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Abstract
Some of the rate theories that are most useful for modeling biological processes are reviewed. By
delving into some of the details and subtleties in the development of the theories, the review will
hopefully help the reader gain a more than superficial perspective. Examples are presented to
illustrate how rate theories can be used to generate insight at the microscopic level into
biomolecular behaviors. Attempt is made to clear up a number of misconceptions in the literature
regarding popular rate theories, including the appearance of Planck’s constant in the transition-
state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA
association rate constants. Future work in combining the implementation of rate theories through
computer simulations with experimental probes of rate processes, and in modeling effects of
intracellular environments so theories can be used for generating rate constants for systems
biology studies is particularly exciting.

1. Introduction
Rate equations are essential for describing biological processes. Numerous experimental
studies, as exemplified by those on enzyme catalysis and protein folding, involve the
measurement of rate constants by fitting to phenomenological rate equations. However, to
interpret such results on rate constants requires some understanding of how rate constants
are related to the microscopic behaviors of the systems under study. Deriving rate constants
from microscopic descriptions is the goal of rate theories. Among the rate theories that are
most widely applied to biological systems today are those by Eyring (1935), Kramers
(1940), and Smoluchowski (1917). These theories are based on fundamental principles of
statistical mechanics, and, remarkably, were inspired by systems far simpler than
biomacromolecules. More modern theories have extended this early work in many directions
(e.g.: Szabo et al., 1980; Grote & Hynes, 1980; Agmon & Hopfield, 1983; Melnikov &
Meshkov, 1986; Solc & Stockmayer, 1973; Zhou, 1993). Unfortunately the newer
developments are not accessible to many experimentalists.

It is clear that a basic understanding of rate theories is useful for interpreting measured rate
constants and for gaining molecular insight into biological processes. This paper aims to
introduce the central ideas of some of the most important rate theories. It is hoped that, by
delving into some of the details and subtleties in the development of the theories, the paper
will help the reader gain a more than superficial perspective. Several examples are presented
to illustrate how rate theories can be used to yield microscopic knowledge on biomolecular
behaviors. There is growing interest in how the crowded environments inside cells affect
kinetic properties of biomolecules (Zhou et al., 2008). We will outline how the effects of
macromolecular crowding can be accounted for in calculating rate constants.

*Correspondence information: Tel, (850) 645-1336; fax, (850) 644-7244; hzhou4@fsu.edu.

NIH Public Access
Author Manuscript
Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

Published in final edited form as:
Q Rev Biophys. 2010 May ; 43(2): 219–293. doi:10.1017/S0033583510000120.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



We also attempt to clear up a number of misconceptions in the literature regarding popular
rate theories. For example, it is often stated that the pre-exponential factor of the rate
constant predicted by the transition-state theory is kBT/h, where kB is Boltzmann’s constant,
T is the absolute temperature, and h is Planck’s constant. Such a misstatement would
suggest that quantum effects are prevalent in rate processes. In addition, Smoluchowski’s
result for diffusion-controlled nonspecific binding of spherical particles is often quoted as
providing an upper bound for the rate constants of stereospecific protein-ligand or protein-
protein binding. In fact, because of the orientational constraints arising from the
stereospecificity, the rate constant limited by random diffusion is several orders of
magnitude lower than the Smoluchowski result.

It has been recognized that rate constants, as opposed to equilibrium constants, are of
paramount importance in many biological processes (Zhou, 2005a; Schreiber et al., 2009). A
focus of systems biology nowadays is on rate constants of steps comprising various
networks; it has been demonstrated, through mutations, that the protein association rate
constant in one step can dictate the overall activity of a signaling network (Kiel & Serrano,
2009). When several ligands compete for the same protein or when one protein is faced with
alternative pathways, kinetic control, not thermodynamic control, dominates in many cases;
this is especially true when dissociation is slow (see Fig. 1). In particular, during protein
translation, cognate and noncognate aminoacyl-tRNAs all compete to bind to the decoding
center on the ribosome. Understanding how rate constants are regulated is crucial for
elucidating mechanisms of biological processes.

This review concentrates on rate theories that can be used to analyze experimental or
simulation results, and makes only scant reference to the vast literature of computer
simulations of biomolecules.

2. Rate Equations
Rate equations are usually taken for granted. Here we explain their theoretical basis and
describe in broad terms how they are connected to a microscopic-level description of the
same system. This connection lays some groundwork for the rate theories of the coming
sections.

Consider N molecules in a container with volume V. All the molecules start in state A but
can make a jump to state B. The molecules are independent and the jumps occur
stochastically. For each molecule, the longer the time lapse, the higher the probability that it
has made the jump to state B. The two should be proportional to each other when the time
lapse is very short. Let the probability that a molecule makes the jump in an infinitesimal
time interval dt be kdt; the probability that it stays in state A is obviously 1 − kdt. The
quantity of interest is the number of molecules, out of the total of N, that jump to state B in
dt, which is also the decrement, −dN, in the number of molecules that stay in state A. This
problem is equivalent to finding the number of heads observed after N coin tosses. The
decrement −dN is a random variable that follows the binomial distribution, with expectation
value given by

(2.1)

In the thermodynamic limit that N and V → ∞ but the concentration N/V ≡ C remains
finite, the fluctuations in dN are negligible, and the bar over dN in the above equation can be
dropped. Dividing both sides by dt and by V, we have the familiar rate equation
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(2.2)

in which k appears as the rate constant. This rate equation is equivalent to the irreversible
reaction scheme

(2.3)

In the present case the reaction rate, dC/dt, is first order in reactant concentration, and hence
the reaction modeled is referred to as first-order. Solving the rate equation, one derives the
exponential decay of the concentration as a function of time t:

(2.4)

where C0 is the concentration at time t = 0. We emphasize that the description of the
concentration decay by a rate equation rests on the uncorrelatedness of the jumps.

In general, the jumps from one state to another are reversible. That is, molecules in state B
can just as well jump back to state A again (assuming that each molecule can only exists in
either state A or state B). The reversible reaction scheme is

(2.5)

where the forward and backward jumps are assigned rate constants k+ and k−, respectively.
The latter serve to increase the concentration of molecules in state A. Accounting for jumps
in both directions, we arrive at the rate equation

(2.6)

where we now introduce subscripts to denote the concentrations of molecules in the two
states. A similar equation can be written for the concentration, CB, of molecules in state B.
Alternatively, CA and CB are related by the fact that the total concentration is conserved:

(2.7)

Using Eq. (2.7) in Eq. (2.6) and solving for CA, we find

(2.8a)

To simplify notation we have normalized the concentration by Ct; ρA(t) = CA/Ct is the
proportion of molecules in state A. Its value at long times, when equilibrium has reached, is

(2.8b)

Similar results can be written for CB. The ratio of the equilibrium concentrations of the two
states is known as the equilibrium constant, to be denoted as K. We have

Zhou Page 3

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(2.9)

This identity can be viewed as a constraint on the rate constants. A minimum requirement on
a rate theory is that the ratio of the predicted forward and reverse rate constants be the same
as the equilibrium constant.

While in a bulk experiment the proportions of molecules in different states [such as the
results given by Eq. (2.8)] are of interest, in a single-molecule experiment one directly
observes the state of an individual molecule as a function of time. The length of stay in a
state, or waiting time, is random. Equation (2.4), with k replaced by either k+ or k−, gives
the probability that the molecule remains in that state after time t; this is also the probability
that the waiting time is longer than t. Correspondingly the probability distributions of the
waiting times, τA and τB, are

(2.10)

Over a long time course, the fractions of time spent by the molecule in the two states are
proportional to the average waiting times in the two states, which are 1/k+ and 1/k−,
respectively. The ratio of the fractions of time in the two states is thus k+/k−, which,
according to Eq. (2.9), is the equilibrium constant.

In microscopic terms, a state of a molecule corresponds to a region of conformational space
around a local energy minimum (or more precisely, a set of minima). One state is separated
from another by energy barriers. We use x to denote a position in conformational space and
U(x) as the potential energy function of the molecule. A rate description is good when jumps
between the states are rare, such that, between jumps, the positions of the molecule in the
conformational space are completely randomized, and consequently successive jumps are
uncorrelated. In classical statistical mechanics, “randomized” means that the probability that
a given position x is sampled is proportional to the Boltzmann factor exp[−U(x)/kBT]. The
integration of the Boltzmann factor over the conformational space of state A,
∫Adxexp[−U(x)/kBT], gives the total probability of that state. We refer to such an integral as
a state-specific configurational integral. When the jumps between states A and B reach
equilibrium, the probabilities, ρAeq and ρBeq, that the molecule is found in the two states are
proportional to the respective configurational integrals. We then have

(2.11)

Note that the equilibrium constant, as to be expected, is completely determined by the
potential energy function.

According to Eq. (2.10), the rate constant k+ is the inverse of the average waiting time τ̅A. In
microscopic terms, τ̅A is the time it takes for the molecule, starting from a random position
in state A, to first reach a position in state B. (In Subsection 3.6, this time will be referred to
as the mean first passage time.) When a molecule first reaches state A, it takes some time,
τAeq, for it to be equilibrated within the state. The condition for the validity of the rate
description can now be expressed as τAeq ≪ τ̅A. That this condition can be satisfied rests on
the fact that, to jump from state A to state B, the molecule must cross the energy barriers
separating the two states. According to the Boltzmann distribution, the barrier regions will
be sampled much less frequently than the conformational space of state A. As for the
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magnitude of the rate constant, it can be anticipated that the activation energy, i.e., the
difference in energy between the barrier regions and the conformational space of state A, is
a major determinant. In addition, the type of motion that brings the molecule from state A to
state B obviously should also play a role.

To recapitulate, a rate description is valid when the jumps from one state to another are rare
so as to be uncorrelated. Foremost the activation energy but also the type of motion that
brings about the jumps are determinants of the rate constant. Below we present two special
topics. The first is a simple model designed to further contrast τAeq and τ̅A. The second
concerns intermolecular transitions, as opposed to the intramolecular transitions discussed
thus far.

2.1 A simple model with intra-state equilibration and inter-state jump
As noted above, a state consists of a set of local energy minima. Each local minimum
corresponds to a microstate. Figure 2a presents a model in which state A consists of three
microstates, to be referred to by index i or j, with i and j = 1 to 3; from microstate 3 the
molecule can make a jump to state B. We choose model parameters to illustrate two
situations: τAeq ≪ τ̅A and τAeq ~ τ̅A. The results of these two situations are displayed in Fig.
2b and 2c, respectively.

First let us study the equilibration among the three microstates of state A, which we model
as rate processes, with rate constants kij. For now jumps to state B are not considered. The
rate constants for the forward and reverse transitions between two microstates, e.g., k12 and
k21, are constrained by the corresponding equilibrium constant, which in turn is given by the
ratio of the configurational integrals of the two microstates [Eq. (2.11)]. Our interest is in
how the proportions of molecules in the microstates, hereafter referred to as occupation
probabilities, evolve over time. We denote the occupation probabilities here as σi; the
corresponding quantities when jumps to state B are allowed will be denoted as ρi (see
below). Starting from any initial values σi0, σi will relax to their equilibrium values σieq,
which are proportional to the respective configurational integrals. The time dependence of σi
can be obtained from a kinetic simulation (see Fig. 2 caption). In Fig. 2b, we plot σ1 − σ1eq
as a function of time when the initial values are σ10 = 1 and σ20 = σ30 = 0 and the rate
constants are k12 = k21 = k13 = k23 = 1 and k31 = k32 = 2. The corresponding equilibrium
values are σ1eq = σ2eq = 0.4 and σ3eq = 0.2. The equilibration time τAeq can be estimated as
the area under the (σ1 − σ1eq)/(σ10 − σ1eq) vs t curve; we find τAeq = 0.31. Figure 2c
displays the result for σ1 − σ1eq when k31 and k32 are decreased by 16-fold to 0.125 (while
all other parameters are unchanged). The equilibrium values become σ1eq = σ2eq = 0.2 and
σ3eq = 0.8, and τAeq increases to 0.54.

We now include jumps to state B from microstate 3, again modeled as a rate process, with
rate constant ktr. Both the equilibration among the three microstates and the jumps to state B
affect ρi, the occupation probabilities. The latter lead to decrease in the total occupation
probability of state A, ρA = ρ1 + ρ2 + ρ3, over time. The decrease is governed by

(2.12)

We use the normalized occupation probabilities, ρi/ρA, to monitor the equilibration among
the three microstates. The situation τAeq ≪ τ̅A displayed in Fig. 2b has ktr = 0.1, along with
the values of kij specified above. Firstly, it can be seen that the decay of ρA can be fitted
well to an exponential function, which is expected if a rate description is valid [Eq. (2.4)].
The fitted rate constant, k+, has a value of 0.0196; correspondingly the average waiting time
τ̅A is 51. Secondly, the time dependence of ρ1/ρA matches that of σ1. Thus the equilibration
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time of 0.31 based on σ1 is also correct for the present case where jumps to state B are
allowed. Compared to τ̅A, we find that τAeq is two orders of magnitude shorter in the present
situation. That the initial decays of ρi/ρA and σi match is easy to rationalize, since during
this period very few jumps to state B occur. On the other hand, that ρi/ρA settle to the same
equilibrium values σieq suggests a scenario that, when the equilibrium within state A is
perturbed by a jump from microstate 3 to state B, it is recovered by re-equilibration among
the microstates before the next jump occurs. This scenario also allows us to find an
approximate value for the rate constant k+. Making use of the result ρ3/ρA ≈ σ3eq, which
holds after a brief initial period, Eq. (2.12) becomes

(2.13a)

The rate constant is thus

(2.13b)

which has a value of 0.02 for the parameters used in Fig. 2b. This predicted value is very
close to the value, 0.0196, obtained above from fitting the time dependence of ρA to an
exponential function.

The situation τAeq ~ τ̅A displayed in Fig. 2c has ktr = 1. Compared to the parameters used in
Fig. 2b, ktr is increased by 10-fold, along with the 16-fold decrease in k31 and k32 stated
above. For these parameters, the time dependence of ρA no longer fits well to an exponential
function, and hence a rate description is not valid here. At the same time, ρ1/ρA deviates
significantly from σ1, except at short times (when jumps to state B are only few). Notably,
ρ1/ρA and ρA decay on a comparable timescale, validating the claim that the case under
consideration has τAeq ~ τ̅A.

Together, the contrasting situations shown in Figs. 2b and 2c illustrate the point that a rate
description will hold when the transitions between two states are rare enough to allow for
intra-state equilibration.

2.2 Intermolecular transitions
Up to now, we have discussed transitions between states of the same molecule. Many
reactions of biological interest involve the binding of two different molecules, e.g., a protein
and a ligand, to form a complex. In this case the protein molecule makes a transition from a
state in which it is freely translating and rotating by itself throughout the container to a state
in which its translation and rotation are coupled to those of the ligand molecule. (The
alternative perspective, centered on the ligand instead of the protein, is equally valid.) Even
though the transition is intermolecular instead of intramolecular, the derivation leading to
Eq. (2.2) can still be considered valid, except that the “rate constant” k introduced there is
now proportional to the ligand concentration CL, since the probability that a protein
molecule makes the transition from the free state to the protein-ligand complex in an
infinitesimal time interval is proportional to CL. We thus replace k by kaCL, where ka is the
new rate constant for the association of the protein molecule with the ligand molecule. The
reverse process, i.e., the dissociation of the protein-ligand complex into separate protein and
ligand molecules, is an example of the intramolecular transitions discussed above, since the
reactant, i.e., the protein-ligand complex, is effectively one molecule. We denote the
dissociation rate constant as kd. The association and dissociation can be represented by the
reaction scheme

Zhou Page 6

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(2.14)

The rate equation for the protein concentration, CP, is

(2.15)

Here the forward reaction rate is second order in reactant concentration and hence that
reaction is referred to as second-order. When CL is a constant, which, e.g., is practically
realized when the ligand is in large excess over the protein, the product kaCL can be treated
as an effective rate constant. For such a pseudo-first-order situation, the solution of the rate
equation can be obtained by identifying k± in Eq. (2.8a) with kaCL and kd, respectively,
leading to

(2.16)

where we have introduced the equilibrium constant for dissociation, or dissociation constant

(2.17)

Its inverse is called the association constant, denoted as Ka. The equilibrium protein
concentration is given by

(2.18)

where CPt is the total protein concentration, either in the free state or in the bound state:

(2.19a)

and ρbeq gives the bound fraction (the unbound fraction ρueq is 1 − ρbeq).

When CL cannot be treated as a constant, it is still constrained by the fact that the total
ligand concentration, either free or in the complex, is fixed:

(2.19b)

Using Eqs. (2.19) in Eq. (2.15), we find the solution for CP to be given by

(2.20)

where

(2.21a)

(2.21b)

It can be verified that when CPt ≪ CLt, Eq. (2.20) reduces to Eq. (2.16).

Zhou Page 7

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



At long times, the equilibrium value that the protein concentration settles into is CP−. Unlike
the unimolecular case [Eq. (2.8)], where the equilibrium concentration as a proportion of the
total concentration is an intrinsic property of the molecule, in the bimolecular case here the
equilibrium protein concentration as a proportion of the total protein concentration is not an
intrinsic constant; it depends on the total protein concentration and the total ligand
concentration. Similar to Eq. (2.11) for the unimolecular case, we may express the
association constant in terms of the configurational integrals of the protein, the ligand, and
their complex. Let the potential energy functions of the three systems be UP(xP), UL(xL),
and UPL(xPL). Then we have (Zhou & Gilson, 2009)

(2.22)

In some reactions, product formation involves more than two reactant molecules. For
example, many enzymatic reactions require the binding of two or more substrates to one
enzyme. Compared to the binding of two molecules to form a binary complex, the chance of
three molecules binding simultaneously to form a ternary complex is negligibly small.
Surely the ternary complex must form in two steps: in the first step two of the molecules
bind to form an intermediate binary complex; in the second step the third molecule binds to
the pre-formed binary complex to yield the ternary complex. It can thus be concluded that
all elementary reactions are either unimolecular or bimolecular.

