the purposes of this study, we extracted the outpatient diagnosis, 
problem list, medication orders and reconciliation list, lab results and Framingham related symptoms of these 
patients.  

Feature construction 

For each patient, we anchor an index date, and construct a feature vector from the observation window, which is 
defined as the fixed size time window right before index date. For a HF case patient, the index date is the diagnosis 
date, while for a control patient the index date is the diagnosis date of his/her matching case patient.  In our study, 
we use two year observation windows. 
 
The feature vector consists of statistical measures derived from the longitudinal clinical events during the 
observation window. Each clinical event becomes a feature as described in the System Overview section. In 
particular, feature values are derived from the corresponding EHR records from the observation window for this 
patient.  For discrete events like diagnosis, medication and symptoms, we use the number of occurrences at the 
feature value. For continuous events such as lab measures, we compute the average of those measures in observation 
windows after removing invalid and noisy outliers. 
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The knowledge driven features are the diagnosis features described in Table 1. The distinct number of diagnosis 
codes in both outpatient data and problem list is 296. The data driven features are all remaining features, which is 
12,320. To speed up the computation, we filter out the data driven features which have little correlation with the 
target variable. To do this, we discretize the data driven features into buckets and compute information gain between 
the discretized feature and the target variable. We filter out ones with information gain less than 10-4.  
 

Evaluation 

To quantitatively validate the performance of the selected features, we conduct 5-fold cross-validation on the entire 
dataset and use the area under the ROC curve (AUC) as the performance metric. Note that within each fold, feature 
selection only processes the training data and leave the testing data out for validation of the AUC. First, we compare 
the performance of different knowledge driven features. The goal here is to better understand the predictive power 
of existing risk factors. Second, we gradually add additional data driven features according to the feature ranking 
computed by the SOR algorithm. Here we showcase their impact on predictive performance, and also comment on 
their clinical relevancy.  
 
Table 2: Performance on the major knowledge driven features. Performance metric is AUC±stddev. 

Type Cardinality AUC 
Hypertension 10 0.57±0.0072 
Diabetes 89 0.55±0.0038 
Known Coronary Disease 129 0.58±0.0052 
All comorbidities in Table 1 296 0.62±0.0058 

 
Comparison among knowledge driven features 
 
We pick three major sets of knowledge driven features (Hypertension, Diabetes and Coronary disease) based on 
their prevalence in HF cases. We also combine all knowledge driven features as listed in Table 1. The performance 
results are shown in Table 2. Note that hypertension features and coronary disease features perform better than 
diabetes features. Hypertension seems to perform relatively well despite that there are only 10 features, while there 
are 89 diabetes features and 129 coronary disease features. This observation confirms the biggest known risk factors 
of HF are hypertension related. The combination of all comorbidities performs better than the individual feature 
types as expected. However, absolute AUC measure of knowledge driven comorbidity features is not high, only 0.62 
AUC, which further shows the need for augmenting data driven features.  
 
Combining knowledge driven and data driven features 
 
Based on the performance ranking in Table 2, as shown in Figure 2 we start with only coronary disease (CAD) and 
then add other sets of knowledge driven features such as hypertension and diabetes. The resulting AUC slowly 
increases. The largest jump by adding knowledge driven features comes from hypertension features. However, after 
adding hypertension features, there is a diminishing return on AUC by adding more knowledge driven features.  
 
However, still in Figure 2, when we start adding in carefully selected data driven features based on the ranking 
provided by the SOR algorithm, the AUC performance significantly improves from 0.62 to above 0.75. We observe 
a significant jump on AUC by adding only 50 data driven features. As more data driven features included, the AUC 
performance consistently improves. This confirms the power of the proposed feature augmentation process.  
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Figure 2: AUC significantly improves as complementary data driven risk factors are added into existing 

knowledge based risk factors. A significant AUC increase occurs when we add first 50 data driven features. 
 
Table 3 shows the breakdown of the top-200 selected data driven features by type and by their relevancy to HF. The 
types consist of diagnosis, symptom, medication and lab. The relevancy to HF are judged by a cardiologist with 
categories: yes, possible, and no. About half of the top 200 features (48%) are considered relevant. 36% are 
considered possibly relevant. Only 15% are considered not directly relevant. Among the top 200 features, the 
relevant features are about equally spread across all four types, which illustrate the importance of leveraging 
heterogeneous data sources for building a predictive model. Note that the correlation between knowledge- and data-
driven features still exists although small. The model objective function balances both model accuracy and feature 
correlation, in order to lead predictive features with small correlation. 
Top 10 data driven features are listed in Table 4. Nine out of ten are considered relevant to HF, and one possibly 
relevant, which confirm the interpretability of the proposed method for expanding knowledge driven risk factors.  
 
Table 3: The breakdown of top-200 data driven features by feature type and their relevancy to HF  

Type Yes Possible No Total 
Diagnosis 24 (12%) 16 (8%) 7 (3.5%) 47 (28.5%) 
Symptom 20 (10%) 0 0 20 (10%) 
Medication 27 (13.5%) 24 (12%) 9 (4.5%) 60 (30%) 
Lab 27 (13.5%) 32 (16%) 14 (7%) 73 (36.5%) 
Total 96 (48%) 72 (36%) 30 (15%) 200 

 
Table 4: Top 10 data driven features among Cases and Controls 
Feature type Feature name Relevancy to HF 
Diagnosis DYSLIPIDEMIA Yes 
Medication Thiazides and Thiazide-Like Diuretics Yes 
Medication Antihypertensive Combinations Yes 
Medication Aminopenicillins Yes 
Medication Bone Density Regulators 

 
Possible side effect, or maybe a 
surrogate for elderly women 

Medication NATRIURETIC PEPTIDE Yes 
Symptoms Denial Rales Yes 
Medication Diuretic Combinations Yes 
Symptoms Denial S3Gallop Yes 
Medication Nonsteroidal Anti-inflammatory Agents 

(NSAIDs)  
Yes, contribute to fluid retention due to 
renal effects 
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Limitation and discussion 

One limitation is that we currently trust all knowledge driven features and include them all in the model. However, it 
is possible, as we observe in our application, that some of the knowledge driven features are not really predictive 
(due to various reason such as data quality). It can be valuable to quantify the predictive power of the knowledge 
driven features and eliminate the ones that are not predictive.  

Another subtlety in the problem formulation is that we search for orthogonal features. As a result, the selected 
features have less redundancy among themselves, which is often a desirable feature of the method. However, 
because of little redundancy exists in the selected features, small perturbation of the data may lead to select different 
features. This is especially true if there are many correlated features. Intuitively, if feature A and B are two highly 
correlated features, it is unlikely to select both A and B. It is quite possible for the algorithm to select A initially, 
then change to B when rerun the algorithm on the updated dataset. In fact, this is a common characteristic of many 
feature selection methods with orthogonality constraints such as mRMR [9]. The way to alleviate the instability is to 
introduce some constraints in the optimization such that the previously selected features are preferred, which will be 
part of our future work. 

Conclusion 

We present a systematic framework for combining knowledge and data driven insights for risk factor identification. 
Our proposed method is based on a sparse learning formulation that balances the model accuracy and the 
redundancy between knowledge driven and data driven features. We demonstrate the power of this framework in the 
context of predicting onset of HF on a large dataset of 7-year longitudinal EHR data of over 50K patients.  Our 
evaluation confirms that our method can improve knowledge driven features by adding predictive and meaningful 
data driven features to improve prediction performance. In our experiments, we achieve over 20% improvement in 
terms of AUC by adding data driven factors. Those selected data driven features are also clinically meaningful in the 
context of HF risk assessment. 
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