3. Unimolecular Reactions
Intramolecular processes, such as protein folding or dissociation of a protein-ligand
complex, are often modeled as unimolecular reactions. A simple microscopic picture of
unimolecular reactions, shown in Fig. 3a, consists of a one-dimensional energy function
with two wells separated by an energy barrier. The independent variable of this function is
referred to as the reaction coordinate. As alluded to in Section 2, both the energy function
and the type of motion of the reaction coordinate are determinants of the rate constant for
the transition from one well to another. Below we review some of the milestones in the
development of rate theories for unimolecular reactions. We use the one-dimensional model
to present the basic ideas of the rate theories and to introduce different types of motion.
Several results for multi-dimensional energy surfaces and for conformations represented as
discrete microstates are also noted. The interested reader may consult a related review
(Hanggi et al., 1990) for further reading in developments before 1990.

It should be noted that what we refer to as energy functions are actually potentials of mean
force. Biological processes occur in aqueous environments, but in applications of rate
theories solvent degrees of freedom are almost never explicitly modeled. Rather, they are
accounted for through their effects on the energy functions and on the dynamics of the
reactant molecules. In addition, often only a reaction coordinate and perhaps a small number
of additional coordinates closely coupled to it are explicitly modeled, and the remaining
degrees of freedom of even the reactant molecules are implicitly treated as part of the
solvent environment.

Of historical importance to present rate theories is the work of van’t Hoff (1884) and
Arrhenius (1889) regarding the temperature dependence of rate constants. Van’t Hoff’s
starting point was the now well-known equation, bearing his name, for the equilibrium
constant:
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(3.1)

where ΔH is the change in enthalpy when one reactant molecule is converted to one product
molecule, which in turn is essentially identical to the change in internal energy if the
reaction occurs in a dilution solution under constant pressure (Zhou & Gilson, 2009).
Replacing the equilibrium constant by the ratio of the rate constants [Eq. (2.9)] leads to

(3.2)

Van’t Hoff reasoned that both terms on the left-hand-side of the above equation must have
the form

(3.3)

Arrhenius had important additional insight. He reasoned that the reactant molecules that
successfully convert into product molecules must be in some “active” form; these active
molecules are in equilibrium with all the other normal reactant molecules. The rate constant
is proportional to the normal-to-active equilibrium constant, and applying van’t Hoff’s
equation [Eq. (3.1)] to that equilibrium constant leads to

(3.4)

Here ΔE‡ denotes the change in energy between an active molecule and a normal reactant
molecule, i.e., the activation energy. (Mathematically Arrhenius’ result is a specialization of
van’t Hoff’s result, with α = 0 and ε = ΔE‡) Integrating over temperature, we arrive at the
more familiar form of the rate constant:

(3.5)

where the pre-exponential factor A is a constant of the integration. The expressions for rate
constants presented below conform to Eq. (3.5), with the pre-exponential factor affected by
the type of motion of the reaction coordinate.

3.1 Eyring’s transition-state theory
The most influential rate theory is the transition-state theory of Eyring (1935), also worked
out by Evans and Polanyi (1935). It is based on three assumptions:

i. The motion of molecules obeys Newton’s equation. The potential energy function
for our illustrative model is shown in Fig. 3a.

ii. As soon as a molecule crosses the energy barrier at x = x‡, or transition state, it is
considered to form the product.

iii. Molecules in the barrier region are in thermal equilibrium with those in the energy
well of the reactant state.

In the barrier region, the potential energy function is flat; hence there the force is zero and
molecules undergo free translation. If δN molecules, all with velocity v > 0, are found in the
region with length δl just to the left of x = x‡, then within time interval dt each molecule

Zhou Page 9

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



moves a distance of vdt to the right and the number of molecules that cross the barrier is δN·
(vdt/δl). Consequently the rate constant is

(3.6)

where N is the number of molecules found in the reactant energy well.

Under thermal equilibrium, δN/N is the same as the ratio of the partition functions in the
barrier region and in the reactant energy well:

(3.7)

The partition function in the barrier region is that appropriate for free translation in one
dimension:

(3.8)

where p = mv is the momentum of a molecule along the x direction, m is the mass, and ΔU‡

is the activation energy (Fig. 3a). Following convention we have inserted Planck’s constant
h to make the partition function unitless. As indicated by Eq. (3.8), the molecules in the
barrier region have a continuous distribution of velocities; therefore the velocity v appearing
in Eq. (3.6) should be replaced by its average:

(3.9)

where θ(v), a Heaviside function with value 1 if v > 0 and 0 otherwise, is used to select only
positive velocities. Combining the above results, we find

(3.10)

We now discuss the calculation of qA. If the problem is treated according to classical
statistical mechanics, we have

(3.11)

Equation (3.10) becomes

(3.12a)

Note that Planck’s constant drops out of the final result for k+, as to be expected from a
classical treatment. For later use, we rewrite it in the form
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(3.12b)

where <⋯> denotes an average with the canonical-ensemble equilibrium probability density

(3.13)

δ(x) is a delta function, and

(3.14)

is the equilibrium occupation probability in state A. The corresponding result for k− is
obtained by replacing ρAeq with ρBeq in Eq. (3.12b). It can then be easily seen that the ratio
k+/k− is the same as the equilibrium constant ρBeq/ρAeq, as demanded by Eq. (2.9). We may
further make a harmonic approximation of the potential energy function around the
minimum xA of the reactant well:

(3.15)

Using this approximation and evaluating the configurational integral in Eq. (3.12a), the rate
constant is now given by

(3.16)

where  is the angular frequency of the harmonic oscillation around x = xA.

With the harmonic approximation of the potential energy function, a quantum treatment for
calculating qA is possible. Essentially qA is the partition function of a harmonic oscillator,
given by

(3.17)

where ħ = h/2π. Equation (3.10) is now

(3.18)

This result was first derived by Herzfeld (1919) for the dissociation of a diatomic molecule.
In the high-temperature limit, qA → kBT/ħωA, and we recover the classical result of Eq.
(3.16). This is to be expected, since quantum statistical mechanics approaches the classical
limit at high temperatures.

Below we further comment on the approximation of the transition-state theory and a
common misunderstanding of the theory.

Zhou Page 11

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



3.1.1 Approximation of the transition-state theory—The nature of the
approximation of the transition-state theory can be elucidated in the context of a more exact
microscopic formulation of the rate constant. Equation (2.8a), the solution of the rate
equation, states that the relaxation of ρA, the occupation probability in the reactant state,
toward its equilibrium value is an exponential, with the relaxation time τrxn = (k+ + k−)−1.
Microscopically ρA is the average of a variable that has value 1 if the molecule occupies the
reactant well and 0 otherwise:

(3.19)

Now Onsager’s regression hypothesis states that the regression of microscopic thermal
fluctuations at equilibrium follows the macroscopic law of relaxation of small non-
equilibrium disturbances (Onsager, 1931). Accordingly,

(3.20)

where

(3.21)

is the correlation function of the instantaneous fluctuation θ(x‡ − x(t)) − ρAeq, and is
referred to as the number correlation function. Noting that θ2 (x) =θ (x) and 1 − ρAeq = ρBeq,
it can be easily shown that c(0) = ρAeqρBeq. Now Eq. (2.8a) becomes

(3.22)

To make connection with the transition-state theory, we take the time derivative of Eq.
(3.22):

(3.23)

where a dot represents a derivative. The time derivative of the number correlation function is
given by

(3.24)

which can be interpreted as the reactive flux, i.e., the flux across the dividing surface given
that the reactant molecule starts there and is found in the product well time t later (Chandler,
1978). As discussed in Section 2, a rate description is valid only when there is a significant
separation in timescales between intra-state equilibration (τeq) and inter-state transitions
(τrxn). In that case, the number correlation function is exponential at times longer than τeq.
Because of the separation in timescales, there exist intermediate times, denoted as Δt, such
that τeq ≪ Δt ≪ τrxn. At these intermediate times, exp(−Δt/τrxn) is very close to 1; therefore
Eq. (3.23) becomes (Yamamoto, 1960; Chandler, 1978)

(3.25a)

Correspondingly
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(3.25b)

The transition-state theory amounts to setting Δt in the last equation to 0+, which denotes a
time that is greater than 0 by an infinitesimal amount:

(3.26)

The equivalence of Eq. (3.26) and Eq. (3.12b) is seen when one realizes that x(0+) > x‡ if
and only if v(0) > 0. A related approach for formulating the rate constant is presented in
Subsection 3.2.

To recapitulate, the transition-state theory predicts the rate constant from the initial reactive
flux, when the exponential relaxation of the number correlation function has not been
established. The correct formulation is to use the reactive flux at the intermediate times Δt.
Since the number correlation function decays with time, it can be expected that the
transition-state theory always overestimates the rate constant. Although Eyring recognized
the overestimation and introduced a transmission coefficient, it was not possible to calculate
the transmission coefficient within the transition-state theory itself. That the transition-state
theory provides an upper bound for the rate constant is the basis of variational transition-
state theory, which seeks a dividing surface that minimizes the rate constant calculated by
the transition-state theory (Wigner, 1937; Keck, 1960).

Before leaving this subsubsection, we want to present some results that are related to the
formulation here and will become useful below. When the motion of the reaction coordinate
is governed by the Langevin equation, Onsager’s regression hypothesis [Eq. (3.20)] has been
proven explicitly (Zhou, 1989). It is assumed the initial probability density is an equilibrium
distribution confined to the reactant state. Then

(3.27a)

(3.27b)

where ρN(x,v,t|x0,v0) is the conditional probability density for finding the molecule at x with
velocity v at time t given that it was at x0 with velocity v0 at t = 0; ρN(x,t|x0) is the reduced
conditional probability density in x for an equilibrium distribution in v0. The subscript “N”
has a special meaning: it signifies that the probability density satisfies natural boundary
conditions, i.e., the decay to zero at x = ± ∞ because of the infinite potential energies there.
These boundary conditions are to be distinguished from, e.g., absorbing boundary conditions
that are introduced below for various purposes. By design ρA0 = ρA(0) = 1. Instead of
finding k+ + k− from the time derivative of the number correlation function, its inverse, i.e.,
the relaxation time, is given by the time integral [see Eq. (3.22)] (Skinner & Wolynes,
1978):
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(3.28)

Now expressing c(t) in terms of ρA(t) [Eq. (3.20)], we find

(3.29)

Correspondingly (Zhou, 2005a)

(3.30)

3.1.2 Multi-dimensional transition-state theory and a common
misunderstanding—Though we have so far presented the transition-state theory for a
one-dimensional potential energy surface, the theory was originally derived for molecules
described by a multi-dimensional energy function, to be denoted as U(x). It is assumed that a
suitable reaction coordinate, x, is found; a surface, x = x‡, is appropriate as a dividing
surface between the reactant and product states, and x, at least around the minimum of U(x)
on the dividing surface, is uncoupled to the remaining degrees of freedom. Now the whole
dividing surface x = x‡ is the transition state. Let the partition function in the reactant well,
with its minimum chosen as the reference of potential energy, still be denoted as qA and the
partition function for all coordinates other than x, with x fixed at x‡ and the minimum of
U(x) on the dividing surface chosen as the reference of potential energy, be denoted as q′‡.
Then Eq. (3.10) for the rate constant is generalized to

(3.31)

where the activation energy ΔU‡ is the difference between the minima of U(x) on the
dividing surface and in the reactant well. The prime in the partition function q′‡ is very
important; again, it signifies that the reaction coordinate is left out of the calculation of this
partition. In the one-dimensional model discussed above, there are no coordinates other than
the reaction coordinate, and q′‡ would be 1.

Often q′‡ is mistakenly thought as the partition function of the transition state. Following

this mistaken notion, one would be misled to think that  defines the free-energy
difference, to be denoted as ΔG‡, between the transition state and the reactant state:

which in turn transforms Eq. (3.31) into
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While mathematically the last expression cannot be faulted, it nevertheless results in the
misleading interpretation that ΔG‡ is the activation energy and kBT/h is the pre-exponential
factor. The presence of Planck’s constant in such a pre-exponential factor would suggest
quantum effects persist at all temperatures. In reality, qA involves one additional coordinate
than q′‡; at high temperatures this additional coordinate would contribute a factor that
cancels the h in kBT/h, as illustrated above on the one-dimensional model.

We again stress that in calculating q′‡ the reaction coordinate is left out, and q′‡ is not the
partition function of the transition state. In fact, for the one-dimensional model, we have
defined a partition function of the transition state [Eq. (3.8)], with the reaction coordinate
not fixed at a single value (as would be required in calculating q′‡) but extending over a
range δl. A rigorous implementation of the multi-dimensional transition-state theory will be
illustrated below in Subsection 3.3.

3.2 Kramers’ turnover problem
In a sense, assumptions i and iii that lead to the transition-state theory are contradictory to
each other. If the motion of molecules, each with a single degree of freedom along the
reaction coordinate, is governed by Newton’s equation, then the energy of each molecule
would be conserved. Low-energy molecules would stay in the reactant well and higher-
energy molecules would stay in the barrier region; these two types of molecules would not
be able to mix and equilibrate. In reality, the reaction coordinate is coupled to other degrees
of freedom of a reactant molecule and to solvent molecules, which effectively serve as a
thermal bath that allows for energy dissipation and thermal equilibration. In Kramers’ theory
(Kramers, 1940), the motion along the reaction coordinate is governed by the Langevin
equation:

(3.32)

which augments Newton’s equation by two additional forces: a frictional force, −mγv,
which serves to dissipate the energy of the molecule; and a random force, ℛ, which serves
to agitate the molecule, leading to thermal equilibration. The random force has a Gaussian
distribution, with zero mean and correlation given by

(3.33)

which is a form of the fluctuation-dissipation theorem.

Because of the random force, the trajectory of the molecule is not deterministic but
stochastic. Complementary to stochastic trajectory, we may describe the microscopic
behavior of the molecule by the probability density, ρ(x,v,t), in position and velocity as a
function of time. This probability density satisfies the Fokker-Planck equation

(3.34)

It can be checked that the canonical-ensemble equilibrium distribution given by Eq. (3.13) is
a stationary solution of the Fokker-Planck equation.

Let us first discuss the limits of high and low frictions. When γ → ∞, the change in x is
slow and the relaxation in v is fast. Then the inertial term on the left-hand-side of the
Langevin equation can be neglected, leading to
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(3.35)

which is the governing equation for Brownian (or diffusive) motion of x. Correspondingly
the probability density in x, ρ(x,t), satisfies the Smoluchowski equation

(3.36)

where D = kBT/mγ is the positional diffusion constant. The equilibrium distribution is

(3.37)

In the high-friction limit, positional diffusion from the reactant well to the product well
becomes rate limiting. It can thus be expected that in this limit k+ ∝ D ∝ 1/γ.

In the low-friction limit, the total energy, E = mv2/2 + U(x), is nearly conserved, and the
motion of the molecule can be described as diffusion among different energy levels. The
probability density in E, ρ(E,t), satisfies the equation (Zwanzig, 2001)

(3.38)

where

(3.39a)

is the action for the periodic orbit with total energy E and

(3.39b)

is the angular frequency of the orbit. Note that I(E) is also the area inside the orbit in phase
(i.e., x and p) space, and dI(E)/dE = 2π/ω(E) is the density of states. Here the equilibrium
distribution ρeq(E) ∝ [2π/ω(E)]exp(−E/kBT). Comparing Eq. (3.38) and Eq. (3.36), it can be
seen that the energy diffusion constant, DE, is proportional to γ. Therefore in the low-
friction limit one expects k+ ∝ DE ∝ γ.

Putting the results in the two limits together, one sees that the rate constant increases with
increasing γ when γ is small and decreases with increasing γ when γ is large (Fig. 3b). It
can thus be expected that the value of k+ reaches a maximum at an intermediate γ and
decreases to zero when γ approaches either zero or infinity. This dependence of the rate
constant on friction is known as Kramers’ turnover.

Kramers derived expressions for the rate constant for different ranges of the friction
coefficient. His approach can be explained from the perspective of a hypothetical bulk
experiment (Farkas, 1927; Zhou, 2005a). In this experiment, molecules are prepared at the
reactant state with a concentration C. Whenever a transition is made to the product state, the
molecule is immediately removed, as if there is an absorbing trap, and the reactant pool is
replenished so that the reactant concentration is always maintained at C. After a brief
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transient period (lasting ~τeq), a steady state will set in. The steady-state flux will be [see
Eq. (2.2)]

(3.40a)

Re-arranging, we find

(3.40b)

The rate constant is thus given by the ratio of the steady-state flux and the reactant
population. Note that the reactive-flux formulation, Eq. (3.25b), of the rate constant can be
viewed as a special case of the flux-over-population formulation. As observed already, the
transition-state theory [Eq. (3.26)] makes the approximation of replacing the “steady-state”
reactive flux by its initial value.

To implement the flux-over-population formulation, one would find a steady-state
probability density that maintains the equilibrium distribution in the reactant well and
satisfies the absorbing boundary condition in the product well. The implementation is
straightforward in the high-friction regime, where the motion of the molecule is modeled as
positional diffusion. A steady-state probability density corresponds to a constant flux:

(3.41)

The appropriate boundary conditions are

(3.42a)

(3.42b)

Solving Eq. (3.41) for ρss(x) subject to the condition of Eq. (3.42a) we find

(3.43a)

Using Eq. (3.42b), we find the flux

(3.43b)

Now with the condition in Eq. (3.42a), the population in the reactant well is

The rate constant is finally
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(3.44)

Making the harmonic approximation of Eq. (3.15) for the potential around xA and a similar
approximation

(3.45)

for the potential around the top of the barrier, we find

(3.46)

where ω‡ = (f‡)1/2. Equation (3.44) is still valid when D is a position-dependent diffusion
coefficient, i.e., D(x). Then the first integral in the denominator is then dominated by the
region around the maximum of an effective potential, U(x) − kBTlnD(x). The location of the
maximum, which was referred to as the kinetic transition state (Chahine et al., 2007), and
the effective activation energy can be quite different from those of the original potential.

As shown below in Subsubsection 3.6.2, the ratio ρss(x)/ρeq(x) is the splitting probability,
denoted as ζA(x), which is the probability that a molecule, started at x, will first reach the
reactant well bottom instead of the product well bottom. When x is in the reactant well,
ζA(x) is very close to 1. Around x = x‡, ζA(x) undergoes a rapid transition, to ~ 1/2 at x =
x‡, and to 0 a small distance thereafter.

By a similar procedure, we find the rate constant in the low-friction limit:

(3.47a)

(3.47b)

where

(3.48)

with xtA the left-hand-side turning point, i.e., the solution of U(x) = ΔU‡ to the left of x =
xA. A comment on the upper limit of the second integral in Eq. (3.47a) is in order. Orbits
with energies higher than ΔU‡ will traverse both the reactant and product wells. Setting the
upper limit of the integration to ΔU‡ amounts to assuming all molecules moving along those
orbits would be trapped in the product well. However, it should be recalled that, in the flux-
over-population formulation, the absorbing boundary is set around x = xB, i.e., inside the
product well. For molecules with E > ΔU‡, this absorbing boundary traps only those moving
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to the left (i.e., v < 0) but not those moving to the right (i.e., v > 0). This “split” boundary
condition is treated properly later by Melnikov and Meshkov (1986); see Subsection 3.4.

For moderate to high frictions, we again seek a steady-state probability density ρss(x,v)
which takes the equilibrium distribution around the bottom of the reactant well and becomes
zero at the bottom of the product well.* The flux from the reactant well to the product well is

(3.49)

We write ρss(x,v) as

(3.50)

The splitting probability ζA(x,v) = ζ(x,−v) (the appearance of the negative sign will be
explained in Subsubsection 3.6.2). ζ(x,v) satisfies the equation

(3.51a)

with the boundary conditions

We now solve for ζ(x,v) around x = x‡. Applying the harmonic approximation of Eq. (3.45),
Eq. (3.51a) becomes

(3.51b)

The trick is to seek a set of parallel lines in phase space, over each of which ζ(x,v) is a
constant; the value of this constant changes as the line moves from the reactant well to the
product well. Let each line be represented by the equation λ(x − x‡) − v = u, where u
dictates the location of the line. The desired condition is satisfied by choosing

(3.52)

Correspondingly the solution of Eq. (3.51b) is

(3.53)

which has a transition in value around u = 0, i.e., the line that goes through the point (x, v) =
(x‡, 0). If this transition is essentially complete within the range where the harmonic
approximation of the potential around x = x‡ holds, then the boundary conditions are
satisfied by setting

*Rigorously, the absorbing boundary condition of ρss(x,v) at the bottom of the product well is given by ρss(xB,v) = 0 for v < 0 only,
not for all v. Specifying the absorbing boundary condition as ρss(xB,v) = 0 for all v may be suggested to be a reason for why the
validity of the resulting expression for the rate constant is limited to moderate to high frictions. Below we continue to neglect the
restriction on v when stating the absorbing condition, keeping in mind that the validity of doing so is limited to moderate to high
frictions.
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The rate constant can finally be calculated as

(3.54)

It can be easily checked that Eq. (3.54) reduces to the high-friction limit given by Eq. (3.46)
when γ → ∞. However, when γ → 0, Eq. (3.54) does not reduce to the low-friction limit
given by Eq. (3.47b). Instead, in this limit it reduces to the transition-state theory result
given by Eq. (3.16). The validity of Eq. (3.54) requires that the transition of ζA(x,v) occurs
in a range where the harmonic approximation of the potential around x = x‡ holds. As noted
by Melnikov and Meshkov (1986), this range is proportional to γ−1/2, which extends to
infinity as γ → 0. That explains why Eq. (3.54) is only valid for moderate to high frictions
(see also footnote *).

In summary, Kramers has shown that the rate constant is proportional to γ when γ is low
and proportional to γ−1 when γ is high. The rate constant exhibits a maximum at an
intermediate friction. However, Kramers did not find an expression for the rate constant that
works for the full range of friction.

3.3 Friction with memory: Grote-Hynes theory
The Langevin equation (3.32) is a special case of a more general class of equation of motion

(3.55)

known as the generalized Langevin equation. The friction coefficient here has the form of a
memory kernel. Correspondingly the correlation function of the Gaussian random force is

(3.56)

Grote and Hynes (1980) used the generalized Langevin equation to model the motion along
the reaction coordinate and derived the counterpart to Kramers’ result [Eq. (3.54)] for the
rate constant at moderate to high frictions.

The Grote-Hynes theory is based on a formulation of the rate constant derived from the so-
called stable states picture (Northrup & Hynes, 1980). As explained in the preceding
subsection, the steady-state probability density appropriate for calculating the rate constant
is nearly identical to the equilibrium distribution in the reactant well but deviates
significantly from it in the barrier region. Northrup and Hynes (1980) thus introduced an
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intermediate state, I, in addition to the “stable” states A and B. The dividing line between A
and I is located at where the steady-state probability density starts to deviate from to the
equilibrium distribution; a similar dividing line can be defined between B and I. These two
positions will be denoted as xA−I and xI−B, respectively. The rate constant is given by

(3.57a)

where the first flux is across the A−I dividing line at time 0 and the second flux is across the
I−B dividing line at time t. The initial probability density is an equilibrium distribution in A;
an absorbing boundary is set in B. Equation (3.57a) is closely related to the reactive-flux
formulation [Eq. (3.25b)] of the rate constant.

Similar to Kramers, Grote and Hynes assumed that the harmonic approximation of Eq.
(3.45) applies to the entire region of I. They then extended this downward parabola
indefinitely beyond x = xA−I and x = xI−B. Let the conditional probability density in this
extended parabola be ρN(x,v,t|x0,v0). Note that ρN(x,v,t|x0,v0) naturally satisfies the desired
absorbing boundary condition. The rate constant can now be expressed as

(3.57b)

The conditional probability density in a parabolic potential is Gaussian. Evaluating all the
integrals involved, the final result is

(3.57c)

where the Grote-Hynes “reactive” frequency ωGH is the positive root of the equation

(3.58)

with ξ̂(s) denoting the Laplace transform of the memory kernel. For the memory-free
friction, ξ(t) = 2γδ(t), Eq. (3.58) gives ωGH = [(γ/2)2 + ω‡2

]1/2 − γ / 2, and one recovers
Kramers’ result, Eq. (3.54).

As alluded to in the preceding subsection, friction arises from coupling of the reaction
coordinate to other degrees of freedom of the reactant molecule and to solvent molecules,
serving as a thermal bath. A simple model for a thermal bath consists of a set of n harmonic
oscillators, with the potential energy (Zwanzig, 2001)

(3.59)

The whole system, reaction coordinate plus thermal bath, satisfies Newton’s equation. By
eliminating the bath coordinates, yj, one arrives at the generalized Langevin equation (3.55).
The memory kernel is given by

(3.60)

and the “random” force is given by
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(3.61)

where x0 is the initial value of x; yi0 are the initial values of the bath coordinates; and vi0 are
the corresponding initial velocities. Equation (3.60) shows that memory kernels, such as that
of an exponential form, typically used to model unimolecular reactions correspond to an
infinite set of bath oscillators that spans a continuous spectrum of frequencies. For later
reference, we note that the Laplace transform of the memory kernel in Eq. (3.60) is given by

(3.62)

With a small set (n ~ 30) of oscillators, computer simulations (Zhou & Zwanzig, 2002) show
that the Grote-Hynes theory provides a reasonable estimate for the rate constant at moderate
frictions. However, at high frictions, the number correlation function becomes
nonexponential, and the decay is much slower than expected from the Grote-Hynes theory.

Interestingly, Pollak (1986) found that, when the multi-dimensional transition-state theory
[Eq. (3.31)] is applied to the whole system of reaction coordinate plus thermal bath, the
Grote-Hynes result, Eq. (3.57c), is derived. We outline this derivation here, mainly to
illustrate the use of the multi-dimensional transition-state theory. The implementation of Eq.
(3.31) entails evaluating two partition functions, qA and q′‡. To evaluate qA, we again use
the harmonic approximation of Eq. (3.15). Then the system is equivalent to a set of n + 1
harmonic oscillators. The eigenvalues, λAi, i = 0 to n, of the [mass-scaled; cf. Eq. (3.81)]

force-constant matrix, fA, give the angular frequencies as . In the classical limit each

oscillator contributes a factor  to the partition function. Therefore

(3.63)

where det denotes determinant. To calculate q′‡, we apply the harmonic approximation of
Eq. (3.45) and carry out a similar normal mode analysis around the saddle point of the multi-
dimensional energy function U(x) + Ubath(y). The force-constant matrix f‡ in the barrier

region has one negative eigenvalue, , and n positive eigenvalues, , i = 1 to n. The value

of  is determined by

(3.64)

where I denotes the identity matrix. The last equation is satisfied by

(3.65)

Comparison with Eq. (3.58) shows that . We define the mode corresponding to the
negative eigenvalue as the modified reaction coordinate. This mode, with coordinate
denoted as x′, does not coincide with the original reaction coordinate x and instead is a
linear combination of x and the bath coordinates. For later use we denote the value of x′ at
the saddle point as x′‡. With x′ as the new reaction coordinate, we have
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(3.66)

Inserting Eqs. (3.63) and (3.66) in Eq. (3.31), we indeed arrive at the Grote-Hynes result,
Eq. (3.57c). Note that this rate constant can be written in the form

(3.67)

The above derivation amounts to choosing x′ = x′‡ as the dividing surface of the multi-
dimensional system of reaction coordinate plus thermal bath. Had we chosen x = x‡, based
on the original reaction coordinate, as the dividing surface, we would derive the standard
transition-state theory result, Eq. (3.16). Pollak’s use of a dividing surface based on the
modified reaction coordinate can thus be seen as a form of variational transition-state theory.
Berezhkovskii et al. (1992) have in fact carried out variational transition-state theory
calculations using a planar dividing surface. They found that, when the harmonic
approximation of Eq. (3.45) is invoked for the potential function, the optimized planar
dividing surface is x′ = x′‡. However, when anharmonicity is accounted for, the optimized
planar dividing surface differs from x′ = x′‡ in direction and no longer goes through the
saddle point if U(x) is asymmetric with respect to x = x‡.

3.4 Solution to the turnover problem
As noted in Subsection 3.2, a proper calculation of the rate constant at low frictions should
account for a split boundary condition arising from the absorbing boundary around the
bottom of the product well, which traps molecules moving to the left but not those moving
to the right. Melnikov and Meshkov (1986) dealt with this split boundary condition by the
Wiener-Hopf method. When the rate constant is written in the form

(3.68)

where k+TST is given by Eq. (3.16), their result for the transmission coefficient is

(3.69)

In the last expression  is given by Eq. (3.48),  is the counterpart for the product well, and
the function z(x) is given by

(3.70)

which goes to x when x → 0 and to 1 when x → ∞.

In the low-friction limit, Eq. (3.69) gives . This differs from the

corresponding result of Kramers,  [see Eq. (3.47b)] by a factor , which
arises from accounting for the fact that the orbit with total energy ΔU‡ traverses both the
reactant and product wells. In the high-friction limit, Eq. (3.69) predicts = 1, i.e., the
transition-state theory result. The validity of Eq. (3.69) is thus restricted to low to moderate
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frictions. Melnikov and Meshkov recognized that, when the transmission coefficient of Eq.
(3.69) is multiplied to Eq. (3.54), Kramers’ result for the rate constant at moderate to high
frictions, the resulting expression

(3.71)

is numerically accurate for both the low to moderate and moderate to high ranges of friction.
This expression can thus be used for the full range of friction. Computer simulations have
shown that Eq. (3.71) is indeed highly accurate for all frictions (Zhou, 1989) (see Fig. 3b).

Pollak et al. (1989) subsequently developed an improved solution to the turnover problem.
Following the work of Pollak (1986) outlined above, they modeled the thermal bath as a set
of harmonic oscillators. The rate constant at low frictions was derived by studying the
sampling of energy levels associated with the modified reaction coordinate x′, not those
associated with x as done by Kramers and by Melnikov and Meshkov. When the friction is
taken to the high range, this rate constant becomes identical to the result of Pollak (1986),
which was specifically derived for that range of friction. Therefore the theory of Pollak et al.
works for the full range of a friction with memory. Its predictions are found to agree well
with results from computer simulations of Straub et al. (1986).

3.5 Multi-dimensional potential energy functions
A description restricted to a single reaction coordinate has limitations. Often it makes sense
to explicitly consider other closely coupled coordinates. Below we present two perspectives
on how to deal with motions on multi-dimensional energy surfaces in modeling rate
processes.

3.5.1 Langer’s generalization of Kramers’ result and further developments—
Following Kramers’ work on a one-dimensional system, Langer (1969) studied the rate of
escape from a multi-dimensional energy well through a saddle point. Consider first the case
where motions along the coordinates, xi, collectively denoted as x, are diffusive. Then the
probability density ρ(x,t) satisfies the multi-dimensional Smoluchowski equation

(3.72)

where ρeq(x) ∝ exp[−U(x)/kBT], and the diffusion matrix D is assumed to be position-
independent. [It should be noted that, for a polyatomic reactant molecule, the diffusion
matrix can be very different in different parts of the conformational space (see, e.g.,
McCammon & Harvey, 1987). This positional dependence of D can significantly affect the
reaction paths and rate constant, as already emphasized for diffusion along a one-
dimensional reaction coordinate (Subsection 3.2). In higher dimensions, the minimum-
resistance path from the reactant well to the product well has been calculated for a position-
dependent diffusion matrix by a variational approach (Berkowitz et al., 1983).] Around the
bottom of the reactant well, located at x = xA, a harmonic approximation is made:

(3.73a)

All the eigenvalues of the force-constant matrix eA are assumed to be positive. Around the
saddle point x = x‡, another harmonic approximation is made:
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(3.73b)

One of the eigenvalues of the force-constant matrix e‡ is assumed to be negative and all
others are positive.

Adopting Kramers’ trick, Langer sought for a set of parallel planes near the saddle point,
over each of which the splitting probability ζA(x) = ρss(x)/ρeq(x) is a constant. This
condition is satisfied when the normal of the planes is the eigenvector, s, corresponding to

the negative eigenvalue, , of the matrix (kBT)−1e‡·D. This negative eigenvalue is
determined by

(3.74)

and the parallel planes are specified by the equation

(3.75)

The splitting probability around the saddle point is given by

(3.76)

where the magnitude of s is chosen so

(3.77)

According to Eq. (3.76), the splitting probability has value 1/2 on the plane s·(x − x‡) = 0.
This plane, which goes through the saddle point, is thus the stochastic separatrix (see
Subsubsection 3.6.2 below). Note that, when the diffusion matrix is highly anisotropic, the
eigenvector s, which is normal to the stochastic separatrix, may be very different from the
eigenvector of the force-constant matrix e‡ corresponding to its negative eigenvalue.

Finally the flux-over-population formulation gives the rate constant as

(3.78)

which has the same structure as Eq. (3.67). Specializing to a one-dimensional model, we
recover Kramers’ result [Eq. (3.46)] for high frictions. Interestingly, Berezhkovskii and
Szabo (2005) showed that, if a one-dimensional reaction coordinate, x, is chosen along the
eigenvector s in the multi-dimensional space, then Langer’s result is identical to Kramers’
one-dimensional result if the one-dimensional potential is calculated as the potential of mean
force in x and the diffusion constant along x is chosen as s·D·s.

Now consider the case where motions along the coordinates are governed by the Langevin
equation, which here takes the form

(3.79)
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where mi are the masses corresponding to coordinates xi. Let the total number of coordinates
be n. (For a polyatomic reactant molecule, overall translation and rotation correspond to zero
eigenvalues of the force-constant matrix; such coordinates are assumed to be appropriately
eliminated.) To simply notation, we absorb each mass into the corresponding coordinate and

velocity; i.e.,  will hereafter be written as xi and vi. The probability density
ρ(x,v,t) satisfies the n-dimensional Fokker-Planck equation

(3.80)

where ρeq(x,v) ∝ exp[−(U(x)+(½)v·v)/kBT].

Again, we seek for a set of parallel planes over which ζ(x,v) = ρss(x,v)/ρeq(x,v) is uniform.
[The splitting probability ζA(x,v) is ζ(x,−v).] The normal of these planes is the eigenvector

corresponding to the negative eigenvalue, , of the 2n × 2n matrix

where 0 and I are n × n zero and identity matrices, respectively; f‡ is the n × n mass-scaled
force-constant matrix, related to the original force-constant matrix e‡ via

(3.81)

and γ is the n × n matrix with elements γij. The eigenvalue is determined by

(3.82)

Note that, at high frictions, the  term is negligible, and Eq. (3.82) reduces to Eq. (3.74)
of the Langer solution. Let the first and last n components of the eigenvector be denoted as s
and t, respectively. The equation of the parallel planes is then

(3.83)

Around the saddle point ζ(x,v) is given by

(3.84)

where the magnitudes of s and t are chosen so

(3.85)
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Finally the flux-over-population formulation gives the rate constant as

(3.86)

where fA is the n × n mass-scaled force-constant matrix at the bottom of the reactant well.
Specializing to a one-dimensional model, we recover Kramers’ result [Eq. (3.54)] for
moderate to high frictions.

Berezhkovskii et al. (1992) considered the case where each coordinate of the multi-
dimensional reactant system is coupled to a thermal bath consisting of a set of harmonic
oscillators. Motion along each coordinate is then governed by a generalized Langevin
equation [Eq. (3.79) with friction coefficients replaced by memory kernels]. They carried
out variational transition-state theory calculations on the high-dimensional system of
reactant plus thermal baths, using a planar dividing surface. Within the harmonic
approximations of Eqs. (3.73), the rate constant is given by Eq. (3.86), but with the

governing equation for  generalized to

(3.87)

where ξ̂(s) is a matrix with elements given by the Laplace transform of the memory kernels.
A more cumbersome way to derive Eqs. (3.86) and (3.87), when motions on the multi-
dimensional energy function are governed by generalized Langevin equations, is to first
transform these coupled equations into an equation of motion for a single reaction
coordinate, with a more complicated memery kernel, and then apply the Grote-Hynes theory
(Subsection 3.3) (Nitzan, 1987).

As an aside, we note that the expression of the rate constant in terms of a time integral, Eq.
(3.30), can be generalized to the present case of a multi-dimensional energy function. The
result is (Zhou, 2005a; Bicout & Szabo, 1997)

(3.88)

where θA(x) has value 1 if x is in the reactant well and 0 otherwise, and ρN(x,t|x0) is the
conditional probability density satisfying natural boundary conditions. This result will find
use in the next section.

3.5.2 Agmon-Hopfield model—Agmon and Hopfield (1983) considered the situation
where an intramolecular reaction, such as electron transfer or geminate binding, is coupled
to conformational fluctuations of the protein molecule. To simplify the situation, the
approach presented so far would suggest that one models explicitly the motion along the
reaction coordinate x (e.g., the distance between the germinate ligand and its binding site),
and accounts implicitly for the conformational fluctuations through their effects on the
potential energy and the friction coefficient for x (see, e.g., Schaad et al., 1993; D'Abramo et
al., 2009). Agmon and Hopfield took the opposite approach. The intramolecular reaction is
implicitly modeled by a rate constant, k+, which depends on the protein conformation, here
denoted with coordinate y. The conformational fluctuations are modeled explicitly as
diffusion on an effective potential surface, U(y). On account of the reaction, the probability
density ρ(y,t) satisfies the diffusion-reaction equation
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(3.89)

where D is the effective diffusion constant. For a given normalized initial distribution ρ(y,0),
the quantity of interest is the survival probability

(3.90a)

Integrating both sides of Eq. (3.89) over y, we have

(3.90b)

In general the rate coefficient, k(t), defined above is time-dependent.

In the limit that diffusion along y is infinitely slow, the reactions at different y values
proceed independently. Hence, as D → 0,

(3.91a)

and the survival probability is

(3.91b)

In the opposite limit D → ∞, equilibration among different y values occurs quickly, and
ρ(y,t) is proportional to the equilibrium distribution, ρeq(y) = exp[−U(y)/kBT]/
∫dyexp[−U(y)/kBT], but with a magnitude that decreases with increasing time. Then the rate
coefficient k(t) in Eq. (3.90b) is simply the equilibrium average of k+(y):

(3.92a)

and

(3.92b)

becomes exponential. For intermediate values of D, Eq. (3.89) can only be solved
numerically.

The simple model introduced in Subsection 2.1 has the flavor of the Agmon-Hopfield
model. Here motion (i.e., jumps) along the y coordinate (i.e., discrete microstates) models
the equilibration within the reactant state. Like the D → ∞ limit just presented, fast intra-
state equilibration leads to an exponential decay of the reactant population, and the decay
constant is given by the equilibrium average of rate constants among the microstates [see
Eq. (2.13b)].

3.6 Two useful quantities
3.6.1 Mean first passage time—As alluded to in Section 2, the rate constant k+ is
essentially the inverse of the mean first passage time from the reactant well to the product
well. Formally, the mean first passage time, τFP, is the average time for a molecule to reach
a boundary for the first time. That boundary is absorbing since the molecule never returns
from it. τFP can be calculated from the survival probability, S(t), i.e., the probability that the
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molecule has not reached the absorbing boundary after a waiting time t. It is easy to see that
the probability density, ϕ(t), of the first passage time t is −Ṡ(t). Hence

(3.93)

Let the molecule be specified by coordinates collectively denoted as w (which could be just
spatial coordinates x or both x and the corresponding velocities v). Suppose that the
probability density ρ(w,t) is governed by

(3.94)

where ℒ(w) is an operator like those in Eqs. (3.72) and (3.80). The equilibrium distribution,
ρeq(w), is a stationary solution. The survival probability S(t|w0) starting from the initial
position w0 satisfies (Pontryagin et al., 1933)

(3.95)

The adjoint operator is given by (Risken, 1989)

(3.96)

where ℰw0 means that the sign of each velocity component in w0 is negated. Integrating
both sides of Eq. (3.95) over time leads to

(3.97)

For the problem of diffusive motion on the one-dimensional energy surface of Fig. 3a, with
an absorbing boundary at x = xB, the solution of Eq. (3.97) is (Szabo et al., 1980)

(3.98)

Compared with Eq. (3.44), τFP(xA) is almost identical to the inverse of Kramers’ result for
the rate constant, except that the upper limit of the second integral here is x, not x‡.
Numerically this difference hardly matters since the first integral is dominated by a region
around x = x‡.

An elegant application of mean first passage time is in modeling diffusive motion on a rough
potential surface (Zwanzig, 1988). Consider a potential function given by

where U0(x) is smooth and U1(x) is a rapidly oscillating perturbation. Over the range, Δx, in
which U1(x) oscillates, U0(x) can be considered as a constant; hence
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Over a range much longer than Δx, the above integral can then be evaluated as the integral
of e−U0 (x)/kBT·eψ

−(x). Hence

Similarly,

with ψ+(x) defined analogous to ψ−(x). The mean first passage time of Eq. (3.98) now
becomes

which is the same as if the molecule moves on an effective potential energy U0(x) + ψ−(x)
with an effective diffusion constant

(3.99)

Because , roughness in the potential always
leads to a reduction in diffusion constant. This provides a simple explanation for the
decrease in diffusion constant when a protein moves from three-dimensional diffusion in the
bulk solution to onedimensional diffusion along a DNA, as speculated previously
(Schranner & Richter, 1978; Berg et al., 1981) [see Subsubsection 4.3.7; an alternative, or
additional proposed mechanism is that, while sliding along a groove of the DNA, the protein
also rotates around the DNA axis, and this coupled rotation encounters significant solvent
friction (Schurr, 1979).].

When U1 is random, and follows a Gaussian distribution with zero mean and variance ε, one
finds ψ+(x) = ψ−(x) = ε2/2kBT. Then the effective potential is changed by a trivial constant
ε2/2kBT, but the effective diffusion constant is reduced to Dexp[−(ε/kBT)2], with the
exponent having a quadratic dependence on temperature. Such a T2 dependence of the
effective diffusion constant has been found for a random energy model of protein folding
(Bryngelson & Wolynes, 1989).
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3.6.2 Splitting probability—In Subsection 3.2 and Subsubsection 3.5.1, we introduced
the splitting probability via its relation to a steady-state probability density. This relation can
be generally written as

(3.100)

The steady-state probability density satisfies

(3.101)

with the boundary conditions

(3.102a)

(3.102b)

where xA and xB represent the bottoms of the reactant and product wells, respectively. It
appears that the relation between ζA(w) and ρss(w) has not been recognized previously. We
now outline its proof.

The splitting probability ζA(w) satisfies the equation (Gardiner, 1985)

(3.103)

with the boundary conditions

(3.104a)

(3.104b)

[If the roles of state A and state B were reversed, Eqs. (3.103) and (3.104) would define the
splitting probability, ζB(w), for the molecule to first reach the product state instead of the
reactant state. It is clear that ζB(w) = 1 − ζA(w).] Combining Eqs. (3.96) and (3.101), it can
be seen that ρss(ℰw)/ρeq(w) satisfies Eq. (3.103). In addition, from Eqs. (3.102), it can be
seen that ρss(ℰw)/ρeq(w) satisfies the boundary conditions of Eqs. (3.104). Therefore
ρss(ℰw)/ρeq(w) and ζA(w) must be identical.

For the problem of diffusive motion on the one-dimensional energy surface of Fig. 3a, the
splitting probability is

(3.105)

The integrals are dominated by a small region around x = x‡. Hence ζA(x) is close to 1 from
x = xA up to a small distance to the left of x = x‡; it then undergoes a rapid transition, to
~1/2 at x = x‡ and to 0 a small distance thereafter. Correspondingly ρss(x) undergoes a
transition from ρeq(x) in the reactant well to 0 in the product well.
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When the motion along x is governed by the Langevin equation, ρss(x,v) undergoes a similar
transition, along the new coordinate u = λ(x − x‡) − v. The value of ρss(x,v) is ~1/2 at u = 0,
i.e., on the line v = λ(x − x‡). However, the splitting probability is ~1/2 on the line v = −λ(x
− x‡). The sign switch on v is necessary because a molecule starting on the right of x = x‡

must have a leftward velocity for it to have the same splitting probability as a molecule
starting at x = x‡ with a zero velocity.

In higher dimensions, the plane on which the splitting probability is 1/2 is known as the
stochastic separatrix. Langer’s solution to the rate problem show that the stochastic
separatrix is a plane that goes through the saddle point of the energy function; the orientation
of the plane is determined by the force-constant matrix at the saddle point and the diffusion
or friction matrix. In protein folding kinetics, the splitting probability is given the name
pfold, and the stochastic separatrix is assumed to define the transition-state ensemble (Du et
al., 1998).

3.7 Jump dynamics among discrete microstates
We now further consider the case where motion in the conformational space of a reactant
molecule is represented by jumps among a set of discrete microstates. The occupational
probabilities, ρi(t), are governed by a master equation:

(3.106)

where kji is the jump rate from microstate i to microstate j. The equilibrium distribution,
ρieq, is determined by the configurational integrals of the microstates. The jump rates satisfy
the detailed balance condition:

(3.107)

In particular, master equations have been used to model protein folding kinetics. In earlier
work, the jump rates were made up, only constrained by the detailed balance condition
(Zwanzig, 1995; Muñoz et al., 1998; Cieplak et al., 1998; Alm et al., 2002; Schonbrun &
Dill, 2003; Weikl et al., 2004; Merlo et al., 2005); in more recent work (Hummer &
Kevrekidis, 2003; Buchete & Hummer, 2008) the jump rates are calculated from relatively
short simulations of transitions between neighboring microstates [a similar idea is behind the
so-called Markov State Models (Chodera et al., 2006; Chodera et al., 2007; Noe & Fischer,
2008)]. In matrix-vector form, Eq. (3.106) is

(3.108)

The jump matrix k has one zero eigenvalue, with ρeq, as the corresponding eigenvector. The
other eigenvalues, λl, l = 1, 2, …, are positive; let λl be ordered from small to large.

Now suppose that the microstates are grouped into two states, A and B. When λ1 << λl for
all l > 1, the transitions between the two states can be modeled well as rate processes, and
the rate constants, k±, are given by

(3.109)

The equilibrium occupational probabilities of the two states are

(3.110)
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Instead of solving the eigenvalue problem, one can make a transition-state theory type
estimate for k±; the presentation below follows the work of Zhou (2008). As indicated by the
derivation in Subsubsection 3.1.1, a transition-state theory estimates k+ by the normalized
total reaction flux from state A to state B, assuming that the occupation of the microstates in
state A is according to the equilibrium distribution. That is,

(3.111)

Equation (2.13b) presented in Subsection 2.1 can be viewed as a special case of Eq. (3.111).
As the discussion of Subsubsection 3.5.2 makes clear, Eq. (3.111) becomes exact in the limit
that intra-state equilibration is much faster than inter-state transition.

Like in the continuous case, k+TST provides an upper bound for the rate constant, as has
been shown explicitly. In the spirit of variational transition-state theory, one may therefore
try to find the best k+TST by varying the dividing surface between the reactant and product
states. Here the dividing surface consists of all the allowed jumps (those with nonzero jump
rates) between the reactant microstates and product microstates. The optimal dividing
surface is the one that minimizes the normalized reaction flux [Eq. (3.111)] and is hence
referred to as the minimum-reaction-flux surface. [Note that, as recognized by Krivov and
Karplus (2002), locating this surface is isomorphic to the minimum-cut problem in graph
theory (Stoer & Wagner, 1997).] Test against numerical solutions of master-equation models
of protein folding shows that the minimum-reaction-flux results work well. The minimum-
reaction-flux surface separates microstates with large differences in pfold, and can be
considered as constituting the transition-state ensemble in the discrete case. Among the
forward jumps contributing to the minimum reaction flux, one can further identify the one(s)
making the largest contribution as the “saddle point.” However, the minimum-reaction-flux
approach differs from traditional transition-state theory in one important respect: the
dividing surface minimizing the normalized reaction flux is determined not only by the free
energies of the microstates (as reflected by ρieq) but also by the jump rates kji. In principle,
dynamic information incorporated by the jump rates can lead to a dominant transition route
(or minimum-resistance path) very different from that produced by the free energy
landscape alone. This situation is reminiscent of the continuous case with a position-
dependent diffusion coefficient (Subsubsection 3.5.1).

4. Bimolecular Reactions
Compared to the developments in unimolecular reactions, theories of bimolecular reactions
have received much less attention. Often, results for unimolecular reactions are blindly used
for bimolecular reactions. A fundamental difference between these two types of reactions is
that, in the latter, two reactant molecules have to come into contact with appropriate relative
orientations before the reaction can proceed. This intermediate, with near-native separations
and relative orientations but without all the short-range native interactions between the
reactant molecules, has been referred to as the transient complex (Zhou et al., 1997; Alsallaq
& Zhou, 2008; Qin & Zhou, 2008). For bimolecular reactions between biomolecules, the
overall translation and overall rotation that result in the formation of the transient complex
are well modeled as diffusive. From the transient complex, formation of the native complex
is essentially a unimolecular process, which proceeds through conformational rearrangement
and, along the way, passes through a high-energy transition state. It is important to recognize
that both the diffusional process that leads to the transient complex and the conformational
rearrangement that finally leads to the native complex can be rate-limiting. These are
referred to as diffusion-controlled and activation-controlled, respectively.
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To be concrete, we use the binding of a protein and a ligand as our model bimolecular
reaction. The reaction path outlined above is captured by the following scheme:

(4.1)

where P*L denotes the transient complex. Assuming that the transient complex is in steady
state, the overall association rate constant is

(4.2a)

For sake of completeness, the dissociation rate constant is

(4.2b)

When k+ ≫ k−D, Eq. (4.2a) becomes

(4.3a)

resulting in the diffusion-controlled regime. Conversely, when k+ ≪ k−D, Eq. (4.2a)
becomes

(4.3b)

resulting in the activation-controlled regime. The last expression, in which  is the
association constant for the transient complex, indicates that, in the activation-controlled
regime, calculating the association rate constant mostly entails dealing with a unimolecular
reaction (i.e., k+). The theories of the last section would indicate that, to calculate k+, one
has to treat short-range interactions between the protein and ligand as well as their
conformational rearrangement. Given the considerable difficulty and uncertainty, such
treatment will be avoided as much as possible, and the focus of this section will be on the
diffusion-controlled regime. In terms of the diffusion-controlled rate constant kD and the
activation-controlled rate constant kA, the overall association rate constant can be expressed
as

(4.4)

A simple model for protein-ligand binding has a centrosymmetric interaction-energy
function illustrated in Fig. 4a. Throughout this section, the interaction energy is chosen to be
zero when the reactant molecules are far apart. As the two reactant molecules approach each
other, they experience electrostatic attraction at long range. At an intermediate distance r =
R, the transient complex is formed. Further compaction of the protein-ligand pair encounters
an energy barrier (at r = r‡). Crossing this energy barrier leads to a deep energy well, around
r = a, which defines the native complex. In particular, in protein-protein association, the
energy barrier may come about because side chains in the unbound proteins adopt rotamers
different from those in the native complex. Different rotamers are separated by energy
barriers; these are amplified by steric hindrance which interfacial side chains experience
while the transient complex is transformed into the native complex. If the reactant molecules
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are assumed to adopt their “native” conformations, i.e., those in the native complex, then the
energy barrier would largely disappear, leading to a smoothed energy surface (Alsallaq &
Zhou, 2007a) (Fig. 4a). As we emphasize below, the centrosymmetric model, though useful
for illustrating the binding process, suffers from a major limitation. The native complex in
this model is constrained only by the distance between the reactant molecules and not by
their relative orientation. In contrast, complexes of biological interest are almost always
stereospecific. A smoothed interaction-energy function that depends on the separation
(represented by r) and relative orientation (represented by Ω) is illustrated in Fig. 4b.

Below we use the centrosymmetric model to introduce basic concepts, and present results
for more realistic binding models. The general strategy is to explicitly model the overall
translation and overall rotation of the reactant molecules as diffusion, and treat the barrier
crossing into the native-complex energy well implicitly, as a unimolecular rate process (in
the spirit of the Agmon-Hopfield model). We proceed by first assuming that the reactant
molecules are frozen in their native conformations during the diffusional process, and then
examining the influence of conformational fluctuations.

Throughout this section, we highlight and exploit connections between bimolecular rate
constants and unimolecular rate constants. The connection is especially direct when protein-
ligand binding occurs intramolecularly. For the most part, this section is presented as though
the binding is irreversible, but at the end of the section we discuss the kinetics of reversible
diffusion-influenced binding.

4.1 Formulation based on dissociation
One approach to calculate the association rate constant ka is to first obtain the rate constant
kd for dissociation, which, as noted in Subsection 2.2, is a unimolecular reaction, and then
find ka as the product of kd and the association constant Ka [Eq. (2.17)] (Zhou, 2005a). This
requires modeling the motion of the reactant pair in the native-complex energy well. To
support results below in this section, here we model motion in the inner well and over the
energy barrier as diffusive. We arrive at four useful results. The first is a clarification of the
absorbing boundary condition usually used in modeling the diffusion-controlled regime. The
second is a demonstration that, in a complete theory, the choice for the location of the
transient complex does not affect the overall association rate constant. The third is a
clarification of the reactivity that appears in the radiation boundary condition to account for
a finite rate constant (i.e., k+) for barrier crossing into the native-complex energy well. The
last is an expression for ka based on a time integral.

The probability density in r, ρ(r,t), is assumed to satisfy the 3-dimensional Smoluchowski
equation

(4.5)

for the full range of the intermolecular distance r; here D is the diffusion constant for
relative translation. Because of the centrosymmetry, the problem is effectively one-
dimensional, i.e., along r; the effect of the other two degrees of freedom is captured by the
geometric factor 4πr2. We apply Kramers’ result, Eq. (3.44), to obtain the dissociation rate
constant. Setting the limits of the two integrals requires some care. One integral is over the
range of the reactant state, which in the present case is the bound state; the lower limit is
obviously r = 0, and we choose the upper limit to be the top of the energy barrier, i.e., r = r‡.
The other integral is from the bottom of the reactant well to the bottom of the product well;
the lower limit is obviously r = a, and we choose the upper limit to be at infinite distance,
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since only then the reactant molecules are fully dissociated. The dissociation rate constant is
thus

(4.6)

where we have appropriately inserted the geometric factor 4πr2.

The association constant for the present model is (Shoup & Szabo, 1982; Zhou & Gilson,
2009)

(4.7)

Therefore the association rate constant is

(4.8)

This result is identical to what Debye (1942) found by imposing an absorbing boundary
condition at r = a (see Subsubsection 4.3.1). In the above derivation, there is no absorbing
boundary condition at r = a. Rather, what is at r = a is a deep energy well. Therefore the
absorbing boundary condition used in modeling the diffusion-controlled regime corresponds
to a deep and narrow energy well in front of a reflecting wall. This is the first main result of
this subsection.

Note that the location of the transient complex does not appear in the expression for ka. To
make connection with the overall association rate constant given by Eq. (4.4), we write Eq.
(4.8) as

The numerator of the first term can be identified with the inverse of the rate constant k+ of
unimolecular transition to the native complex from the transient complex. The transient
complex here is confined to the narrow region between r‡ and r‡ + Δ (> R), with the latter
serving as a reflecting boundary for the transient complex. The denominator of the first term
can be identified with the association constant, , for the transient complex [cf. Eq. (4.7)].
The second term can be recognized as the diffusion-controlled rate constant, obtained by
imposing an absorbing boundary condition at r = R:

(4.9)

Thus
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(4.10a)

This shows that ka given by Eq. (4.8) can be written in the form of Eq. (4.4). Had we started
with Eq. (4.4) and calculated the diffusion-controlled rate constant kD and the activation-
controlled rate constant kA, we would end up with Eq. (4.8) as the final result for ka, which,
as noted above, is independent of the location of the transient complex. This demonstrates
that, in a complete theory, the choice for the location of the transient complex does not
affect the overall association rate constant.

Equation (4.10a) for ka can be further written in a form obtained by imposing the radiation
boundary condition of Collins and Kimball (1949) at r = R (Shoup & Szabo, 1982):

(4.10b)

Compared with the Collins-Kimball result [Eq. (4.18)], we find that the reactivity κ in the
radiation boundary condition [Eq. (4.15a)] can be identified with k+Δ. Hence κ is a way to
implicitly model the transition from the transient complex to the native complex. This is the
third main result of this subsection.

Finally we apply the time-integral expression, Eq. (3.30), to find an alternative formula for
the dissociation rate constant. In the present case, the ratio of the equilibrium occupation
probabilities is

Note that the integral in the numerator essentially is the volume V of the container and is
effectively infinite relative to the integral of the denominator. Hence ρAeq → 0 and ρBeq →
1. Equation (3.30) specialized to the present case is thus

(4.11)

where ρN(r,t|r0) is the conditional probability density satisfying natural boundary
conditions. Combined with the equilibrium constant of Eq. (4.7), we arrive at the following
expression for the association rate constant

(4.12)

Using the conditional probability density to evaluate the above expression, we derive Eq.
(4.8) as a good approximation for ka when the inner well features a deep minimum. This
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expression of the rate constant is the last main result of this subsection, which will be further
analyzed and extended below.

4.2 Activation-controlled regime: transition-state theory
While our focus is on the diffusion-controlled regime, for sake of completeness, we mention
the association rate constant predicted by the transition-state theory of Eyring (1935).
Corresponding to Eq. (3.31) for the rate constant of a unimolecular reaction, the rate
constant for a bimolecular reaction is

(4.13)

where qP and qL are the partition functions of the protein and the ligand, respectively;  is
a partition function calculated for a protein-ligand pair without including the reaction
coordinate (as signified by the prime), which is fixed at the value defining the transition
state; U‡ is the protein-ligand interaction energy in the transition state; and V is the volume
of the container.

To illustrate, consider the centrosymmetric model. We calculate the partition functions
according to classical statistical mechanics. The protein molecule has only three degrees of
freedom, for overall translation. Hence qP = h−3V(2πkBTmP)3/2, where mP is the mass of

the protein. Similarly, qL = h−3V(2πkBTmL)3/2.  involves five degrees of freedom: three
for overall translation and two for relative translation orthogonal to r; the masses
corresponding to these two types of motions are the total mass, mP + mL, and reduced mass,
mPmL/(mP + mL), respectively. Hence

The activation-controlled rate constant is finally given by

(4.14)

As to be expected from a classical treatment, Planck’s constant disappears from the final
result.

4.3 Diffusion-controlled regime
We now explicitly model the overall translational and rotation diffusion of the reactant
molecules and implicitly model the barrier crossing into the inner energy well. We show that
the overall association rate constant can be written in the form of Eq. (4.4); thereafter we
focus on the diffusion-controlled rate constant kD.

4.3.1 Centrosymmetric model—In the Smoluchowski (1917) approach to modeling
diffusion-influenced bimolecular reactions, one works with the pair distribution function,
P(r,t). It satisfies the Smoluchowski equation, Eq. (4.5), with a radiation boundary condition
(Collins & Kimball, 1949)

(4.15a)

and a value
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(4.15b)

The initial value of P(r,t) is

(4.15c)

corresponding to an equilibrium distribution. A time-dependent rate coefficient is defined as
the total inward flux at r = R:

(4.16)

It can be shown that, if a protein binds irreversibly [as modeled by the radiation boundary
condition of Eq. (4.15a)] with a ligand that is in excess, the decay of the protein
concentration is governed by (Solc & Stockmayer, 1971; Szabo, 1989)

(4.17a)

Or,

(4.17b)

Note that Cp(t)/Cp(0) is equivalent to the survival probability of a single protein molecule
surrounded by ligand molecules at concentration CL.

The long-time limit, ka(∞), of the rate coefficient introduced here corresponds to the
association rate constant of Subsection 4.1. We will continue to denote ka(∞) simply as ka.
Solving for P(r,∞), one obtains

(4.18)

where kD is the Debye result given by Eq. (4.9). This result for the overall association rate
constant, as well as similar results below in this subsection, conforms to Eq. (4.4). As we
explained above, the reactivity κ models the transition from the transient complex to the
native complex. (When κ = 0, the boundary becomes reflecting.) The limit κ → ∞
corresponds to the situation where a reactant pair once reaching the transient complex is
instantaneously transformed into the native complex. The rate of association is then limited
by the relative translational diffusion to reach the transient complex; that is why the rate
constant in this limit, kD, is referred to as diffusion-controlled. In this limit, the radiation
boundary condition reduces to the absorbing boundary condition:

(4.19)

In short, the diffusion-controlled rate constant kD is obtained by setting an absorbing
condition at the transient complex. In the opposite limit κ → 0, diffusion is able to replenish
the reactant pairs lost by forming the native complex, so the initial equilibrium distribution
is maintained. Then the steady-state value, ka(∞), is the same as the initial value, ka(0); i.e.,
the rate constant approaches
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(4.20)

which is the activation-controlled limit.

When the interaction potential U(r) is absent, the Debye result reduces to the well-known
Smoluchowski formula

(4.21)

Throughout this section, we use a superscript “0” to signify a rate constant calculated in the

absence of an interaction potential;  is the limit of the rate constant set by random
diffusion and is referred to as the basal rate constant. An attractive potential is expected to
increase kD. To illustrate, consider a Coulomb interaction potential, U(r) = −Q/r. Evaluating
the Debye formula, we find

(4.22)

When the value of the potential at contact, U(R), is 9kBT, the electrostatic attraction results
in a modest increase of 9-fold in the association rate constant. This result will be contrasted
below with much more significant electrostatic rate enhancement predicted from a more
realistic model of protein-protein association.

The probability, S(t|r0), that a protein-ligand pair, started at an initial separation r0, has not
formed the native complex at time t is known as the survival probability. It is related to the
pair distribution function via

(4.23)

and hence satisfies the equation

(4.24)

with the boundary conditions

(4.25a)

(4.25b)

At t = ∞, the left-hand-side of Eq. (4.24) becomes 0, and the survival probability is called
the escape probability. When the boundary at r = R is absorbing, the escape probability is
very similar in form to the splitting probability of Subsubsection 3.6.2. For the present
model one has

(4.26)
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which can be compared with the splitting probability given by Eq. (3.105). However, the
behaviors of the splitting probability there and the escape probability here are very different.
The energy function modeling the unimolecular transition between two states features a
barrier, where the splitting probability undergoes a rapid transition from 0 to 1. In contrast,
the energy function modeling intermolecular interaction has a longer range and is relatively
monotonic, hence the transition of the escape probability from 0 to 1 is more gradual. When
no interaction potential is present, the escape probability is 1 − a/r0.

As we clarified in Subsection 4.1, an absorbing boundary is equivalent to a narrow deep
energy well in front of a reflecting wall. If the absorbing boundary for calculating kD is
replaced by such an energy well, then the time-integral formula, Eq. (4.12), for the
association rate constant can be used to calculate kD. We thus have

(4.27)

where Δ, the width of the energy well, approaches zero, and the conditional probability
density ρR(r,t|r0) satisfies a reflecting boundary condition at r = R.† From this formula for
kD, one can also derive the Debye result [Eq. (4.9)].

4.3.2 Anisotropic reactivity on protein molecule—As we emphasized, protein-ligand
native complexes are stereospecific. The ligand binds to a specific site on the protein surface
rather than the whole surface; hence the reactant pair must satisfy constraints in both
separation and relative orientation before the native complex can be formed. One then needs
to model both relative translational diffusion and rotational diffusion of the reactant
molecules. Here we treat the case where the ligand is point-like so that its orientation does
not come into play; the case where rotational diffusion of the ligand is also modeled is
deferred to the next subsubsection. For simplicity we assume that the protein molecule is
axially symmetric; we denote the axis of symmetric by the unit vector nP. The pair
distribution function now depends both on r and on nP, and is denoted as P(r,nP,t). On
account of rotational diffusion, the governing equation for P(r,nP,t) is

(4.28a)

where ℒP(nP) is a rotational diffusion operator given by

(4.28b)

with DP denoting the rotational diffusion constant of the protein molecule. The
stereospecific binding site can be modeled by modifying the radiation boundary condition to
one that is of the radiation type if the ligand falls inside the site and becomes reflecting
otherwise (Solc & Stockmayer, 1971). That is, at r = R,

†The conditional probability density should be solved with the original energy function U(r) modified to include a narrow deep energy
well at r = R. For example, one may add to U(r) a function with value −Ud for R < r < R + Δ and 0 elsewhere. When Δ → 0 and Ud
→ ∞, the effect of the narrow deep energy well is to introduce a factor exp(Ud/kBT) to the value of the conditional probability
density. The same factor also appears in the Boltzmann factors in Eq. (4.27); therefore removing this factor does not affect the final
result, Eq. (4.27), for the rate constant.

Zhou Page 41

Q Rev Biophys. Author manuscript; available in PMC 2013 January 09.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(4.29)

where r̂ is the unit vector along r and θ* (r̂, nP) has value 1 if the angle between r̂ and nP is
within the angle span, δP, of the “reactive patch” and value 0 otherwise.

The boundary condition of Eq. (4.29) is a mixed type (i.e., involving the pair distribution in
one part of the boundary and its flux in another), which poses a mathematical challenge. To
get around this problem, Shoup et al. (1981) introduced an approximation. They assume that
the flux is a constant over the reactive patch, and this constant is determined by requiring
that Eq. (4.29a) is satisfied only on averaging over the reactive patch, not at every point over
it. With this constant-flux approximation, the boundary condition at r = R now becomes

(4.30)

where J (which depends on time for the time-dependent problem) is fixed by requiring

(4.30c)

with <…>* denoting an average over the reactive patch. In the absence of an interaction
potential, the association rate constant is given by

(4.31a)

where

(4.31b)

(4.31c)

In the last two equations, FP = (1 − cosδP)/2 is the surface fraction covered by the reactive
patch; μl = [l(l + 1)DP/D]1/2R; Pl(x) are Legendre polynomials; and (π/2x)1/2Kl+1/2(x) are

modified Bessel functions of the third kind. The above result for  was essentially guessed
by Solc and Stockmayer (1973). Berg (1985) found that ΛP/FP can be approximated by

(4.31d)

where νP = [(1 + DPR2/D)/2]1/2. When DP → 0, Eq. (4.31c) reduces to

(4.31e)
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The case of small reactive patches, corresponding to stereospecific binding, is of particular
interest. A patch with angle span δP → 0 on a spherical surface is equivalent to a disk with
radius a = RδP on an infinite reflecting plane. Applying the constant-flux approximation to

the latter problem, Shoup et al. found  (assuming DP = 0). This is to be

compared with the exact solution of the problem,  (Hill, 1975). These results show
that the constant-flux approximation underestimates the diffusion-controlled rate constant by

~7% when δP → 0. Note that, when δP → 0, , not δP
2 as suggested by the surface

fraction of the reactive patch. The weaker δp-dependence (and hence higher value) of 
comes about because when a ligand molecule reaches the reflecting part of the protein
surface, it can have more chances of reaching the reactive patch due to the diffusive nature
of its motion.

Zhou (1993) applied the constant-flux approximation to find the rate constant when a
Coulomb potential U(r) = −Q/r is present. The result is given by

(4.32a)

where

(4.32b)

When the rotation diffusion constant DP = 0, the diffusion-controlled rate constant is

(4.32c)

where Q1 = U(R)/2kBT and (π/2x)1/2Il+1/2(x) are modified Bessel functions of the first kind.
It was observed that, as δP → 0, terms with larger and larger l become dominating in the
sum over l; for those terms, the Q1-dependent factors become less and less important.
Therefore the whole denominator becomes nearly independent of Q1, and consequently

(4.33)

where  is the basal rate constant of Eq. (4.31e). The generality of Eq. (4.33) for small
reactive patches (i.e., stereospecific binding) was recognized. In fact, this approximate
formula was first suggested by results obtained by Brownian dynamics simulations, and the
above deduction served to confirm the simulation results. Below we further elaborate on the
generality of Eq. (4.33) and its use in modeling the effect of long-range electrostatic
attraction on stereospecific protein-ligand binding.

4.3.3 Anisotropic reactivity on both protein and ligand molecules: free
diffusion—Before we further consider the effect of the interaction potential, we present the
more general binding model in which the protein molecule and the ligand molecule each
bear a reactive patch, which for now is assumed to be axially symmetric. The pair
distribution function, P(r,nP,nL,t), is now governed by

(4.34)
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where ℒL(nL) is the diffusion operator for ligand rotation [see Eq. (4.28b)]. The boundary
condition at r = R becomes (Solc & Stockmayer, 1971)

(4.35)

where θ* (r̂,nP, nL) has value 1 if the angles between r̂ and nP and between r̂ and nL are
within the angle spans, δP and δL, of the respective reactive patches, and value 0 otherwise.

The rate constant for the one-patch model in the absence of an interaction potential is given

by Eqs. (4.31a–c). To derive  for the present two-patch model, Solc and Stockmayer
(1973) first devised a reaction scheme for the one-patch model. The scheme involves two
intermediates, in which the ligand is in contact with the reflecting part of the protein and
with the reactive patch, respectively. The overall rate constant of this scheme was compared
to Eqs. (4.31a–c) to identify the individual rate constants in the scheme. They then extended

this scheme to the two-patch model, now involving four intermediates. The expression for 
via this “quasichemical” scheme for the two-patch model can again be written in the form of
Eq. (4.31a), but now

(4.36a)

(4.36b)

where

(4.36c)

with ΛP defined by Eq. (4.31c) and ΛL defined analogously. For small patches, using Eq.
(4.31d) for ΛP and a similar approximation for ΛL and keeping the lowest orders, one finds
(Berg, 1985)

(4.36d)

This result shows that, when δP and δL → 0, , not δP
2 as suggested by the

surface fractions of the reactive patches. Again,  is higher than expected from surface
fractions because the diffusive nature of its motion allows the reactant pair to make repeated
attempts to reach the absorbing boundary.

By applying the constant-flux approximation, Zhou (1993) solved the diffusion equation for

the two-patch model to find the time-dependent rate coefficient . The result, in Laplace
transform is given by

(4.37a)

where  is given by Eq. (4.36a). Note that the long-time limit of  is given by the s →

0 limit of  and similarly for . The basal rate coefficient is
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(4.37b)

where μl1l2 (s) = [(l1(l1 + 1)DP + l2(l2 + 1)DL + s)]1/2 R and Cll1l2 is expressed in terms of
Wigner’s 3-j symbols:

The one-patch model is a special case with δL = π. In that case the only term in the
summation over l2 is l2 = 0; it can be verified that the s → 0 limit of Eq. (4.37b) reduces to
Eq. (4.31c) of the one-patch model. Numerically the results for the basal rate constant by the
quasichemical scheme and by the constant-flux approximation are very close.

A third solution for the basal rate constant was obtained by Temkin and Yakobson (1984),
using a formula obtained by Doi (1975a; 1975b). Inspired by the closure approximation of
Wilemski and Fixman (1973), Doi derived a variational formula for the basal rate constant.
With the simplest trial function, the basal rate constant for the present case takes the form

(4.38)

where, for notational simplicity, we have written (r,nP,nL) collectively as x, and  is
the conditional probability for free diffusion subject to a reflecting boundary condition at r =
R. It can be recognized that Eq. (4.38) is a generalization of the time-integral formula of Eq.
(4.27). Temkin and Yakobson’s solution entailed finding the conditional probability and
evaluating the integrals. The final result is identical to the s → 0 limit of Eq. (4.37b),
suggesting that the time-integral formula and the constant-flux approximation are
equivalent. This equivalence was proven by Zhou and Szabo (1996a); see Subsubsection
4.3.5.

The two-patch model was taken to its limit when the restriction on axial symmetric of the
reactive patches was removed (Schlosshauer & Baker, 2002). Now one additional rotational
degree of freedom, i.e., rotation angle χP or χL around the unit vector nP or nL, needs to be
accounted for each reactant molecule. Using the constant-flux approximation, Schlosshauer
and Baker were able to obtain the basal rate constant.

4.3.4 Anisotropic reactivity on both protein and ligand molecules: effect of
interaction potential—Zhou (1993) treated the two-patch model when a centrosymmetric
interaction potential, U(r), is present. Applying the constant-flux approximation, he found

(4.39a)

The initial rate coefficient is
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(4.39b)

The diffusion-controlled rate coefficient is

(4.39c)

where a prime signifies a derivative with respect to r, and fl(r; μ) is a function that satisfies

(4.39d)

and decays to zero as r → ∞. When U(r) = 0, Eq. (4.39c) reduces to Eq. (4.37b).

While no solution of Eq. (4.39d) could be found for an arbitrary U(r), Zhou (1997) was able
to solve Eq. (4.39d) for two potential functions: a square-well potential and U(r) =
−2kBTln[1 + (exp(−U(R)/2kBT) − 1)R/r]. A main aim for finding explicit results of kD for
these potentials is to demonstrate the accuracy of the simple formula given by Eq. (4.33) for
small patches. For example, at δP = δL = 5°, the prediction of Eq. (4.33) overestimates the
result given by Eq. (4.39c) for the logarithmic potential by merely 5% when U(R) = −9kBT.

The rate enhancement, , by this potential is ~8000. This dramatic rate enhancement is
to be contrasted with the modest result of Subsubsection 4.3.1 for the case where the
reactant molecules have isotropic reactivity.

4.3.5 Generalization of Eq. (4.33)—Equation (4.33) presents an enormous
simplification for accounting for the effect of interaction potentials on association rate
constant. The individual results summarized above suggest that it is quite general for
stereospecific binding. A general form of Eq. (4.33) was established through a pair of papers
in 1996.

In the first paper, Zhou and Szabo (1996a) considered a general binding model in which the
relative translational and overall rotational degrees of freedom of the reactant pair are
collectively denoted as x. The transition from the transient complex to the native complex
was modeled not by a radiation or absorbing boundary condition. Rather, the transient
complex was assumed to be confined to a “reactive region” in x space, specified by the
function θ*(x) with value 1 in the reactive region and value 0 elsewhere. From the reactive
region, the reactant pair forms the native complex with a rate constant k+. The governing
equation for the pair distribution function is

(4.40)

where ℒ(x) is an operator modeling the diffusional motion of the reactant pair. This model
is similar in spirit to the Agmon-Hopfield model [see Eq. (3.89)]; it can also be viewed as a
microscopic implementation of reaction scheme (4.1). Because the transition from the
transient complex to the native complex is accounted for by the reaction term in Eq. (4.40),
the inner boundary is reflecting. The rate coefficient is given by

(4.41)
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When the reactive region spans a patch on the inner boundary and a thickness Δ → 0 in the
normal direction, then the sink term in Eq. (4.40) is equivalent to a radiation boundary
condition on the reactive patch, with κ given by k+Δ (which uncoincidentally is consistent
with the discussion of Subsection 4.1). The constant-flux approximation is derived when the
pair distribution is assumed to follow the equilibrium distribution, Peq(x) ∝ exp[−U(x)/kBT],
but with a time-dependent magnitude. Then it was shown that the rate coefficient can again
be written as Eq. (4.39a), with

(4.42a)

(4.42b)

where <…>* denotes an average over the reactive region [the last step of Eq. (4.42a) applies
to a small reactive region], and ρR (x,t | x0) is the conditional probability satisfying

(4.43)

subject to a reflecting condition on the inner boundary. Equation (4.42b) reduces to all the
time-integral formulas for rate constants, presented above in this subsection under various
situations, including Eq. (4.38) for the two-patch model.

In a subsequent paper (Zhou, 1996), it was noted that, when the interaction potential U(x) is
long-ranged so that it is almost constant in the reactive region and its vicinity, then ρR (x,t |

x0) is almost independent of the potential, i.e., , for x and x0 both
inside the reactive region. Consequently

(4.44)

This is finally the general result that provides a powerful method for modeling the effect of
long-range electrostatic attraction on stereospecific protein-ligand binding.

That a small reactive region is necessary for the validity of Eq. (4.44) can be demonstrated
by the Debye result for the centrosymmetric model, in which the native complex has no
requirement on relative orientation. In particular, Eq. (4.22), the Debye result for a
Coulombic potential shows a very different dependence on the potential than Eq. (4.44). As
noted above, the rate enhancement given by Eq. (4.22) is much more modest than would be
predicted by Eq. (4.44).

To complete the connection with reaction scheme (4.1), we note that the association constant
for the transient complex is

(4.45a)

and the rate constant for dissociating the transient complex by diffusion is
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(4.45b)

The last result could also be derived from a time-integral formula, Eq. (3.88), of Section 3.
The right-hand-side can be recognized as the mean residence time in the reactive region.
Ligand molecules move out of the reactive region via diffusion; the pathway to form the
native complex is turned off [see Eq. (4.43)]. The above derivation of Eq. (4.44) is the same
as proving that the mean residence time is nearly independent of the long-range interaction
potential. As observed by Zhou et al. (1997), the smaller the reactive region, the faster the
ligand population in it will decay, and hence the shorter the mean residence time. If the
mean residence time is really short, then the ligand molecules that have diffused out will not
move very far away. Now if the interaction potential does not vary significantly in the
reactive region and its vicinity, then the ligand molecules would have moved in an
essentially uniform potential. Consequently k−D would be nearly the same as if the potential
is absent.‡

4.3.6 Atomistic models: transient complex theory—The derivation of Eq. (4.44)
makes it clear that its validity is subject to the condition that the reactive region is small
while the interaction potential is long-ranged. This condition is exactly met (fortuitously) for
stereospecific protein-ligand binding under the influence of electrostatic attraction. The
accuracy of Eq. (4.44) for atomistic protein-ligand models has been demonstrated by
comparison against Brownian dynamics simulations (Zhou et al., 1996; Zhou et al., 1997;
Zhou et al., 1998a).

The dependence of the diffusion-controlled rate constant on interaction potential given by
Eq. (4.44) has an Arrhenius appearance. Such a dependence is expected for the activation-
controlled rate constant kA [see, e.g., Eq. (4.42a)], but totally unexpected for kD [see, e.g.,
Eq. (4.22)]. Despite the Arrhenius appearance, kD does not model an activation process.§

The average interaction energy of the transient complex, <U>*, which superficially
resembles the activation energy in Eyring’s and Kramers’ theories, is typically negative
(leading to rate enhancement) instead of positive. Unlike the processes studied by Eyring
and Kramers, where an energy barrier is what hinders the rate, the diffusion-controlled rate
of protein-ligand binding is hindered by the translational and rotational constraints of the
transient complex.

To calculate kD, the transient complex has to be specified. Rather than being guided by any
theoretical considerations, for many years the location of the transient complex (or, its
equivalence in the form of an absorbing boundary) was proposed in an ad hoc way and often
adjusted for best agreement with experiment (Northrup et al., 1986; Northrup & Erickson,
1992; Zhou, 1993; Zhou et al., 1996; Zhou et al., 1997; Gabdoulline & Wade, 1997; Zhou et

‡Zhou et al. (2007) also presented a direct rationalization of why kD, the diffusion-controlled rate constant for reaching the reactive
region, is proportional to <exp(−U/kBT>*. When the reactive region is really small, a ligand molecule will have to explore the vicinity
around it for a long time before being captured in it. The slow capture means that kD can be approximated as the product of the
equilibrium constant for being in the vicinity and a first-order rate constant for transferring into the reactive region. Now the
equilibrium constant is proportion to <exp(−U/kBT>*, whereas the first-order rate constant, just like the mean residence time, is
nearly independent of the long-range potential. Therefore kD is proportion to <exp(−U/kBT>*.
§Because of the Arrhenius appearance, for a time the intermediate that is now called the transient complex was referred to as the
transition state (Vijayakumar et al., 1998; Zhou, 2001a; Alsallaq & Zhou, 2007a; 2007b). That nomenclature was misleading and the
transition state is now reserved for the barrier separating the transient complex and the native complex. Another term, encounter
complex, has been used for intermediates along the pathway of protein-ligand binding. It appears that this term is assigned different
meanings in different contexts, and for that reason we avoid its use here.
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al., 1998a; Vijayakumar et al., 1998; Elcock et al., 1999; Altobelli & Subramaniam, 2000;
Gabdoulline & Wade, 2001; Gabdoulline et al., 2003; Miyashita et al., 2004; Spaar et al.,
2006). In order to predict association rate constants from theory alone, the transient complex
has to be specified without reference to experiment. The problem is especially challenging
for protein-protein association, given the severity of orientational constraints on both
reactant molecules. A solution was proposed by Alsallaq and Zhou (Alsallaq & Zhou,
2007a), based on analyzing the interaction energy landscape of associating proteins.

As discussed in Subsection 4.1, in a complete theory, the overall association rate constant ka
should not be sensitive to where the transient complex is placed. If it is placed far away from
the native complex, then kD will be large but k+ will be small. Conversely, if it is placed
very close to the native complex, then kD will be reduced but k+ will become very large.
Either way, Eq. (4.4) is expected to give nearly the same result for ka. However, given the
considerable difficulty and uncertainty in the calculation of k+, it is highly desirable to use
kD as a close approximation for ka. Then there is an optimal location for placing the
transient complex (Zhou, 2001a). If it is placed too far from the native complex, then the
resulting kD would not be a useful approximation for ka. On the other hand, placing the
transient complex too close to the native complex would mean that short-range interactions
and conformational rearrangement have to be dealt with in calculating kD. The native
complex sits in a deep well in the interaction energy landscape. The optimal placement for
the transient-complex ensemble is at the outer boundary of the native-complex energy well
(Zhou, 2001a; Alsallaq & Zhou, 2007a) (Fig. 4b).

The algorithm for identifying the transient complex was based on the following observation:
inside the native-complex energy well, translation and rotation are restricted, but once
outside the proteins gain significant translational and rotational freedom (Zhou, 2001a) (Fig.
5a). Thus the outer boundary of the native-complex energy well coincides with the onset of
translational and rotational freedom. To simplify the calculations required for determining
the transient complex, the short-range interaction energy stabilizing the native complex was
modeled by the number of contacts, Nc, formed between the protein partners. Translational
and rotational freedom was measured by σχ(Nc), the standard deviation of the rotation angle
χ in configurations with a given contact level Nc. A sharp increase in σχ with decreasing Nc
marks the onset of translational and rotational freedom and hence the location of the
transition complex (Fig. 5b).

Since kD is used as the prediction for ka, Eq. (4.44) can be rewritten as an equation for ka:

(4.46)

where  now denotes the basal rate constant, i.e., the rate constant for reaching the transient
complex by translational and rotational diffusion in the absence of any biasing force, and the
interaction potential is denoted with a subscript “el” to signify that only electrostatic
interactions are to be included. The neglect of short-ranged non-electrostatic effects from the
Boltzmann factor is based on two considerations. First, transient-complex configurations are
separated by at least one layer of solvent (Alsallaq & Zhou, 2007b; Alsallaq & Zhou, 2008),
therefore short-ranged forces such as hydrophobic and van der Waals interactions are
relatively weak in the diffusion process leading to the transient complex. Second, short-
range interactions, even when present within the transient complex, contribute much less to

rate enhancement (i.e., ) compared to long-range interactions (see next subsubsection).
However, short-range interactions are essential for determining the location and size of the
transient-complex ensemble in configurational space, which in turn affect the magnitude of
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. A transient-complex ensemble that is less restricted in translation and rotation will lead

to a higher .

The algorithm for identifying the transient-complex ensemble presented above along with
Eq. (4.46) constitutes the transient-complex theory. The theory provides an interesting
dissection on the wide spectrum of observed rate constants of protein-protein association
(Alsallaq & Zhou, 2008). Brownian dynamics simulations have found that basal rate
constants, set by unbiased diffusion, are in the range of 104 − 106 M−1s−1 (Alsallaq & Zhou,
2008; Qin & Zhou, 2009). This is the range of rate constants observed on antibody-antigen
binding (Foote & Eisen, 1995; Hoffman et al., 1999; Wassaf et al., 2006); presumably,
antibodies are not specifically optimized for fast binding, and antibody-antigen binding
processes are described well as unbiased diffusion. However, many proteins are observed to
associate faster than the basal rate constant (Miller, 1990; Candia et al., 1992; Escobar et al.,
1993; Murrell-Lagnado & Aldrich, 1993; Goldstein & Miller, 1993; Wallis et al., 1995;
Schreiber & Fersht, 1996; Terlau et al., 1996; Shen et al., 1996; Radic et al., 1997; Wendt et
al., 1997; Shapiro et al., 2000; Baerga-Ortiz et al., 2000; Park & Raines, 2001; Darling et al.,
2002; Walker et al., 2003; Stewart & Van Bruggen, 2004; Uter et al., 2005; Gianni et al.,
2005; Hemsath et al., 2005; Korennykh et al., 2006; Johnson et al., 2007). These association
rate constants must have been enhanced by a biasing force. The electrostatic surfaces of the
reactant partners in these systems indeed show complementarity (Alsallaq & Zhou, 2008;
Schreiber et al., 2009), indicating that electrostatic attraction provides the rate enhancement.
The transient-complex theory suggests that the narrow range of 104 − 106 M−1s−1 serves as a
demarcation: lower rate constants implicate activation control, whereas rate constants in this
range and higher implicate diffusion control, with the higher rate constants further
implicating electrostatic attraction.

As recognized previously (Zhou, 2001a; Zhou, 2003a), the transient-complex theory
provides a nice explanation for a widely observed phenomenon regarding the effects of ionic
strength on protein association kinetics. For many protein complexes that apparently are
under diffusion control, the association rate constant and the dissociation rate constant show
disparate dependences on ionic strength: ka decreases significantly with increasing ionic
strength, whereas kd is only modestly affected by ionic strength (Miller, 1990; Candia et al.,
1992; Escobar et al., 1993; Goldstein & Miller, 1993; Murrell-Lagnado & Aldrich, 1993;
Schreiber & Fersht, 1993; Wallis et al., 1995; Shen et al., 1996; Radic et al., 1997; Wendt et
al., 1997; Baerga-Ortiz et al., 2000; Darling et al., 2002; Walker et al., 2003; Stewart & Van
Bruggen, 2004; Gianni et al., 2005; Hemsath et al., 2005). Ionic strength serves to modulate
the magnitude of the electrostatic attraction between two proteins; the attraction is weakened
when ionic strength is increased, leading to significant decrease in ka. Under diffusion
control, kd ≈ (k−/k+)k−D [Eq. Eq. (4.2b)]; neither k−D nor k−/k+ has much dependence on
ionic strength. The former is because k−D does not depend much at all on the electrostatic
attraction (see preceding subsubsection). The latter comes about because of the close
proximity of the transient complex and the native complex; then ionic strength modulates
electrostatic interactions in them to similar extents, and consequently has little effect on their
equilibrium constant k−/k+.

Quantitative test against experimental data on many protein-protein and protein-RNA
complexes (Wallis et al., 1995; Schreiber & Fersht, 1993; 1996; Shen et al., 1996; Radic et
al., 1997; Law et al., 2006) has clearly demonstrated the predictive power of the transient-
complex theory (Alsallaq & Zhou, 2007b; Alsallaq & Zhou, 2008; Qin & Zhou, 2008). In a
recent study, the theory was used to dissect a record-setting rate constant, at > 1010 M−1s−1

(Korennykh et al., 2006), of a ribotoxin binding to a biologically essential RNA loop on the
ribosome (Qin & Zhou, 2009). Electrostatic attraction provides a 5 × 106-fold rate
enhancement. In comparison, the binding rate constant to the isolated RNA loop is
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electrostatically enhanced by 5 × 102-fold, in line with results found in other protein-protein
and protein RNA complexes (Alsallaq & Zhou, 2007b; Alsallaq & Zhou, 2008; Qin & Zhou,
2008). There are two contributions to the additional 104-fold rate enhancement. First, the
rest of the ribosome provides extra electrostatic attraction to the ribotoxin. Second,
neighboring ribosomal proteins reshape the binding interface to position the transient
complex into a region in configurational space where the electrostatic attraction between the
ribotoxin and the RNA loop is particularly strong.

4.3.7 Facilitation by nonspecific binding—A biological problem of great interest is
the search by DNA-binding proteins for specific sites on genomic DNA. This potentially is a
slow process, akin to finding a needle (i.e., a specific site) in a haystack (i.e., genomic
DNA). That it is completed in short times routinely in cells prompted Adam and Delbruck
(1968) to look for an explanation. Their key observation is that, by nonspecifically binding
to the DNA surface, a protein searches for a specific site in a one-dimensional space rather
than three-dimensional spaces. The search time, as their calculations of first mean passage
time show, in the lower dimensionality is significantly shorter. This reduction of
dimensionality idea has been further developed (Riggs et al., 1970; Richter & Eigen, 1974;
Schranner & Richter, 1978; Berg et al., 1981; Berg & Ehrenberg, 1982; Halford & Marko,
2004). In particular, Berg et al. (1981) phenomenologically described four modes of
nonspecific-binding facilitated translocation along the DNA: sliding, hopping, jumping, and
intersegment transfer. Berg and Ehrenberg (1982) empirically incorporated diffusion on the
DNA surface, or surface diffusion, into the Smoluchowski approach to diffusion-influenced
reactions.

Zhou and Szabo (2004) introduced a more fundamental and realistic treatment, in which
nonspecific binding is accounted for by a short-range attractive potential around the DNA
surface. The first three modes described by Berg et al. (1981) are all encompassed in this
treatment and there is no need (and rigorously it is impossible) to distinguish them. (The
fourth mode, intersegment transfer, applies to bivalent proteins and is not dealt with in this
work.) Zhou and Szabo modeled the protein as an isotropically reactive sphere, the DNA as
an infinite cylinder (with contact distance R), and the specific binding site as a reactive strip
(with height 2η); the short-range attractive potential, U(r), was assumed to be axially
symmetric (r here denotes distance to the cylinder axis). Applying the constant-flux
approximation, the rate coefficient again can be written in the form of Eq. (4.39a). The
diffusion-controlled rate coefficient is

(4.47a)

where μ = (λ2 + s/D)1/2R, and f(r; μ) satisfies

(4.47b)

and decays to zero as r → ∞.

For a square-well potential with width Δ and depth −U*, solution of Eq. (4.47b) leads to

(4.47c)

where
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(4.47d)

with μ1 = μ(1 + Δ/R). For a model with R = 30 Å and η = 3 Å, at U* = −9kBT, Eqs. (4.47)
predict rate enhancements of 18- and 38-fold, respectively, for Δ = 1 and 5 Å. These
enhancements are much more modest than if kD scales with exp(−U*/kBT) [Eq. (4.44)], due
to the short-range nature of such an interaction potential. On the other hand, the
nonspecifically bound complex is probably also stabilized by non-electrostatic interactions,
so the magnitude of the contact potential is much greater than the value from electrostatic
attraction alone.

The above treatment was extended to account for the fact the diffusion constant for one-
dimensional diffusion along the DNA is much smaller than that for three-dimensional
diffusion in the bulk solution (Blainey et al., 2006; Wang et al., 2006; Laurence et al., 2008),
and to the case of finite DNA lengths (Zhou, 2005b). We note that similar modeling has
been used to study the role of nonspecific binding in the search for membrane-bound
receptors (Adam & Delbruck, 1968; Richter & Eigen, 1974; Berg, 1985; Zhou & Szabo,
2004).

4.3.8 Comment on misuse of Smoluchowski’s result—The Smoluchowski result,
Eq. (4.21), which predicts a basal rate constant in the range of 109 − 1010 M−1s−1, is often
cited in the literature as providing an upper bound to protein-ligand binding rate constants.
However, this result was derived for reactant molecules with isotropic reactivity and is thus
totally unrealistic for stereospecific protein-ligand binding. As stated above, with atomistic
models, the basal rate constants are found in the range of 104 − 106 M−1s−1 for protein-
protein and protein-RNA complexes (Alsallaq & Zhou, 2008; Qin & Zhou, 2008;
Schlosshauer & Baker, 2004). The five orders of magnitude reduction in basal rate constant
is due to severe orientational constraints that two reactant molecules must satisfy before
forming the native complex.

Sometimes the Smoluchowski result is corrected to account for the orientational constraints,

in the form , with the correction factor estimated from surface fractions (e.g.,
Korennykh et al., 2007). An estimate based surface fractions overlooks the ability of the
reactant molecules to make repeated attempts to reach the transient complex, afforded by the
diffusive nature of their motions. Another type of correction involves an activation energy,
E‡, with the association rate constant given by ka = 4πDR xp(−E‡/kBT) (e.g., Pape et al.,
1998). There is no theoretical basis for such a combination of a diffusion-controlled rate
constant (i.e., 4πDR  with an activation energy. As we stressed, the diffusion-controlled
rate constant is not governed by an activation process. However, the diffusion-controlled
rate constant and the activation-controlled rate constant can be combined via Eq. (4.4) to
yield the overall association rate constant.

4.4 Influence of conformational fluctuations
So far we have assumed that the reactant molecules are frozen in their native conformations.
How do conformational fluctuations affect the association rate constant? Szabo et al. (1982)
addressed this question by introducing a simple form of conformational fluctuations into the
single-patch model discussed above. They assumed that the ligand molecule can alternative
between two conformations: an “active” conformation for which binding can proceed just as
have been modeled through a radiation boundary condition on a reactive patch, and an
“inactive” conformation for which the reactive patch is reflecting. The two conformations
switch via rate processes:
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(4.48)

The conformational switch, referred to as gating, is assumed to be uncoupled to the
translational and rotational diffusion of the reactant molecules. Again using the constant-
flux approximation, Szabo et al. were able to express the “gated” association rate constant,
kG, to the Laplace transform of the “ungated” rate coefficient:

(4.49)

where ω0 = ω0+ + ω0−. This result has been extended to the time-dependent rate coefficient
kG(t) (in Laplace space) and to the case where both reactant molecules are gated (Zhou &
Szabo, 1996a).

When the gating is slow (i.e., ω0+ and ω0−· → 0), ω0k̂a (ω0) → ka ; Eq. (4.49) becomes

(4.50a)

In this limit, a ligand molecule can contribute to the inward flux on the inner boundary only
if it was initially in the active conformation, which it adopts with the equilibrium probability
ρ+eq. Hence the total rate constant is this equilibrium probability times the rate constant for a
ligand molecule that stays in the active form. In the opposite limit (i.e., ω0+ and ω0− → ∞),
ω0 k̂a (ω0) → ka (0) ; therefore

(4.50b)

where we have expressed ka in terms of kD and ka(0) [see Eq. (4.32a)]. This is the rate
constant for ungated binding with effective reactivity ρ+eqκ; that effective reactivity is just
what is expected when the conformational switch is fast. If the binding of the active form is
diffusion-controlled, i.e., κ → ∞, Eq. (4.50b) reduces to kG ≈ kD. That is, the diffusion-
controlled rate constant is unhindered when the conformational switch is fast. This result is
very significant. It means that diffusion-controlled rate constants calculated under the
assumption that the reactant molecules are frozen in their native conformations, as is the
case for the transient-complex theory, are valid as long as the conformational fluctuations of
the reactant molecules are fast.

The calculation of kG(t), based on a single protein-ligand pair, is the same whether the
protein or ligand is gated. However, the solution to the many-body problem of a protein
molecule surrounded by an excess of ligand molecules does depend on which reactant is
gated (Zhou & Szabo, 1996b). When the ligand molecules are gated, effectively they
independently bind with the protein molecule, and Eq. (4.17b) still holds for the survival
probability of the protein, except that the rate coefficient is now replaced by kG(t):

(4.51a)

However, when the protein molecule is gated, the dynamics of the ligand molecules around
it become coupled: when the protein undergoes an active to inactive switch, all the
surrounding ligand molecules simultaneously sense a change in boundary condition from
radiation to reflecting. Zhou and Szabo (1996b) proposed the following rate equations
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(4.51b)

for the probabilities, c(t), that the protein survives at time t while in conformation c, c =
“a” for active and “i” for inactive, respectively; t) = a(t) + i(t). The solution of these
rate equations is in good agreement with computer simulations. Under fast gating, Eq.
(4.51b) reduces to Eq. (4.51a).

Some enzymes have buried active sites, with narrow tunnels leading to the exterior;
conformational fluctuations of bottlenecks, or gates, along the tunnels must occur to allow
for substrate access and product release (Zhou & McCammon, 2010). When a gate along the
tunnel to the active site switched between closed and open states according to scheme
(4.48), an approximate result for the gated binding rate constant similar to Eq. (4.49) was
found (Zhou, 1998):

(4.52)

where ka again is the ungated rate constant, and J(t) is the total flux across the gate at time t
when the substrate was started from an equilibrium distribution confined to the outside of
the gate. Ĵ(s) has the following limiting values:

(4.53a)

(4.53b)

where Ag is the area of the gate and <…>g denotes an average over the cross section of the
gate. Using these results, we can find the gated rate constant in the slow gating limit:

(4.54a)

and in the fast gating limit:

(4.54b)

The last result states that, under fast gating, the gated rate constant approaches the ungated
rate constant, even if binding when the gate is open is not limited by diffusion.

Zhou et al. (1998b) used Eq. (4.52) to study the substrate binding rate constant to
acetylcholinesterase, an enzyme with a buried active site but still affording one of the
highest kcat/KM values, at ~ 109 M−1s−1 (Nolte et al., 1980; Pryor et al., 1992; Ordentlich et
al., 1993; Vellom et al., 1993). Analysis of the gating dynamics obtained from molecular
dynamics simulations showed that, for the intended substrate, acetylcholine, it is close to the
fast-gating regime, and the gate rate constant is lower than the ungated rate constant by just
2-fold, even though ρ+eq is only 2%. Combined with the ungated rate constant previously
calculated from Brownian dynamics simulations (Zhou et al., 1996), the gate rate constant is
found to be in the range of measured kcat/KM values. However, for a somewhat larger
substrate, modeling butyrylcholine, the gated rate constant is three orders of magnitude
lower (ρ+eq decreases to 8 × 10−5), in line with similar decreases in kcat/KM observed for
that substrate (Pryor et al., 1992; Ordentlich et al., 1993; Vellom et al., 1993).
Conformational gating thus affords the enzyme exquisite substrate selectivity. That gating is
essential in the selectivity is supported by the observation that when bulky side chains
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constituting the gate are mutated into smaller ones, presumably bringing the gating
dynamics for butyrylcholine toward the fast-gating regime through an increase in ρ+eq, kcat/
KM for butyrylcholine is significantly increased (Pryor et al., 1992; Ordentlich et al., 1993;
Vellom et al., 1993).

4.5 Intermolecular versus intramolecular binding
When the protein and ligand are covalently linked, their binding becomes intramolecular.
Under an approximate treatment of the linker, a simple relation between the equilibrium
constants of the intermolecular and intramolecular binding processes has been derived
(Zhou, 2001b; Zhou & Gilson, 2009). The linker is assumed to be flexible and have
negligible interactions with the protein and ligand; the end-to-end distance at which the
probability density, ρL(r), of the end-to-end vector r is assumed to be much greater other
relevant lengths, such as the size of the native-complex energy well, and the range of a long-
range potential if present. Then

(4.55)

Throughout this subsection we use a superscript L to denote quantities for the intramolecular
process; a denotes the end-to-end vector in the native complex. What are the corresponding
relations between the rate constants of the intermolecular and intramolecular binding
processes?

When the binding is activation-controlled, it is easy to see that

(4.56a)

(4.56b)

When the binding is diffusion-controlled, these relations for the rate constants still hold if

 and that the linker does not affect the relative diffusion constant of the
protein and ligand. The justification is the same as the one leading to Eq. (4.46), which
captures the effect of long-range electrostatic attraction on ka (Zhou, 2002; 2001c). A check
of Eq. (4.56a) is provided by the rate constant for the diffusion-controlled end-to-end contact
formation of a polymer chain obeying Gaussian statistics, obtained by Szabo et al. (1980) by
calculating the mean first passage time. Let the contact distance be a and the mean square of
the end-to-end distance be <r2>. The probability density for the end-to-end vector is

(3/2π<r2>)3/2exp(−3r2/2<r2>). When a ≪ <r2>1/2, which is equivalent to , Szabo et
al.’s result is

The first factor, 4πDa, can be recognized as the diffusion-controlled rate constant for
intermolecular contact formation; the second factor, (3/2π<r2>)3/2, can be recognized as the
probability density of the end-to-end vector at r = a [when a ≪ <r2>1/2, exp(−3a2/2<r2>) →
1]. Hence Szabo et al.’s result conforms to Eq. (4.56a).

Equation (4.55) has been used to derive the association constant for a bivalent ligand, which
features two fragments, connected by a linker, which bind to two separate sites (named 1
and 2) on the protein (Zhou, 2001b). After binding the first fragment, the binding of the
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second fragment becomes intramolecular. The overall association constant of the bivalent
ligand is thus

(4.57)

Here we use a superscript B to denote quantities for the bivalent ligand; Ka1 and Ka2 are the
association constant for the first fragment when the second is absent and vice versa; and a
again denotes the end-to-end vector of the linker in the native complex.

The native complex can be formed by first occupying site 1 and then site 2 or by proceeding
in the reverse order:

Making a steady-state approximation for each singly-bound species, the overall rate constant
for binding the bivalent ligand is

(4.58a)

Applying the approximation of Eq. (4.56a) to  and expressing kd1 and kd2 as ka1/
Ka1 and ka2/Ka2, respectively, we find (Zhou, 2003b)

(4.58b)

But validity of Eq. (4.56a) requires that Ka1ρ(a) and Ka2ρ(a) ≪ 1; hence

(4.58c)

4.6 Reversibility
Up to now we have treated the protein-ligand binding process as though it is irreversible.
The kinetics of reversible diffusion-influenced binding has long attracted the attention of
theorists (Agmon, 1984; Lukzen et al., 1986; Lee & Karplus, 1987; Szabo, 1991; Naumann,
1994; Gopich & Doktorov, 1996; Yang et al., 1998; Gopich & Szabo, 2002). For simplicity
we only consider the pseudo-first order limit, where effectively a single protein molecule is
surrounded by a concentration of ligand molecules. Upon binding with one ligand molecule,
the protein surface becomes reflecting for all the other diffusing ligand molecules. The fact
that the binding of a single ligand molecule instantaneously changes the boundary condition
for the diffusion of all the other ligand molecules renders the problem many-body in nature.
In general the kinetics is quite complicated, but under two limiting situations it is simplified.
The first is when diffusion is infinitely fast (and the binding is thus activation-controlled).
Then a newly released ligand molecule will immediately equilibrate with the other ligand
molecules to reach the equilibrium distribution, and the consequently the ordinary rate
equation, Eq. (2.15), applies. The relaxation function Y(t) = [CP(t) − CPeq]/[CP(0) − CPeq] is
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then given by Eq. (2.16), with the association rate constant ka replaced by the activation-
controlled limit kA. In Laplace space, the relaxation function is

(4.59)

The second limiting situation is when binding and unbinding are under the influence of
diffusion but occur infrequently. Then a newly released ligand molecule will have sufficient
time, before the next binding event, to equilibrate with the other ligand molecules and reach
the steady-state distribution of irreversible binding. Again, the ordinary rate equation applies
for the relaxation of the protein concentration at times longer than that for reaching the
steady-state distribution of irreversible binding, but now the association rate constant is the
ka calculated in the preceding subsections under the assumption of irreversible binding.

When binding and unbinding are under the influence of diffusion and not infrequent, a
newly released ligand molecule and the other ligand molecules do not have sufficient time to
relax to the steady-state distribution of irreversible binding; the concentration of ligand
molecules around the protein will thus be somewhat higher than expected from that
distribution and hence the effective binding rate constant will be higher than the ka for
irreversible binding.

Gopich and Szabo (2002) devised a self-consistent relaxation time approximation for the
kinetics of reversible diffusion-influenced binding. In Laplace space, their relaxation
function is given by

(4.60a)

where

(4.60b)

has a structure similar to a gated rate coefficient for irreversible binding [see Eq. (4.49)].
The “gating” rate k0 is determined self-consistently by requiring that the area under the
relaxation function, i.e., Ŷ(0), is the inverse of k0. When diffusion is infinitely fast, sk̂a (s)
and sk̂G(s) → kA, and Eq. (4.60a) reduces to Eq. (4.59). The connection to a gated rate
coefficient for irreversible binding comes from the fact that the unbound protein allows the
surrounding ligand molecules to bind but the bound protein is reflecting to them. Notice,
however, Eq. (4.60b) differs from Eq. (4.49) by the appearance of ρbeq on the left-hand-side.
As a result, here sk̂G(s) > sk̂a (s), an outcome already anticipated in the preceding paragraph.
In contrast, gating transition from an active form to an inactive from always reduces the rate
coefficient for irreversible binding.

5. Macromolecular Crowding
In applying rate theories to model cellular functions, one must account for the effects of the
crowded environments inside cells. Macromolecular crowding is expected o significantly
affect kinetic properties of proteins and nucleic acids (Zhou et al., 2008). In general,
macromolecular crowding can be treated implicitly by accounting for its effects on the
energy functions and dynamics of the reactant molecules (Zhou, 2004; Minton, 1989).
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In a 1991 paper (Zhou & Szabo, 1991), the implicit treatment of macromolecular crowding
was directly tested against molecular dynamics simulations. [These simulations (Dong et al.,
1989; Zhou & Szabo, 1991) are probably the earliest on protein-protein association under
crowded conditions; interest in such simulations has been revived (Wieczorek &
Zielenkiewicz, 2008; Kim & Yethiraj, 2009).] The total simulation system consisted of a
box of 500 hard spheres, occupying a total volume fraction of 41%. The hard spheres
underwent ballistic motion and elastic collision. One of the hard spheres was labeled as
protein P; different numbers of other hard spheres were labeled as protein L; and the
remaining hard spheres as crowders. Whenever an L sphere collided with the P sphere, a
complex was considered formed instantaneously. From the simulation trajectories, the
survival probability of protein P at different times was obtained. The survival probability
agreed well with prediction of Eq. (4.17b), when the rate coefficient was calculated
according to the centrosymmetric model of Subsubsection 4.3.1 with a radiation boundary
condition. The relative diffusion constant and the effective interaction potential of the
associating proteins implicitly accounted for the effects of the crowders. This study
demonstrates that rate theories can work under crowded conditions after the energetic and
dynamic determinants of the rate constant are corrected for crowding effects. It is now
possible to simulate the Brownian motions of concentrated protein molecules represented at
a realistic level (McGuffee & Elcock, 2006); such simulations will provide new test ground
for rate theories.

Below we present some theoretical results on how macromolecular crowding affects the
dynamics and energetics of reactant molecules.

5.1 Effects on diffusion constants
It seems that not much attention has been paid by theorists to how internal dynamics of
macromolecules is affected by crowding, though the problem has been studied by molecular
dynamics simulations (Cheung et al., 2005; Minh et al., 2006; Mittal & Best, 2010; Qin et
al., 2010). On the other hand, the problem of how the translational diffusion constant of a
macromolecule is affected by crowding is a classical problem. The theory of Tokuyama and
Oppenheim (1994; 1995), for a tracer hard sphere crowded by other identical hard spheres,
is one of the most rigorous. Each particle undergoes Brownian motion, with diffusion
constant D, were it not for hydrodynamic interactions and collisions with other particles.
The effective diffusion constant of the tracer particle, as a function of the crowder volume
fraction Φ, is given by

(5.1a)

where

(5.1b)

(5.1c)
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with b1 = (9Φ/8)1/2, b2 = 11Φ/6, and Φ0 ≈ 0.5718. The numerator of the right-hand-side of
Eq. (5.1a) accounts for collisions; the Ll(Φ) term accounts for local hydrodynamic
interactions (arising from a static distribution of neighboring particles); and the Ln(Φ) term
accounts for nonlocal hydrodynamic interactions (arising from a relaxed distribution of
neighboring particles). For a mixture of different sized “soft” crowders, Tokuyama (2009a;
2009b) suggests fitting experimental data according to the following formula

(5.2)

with η and Φ0 as adjustable parameters.

At Φ = 0.3, which approximates the level of intracellular crowding (Zimmerman & Trach,
1991), Eq. (5.1a) predicts a 5-fold reduction in diffusion constant. This is generally
consistent with the extent of crowding-induced reduction in translational diffusion constant
measured on proteins in cytoplasm and in concentrated solutions (Swaminathan et al., 1997;
Kuttner et al., 2005; Li et al., 2009). These experiments also show that rotational diffusion
constants are reduced to a lesser extent, as to be expected. Similarly, one expects the effect
of crowding on the effective friction coefficient or diffusion constant for internal dynamics
to be relatively modest.

5.2 Effects on free energies of transition states and transient complexes
Crowding also affects the energy functions of macromolecules. A universal and significant
aspect of the crowding effect, known as excluded-volume interactions, arises from the fact
that molecules cannot occupy the same region in space. Excluded-volume interactions
increase the free energy of a macromolecule, but the increase depends on its conformation.
Compared to a more open conformation, a compact conformation is more easily
accommodated into a distribution of crowders, and hence the crowding-induced increase in
free energy, ΔGc, is less. Effectively, crowding changes the relative stability between these
two conformations in favor of the latter. According to scaled particle theory (Lebowitz et al.,
1965), ΔGc for a spherical test particle (with radius Rp) crowded by other spherical
crowders (with radius Rc and occupying a volume fraction Φ) is

(5.3)

where C is the number density of the crowders, Σc and Σp are the surface areas of the
crowders and the test particle, respectively, and Vp is the volume of the test particle. As to
be expected, ΔGc increases with increasing Rp. A recent development extends Eq. (5.3) to
atomistic proteins, with the geometric parameters Rp, Σp, and Vp calculated from protein
conformations (Qin and Zhou, to be published).

When a protein undergoes a folding transition, the transition state is more compact than the
unfolded state. Excluded-volume interactions with crowders are thus expected to stabilize
the folding transition state. Assuming that the effective diffusion constant along the folding
reaction coordinate is not affected (see preceding subsection), then crowding would increase
the folding rate.

Similarly, crowding is expected to stabilize the transient complex of a protein-protein pair
relative to the unbound state. Crowding thus produces two opposing contributions to the
diffusion-controlled association rate constant: a decrease due to the reduction in translational
(and to a less extent rotational) diffusion constant, and an increase due to the stabilization of
the transient complex. The two opposing contributions lead to a rather modest net effect by
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crowding. Assuming that the crowding-induced change in free energy, ΔΔGc, with the
unbound state as reference, is long-ranged, one may adapt Eq. (4.46) to obtain the following
result for the association rate constant under crowding (Zhou, 2004):

(5.4)

where ka is the rate constant in a dilute solution and <ΔΔGc>* is the average of ΔΔGc in
the transient complex. [An additional factor, arising from the disparate effects of crowding
on translational and rotational diffusion constants, may also be introduced; see Eq. (4.36d)].
Calculations suggest that ΔΔGc, like electrostatic attraction between two proteins, is indeed
long-ranged (Qin, Lu, and Zhou, to be published).

6. Illustrative Applications
We now present several examples to illustrate how rate theories can be used to yield insight
at the microscopic level on proteins and DNA undergoing transitions.

6.1 Unfolding/unzipping under force
The unfolding of proteins, unzipping of nucleic acids, and dissociation of protein-ligand
complexes have been studied in many single-molecule “pulling” experiments (Rief et al.,
1997; Kellermayer et al., 1997; Carrion-Vazquez et al., 1999; Rief et al., 1999; Merkel et al.,
1999; Yang et al., 2000; Liphardt et al., 2001; Mathé et al., 2004; Marshall et al., 2005;
Schlierf & Rief, 2006; Chen et al., 2007; Cao et al., 2008; Greenleaf et al., 2008). As the
pulling force is increased monotonically with time, at some point the system undergoes an
unfolding/unzipping (or dissociation) transition. The pulling force at that point is referred to
as the rupture force. The transition can be modeled as a rate process, with the rate coefficient
ku affected by the time-dependent pulling force F(t). The survival probability of the intact
system is then governed by (Evans & Ritchie, 1997)

(6.1a)

which has the solution

(6.1b)

For a stiff system pulled at constant speed v by a spring with spring constant κs, one has F =
κsvt and Ḟ = κsv. The probability density of the rupture force, ρ(F), is related to the survival
probability via

(6.2a)

Hence

(6.2b)

If ku(F) is calculated from a theory (see below), Eq. (6.2b) can be used to predict the
distribution of the rupture force.

Experimentalists face the reverse problem: they measure the distribution of the rupture force
and want to extract ku(F) from their data.** To that end, one rearranges Eq. (6.1a) to express
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ku(F) in terms of S(t) and its time derivative, and then uses Eq. (6.2a) to express the latter
two quantities in terms of ρ(F). The result is

(6.3)

As observed by Dudko et al. (2006; 2008), data collected at different pulling speeds and
analyzed according to Eq. (6.3) should all collapse to the same curve.

Now we consider the calculation of ku(F). The unfolding/unzipping transition can be
modeled as escape from a potential well along the pulling direction. The pulling force
modifies the potential function from U0(x) to U0(x) − Fx, where x is the coordinate along
the pulling direction. Assuming the motion along x is diffusive, Kramers’ formula [Eq.
(3.44)] predicts the force-dependent rate coefficient as (Evans & Ritchie, 1997; Shapiro &
Qian, 1997)

(6.4)

where ku0 is the rate coefficient in the absence of force, and well and barrier mean that the
integrations are restricted to these regions. Dudko et al. (2006) evaluated these integrals
approximately for a quadratic-cusp form and a linear-cubic form of U0(x). The results in
both cases can be written as

(6.5)

where ν = 1/2 and 2/3 for the two forms of potentials, respectively, ΔU‡ is the activation
energy of U0(x), and Δx‡ is the displacement between the bottom of the well to the top of
the barrier. When ν = 1, Eq. (6.5) reduces to Bell’s formula (Bell, 1978).

Dudko et al. (2008) analyzed data from two single-molecule experiments. One studied the
unfolding of a protein by AFM (Schlierf & Rief, 2006); the other studied the voltage-
induced unzipping of a DNA pair in a nanopore (Mathé et al., 2004). The data from each
experiment, collected at different pulling or voltage-ramp speeds, when processed according
to Eq. (6.3), collapsed to a single curve, yielding ku(F). They then fitted these ku(F) to Eq.
(6.5) to generate values for the microscopic parameters ku0, ΔU‡, and Δx‡.

6.2 Kinetics of fluctuating enzymes
Single-molecule experiments have revealed that a single enzyme can produce a wide range
of turnover rates, presumably due to conformational fluctuations (Lu et al., 1998; van Oijen
et al., 2003; Zhang et al., 2004; Antikainen et al., 2005; Flomenbom et al., 2005; Shi et al.,
2006; English et al., 2006). In particular, English et al. (2006) followed events of turning
over of a fluorogenic substrate by β-galactosidase. The turnover rates at each substrate
concentration fluctuate widely, but the dependence of the average rate, as measured by the
inverse of the average waiting time, <τ>, between turnover events, on substrate
concentration conforms to the Michaelis-Menten relation. This apparent Michaelis-Menten

**While technically more challenging, ku(F) can be directly measured by pulling at constant force rather than at constant speed.
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behavior initially was explained by invoking the assumption that conformational exchanges
in the enzyme-substrate complex are extremely slow (i.e., in the quasi-static limit) (Kou et
al., 2005). A later reexamination suggested that the Michaelis-Menten behavior was the
result of a very small kcat (i.e., satisfying the quasi-equilibrium condition) (Min et al., 2006;
see also Qian, 2008).

The sequence of waiting times contains rich information. Besides the average, the
distribution function ϕ(τ) and the correlation function ci = <(τi − <τ>)(τ0 − <τ>)>, where τi
is the ith waiting time, are useful. Min and Xie (2006) showed that the correlation function
measured on β-galactosidase (English et al., 2006) is mimicked by correlation between
events of crossing a tiny (0.1 kBT) energy barrier in a double-well potential, when the
dynamics is governed by the generalized Langevin equation with a power-law memory
kernel. That memory kernel itself was motivated by the observed dynamic behavior of the
distance between electron donor and acceptor in a protein (Min et al., 2005). The distance
fluctuations were modeled well as moving in a harmonic well according to the generalized
Langevin equation with a power-law memory kernel.

6.3 Protein folding and association under crowding
Ai et al. (2006) measured the folding and unfolding rate constants of a four-helix bundle
protein under crowding. In the presence of 85 g/l of a crowding agent, PEG 20K, the folding
rate constant is increased by 2-fold but the unfolding rate constant is essentially unchanged.
Qualitatively, these observations are consistent with crowding effects dominated by
excluded-volume interactions. To carry out a quantitative test, the transition-state ensemble
of this protein was generated from molecular dynamics simulations (Tjong & Zhou, 2010).
It consists of highly compact conformations with residual secondary structures. Calculations
of crowding effects on the transition-state ensemble yield changes in folding and unfolding
rate constants that are in agreement with experimental results.

Yuan et al. (2008) studied the effects of crowding on the pulling force required to unfold
ubiquitin. Compared to the result in a dilute solution (unfolding force at 210 pN), the
unfolding force increases by 24 pN when the concentration of a crowding agent, dextran
40K, is increased to 300 g/l. The increase in pulling force was interpreted as the reflection of
a decrease in the unfolding rate constant. The latter in turn was attributed to the
destabilization of the transition state, relative to the more compact folded state, by dextran
crowding. By representing the transition state as a sphere somewhat enlarged from the
folded state and using Eq. (5.3) to calculate the change in activation energy by crowding, the
experimental results could be explained.

Kuttner et al. (2005) studied how PEG 8K affects the association rate constant of two
proteins. To dissect the contributions of crowding, they also measured the effects of the
crowding agent on translational and rotational diffusion constants of proteins. As already
noted in Subsection 5.1, crowding affects the two types of diffusion constants to different
extents. After correcting for the reductions in diffusion constants, Kuttner et al. found that
the association constant is higher than expected, implicating a crowding-induced
stabilization of the transient complex; the stabilization is ~0.8 kBT, in line with calculations
(Qin, Lu, and Zhou, to be published).

7. Conclusion and Outlook
We have summarized some of the rate theories that are most useful for modeling biological
processes. Highlighted are strengths and limitations of different theories and their
interconnections, in particular between those for unimolecular reactions and those for
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bimolecular reactions. Examples are presented to demonstrate that rate theories can help
generate insight at the microscopic level into biomolecular behaviors.

In general, rate constants depend both on the energetics and dynamics of reaction
coordinates. In developing rate theories, a minimum requirement is that the ratio of the
forward and reverse rate constants is the same as the equilibrium constant, which only
depends on energetics. If a theory, such as the transition-state theory, is based on classical
statistical mechanics, then the final result for the rate constant should not include Planck’s
constant, which is a signature of quantum effects.

The Smoluchowski model of diffusion-controlled nonspecific binding between spherical
particles is inappropriate for stereospecific protein-ligand binding. Rather, because of the
orientational constraints arising from the stereospecificity, the limit of the rate constant set
by random diffusion is several orders of magnitude lower than the Smoluchowski result.
Two mechanisms have been proven to provide rate enhancement: long-range attraction
provided by protein-ligand electrostatic interactions and reduction of dimensionality
provided by nonspecific binding.

Active developments can be anticipated in several areas:

1. Implementation of rate theories through computer simulations. While in principle it
is possible to simulate the motions of reactant molecules as a whole and observe
rare transitions between states, it is far more practical and perhaps more insightful
to focus on a small number of coordinates that are intimately related to these
transitions. The problem then becomes one of calculating potentials of mean force
and effective friction coefficients or diffusion constants for these coordinates. The
prospect of combining these modeling efforts with experimental probes is
particularly exciting.

2. Application of rate theories to complex biological processes involving multiple
steps. Examples of such processes include chaperonin-assisted protein folding and
translation of mRNA into protein (Martin et al., 1993; Rodnina et al., 2005).
Mechanistic models of such processes often assume an ordered sequence of steps.
In reality, side reactions (such as binding of noncognate aminoacyl-tRNAs to the
decoding center) occur alongside on-pathway reactions. In the same way that
reaction coordinates capture the essence of inter-state transitions, it can be
anticipated dominant pathways emerge in the midst of all possible side reactions,
thus providing a theoretical basis for an ordered-sequence description.

3. Application of rate-theory techniques to the modeling of other biological problems.
In particular, the transport of ions across transmembrane protein channels (Lauger
et al., 1980; Levitt, 1986; Goychuk & Hanggi, 2002; Berneche & Roux, 2003;
Lear, 2003; Berezhkovskii & Bezrukov, 2004; Roux et al., 2004; Yi et al., 2009)
and the generation of directed movement or rotation by motor proteins (Zhou &
Chen, 1996; Qian, 1997; Astumian, 1997; Junge, 1999; Qian, 2000; Okada &
Hirokawa, 2000; Bustamante et al., 2001; Bier, 2003; Kinosita Jr. et al., 2004; Xing
et al., 2004; Yildiz et al., 2004; Gao et al., 2005; Kolomeisky & Fisher, 2007; Wu
et al., 2007) are amenable to mathematical models similar to those for chemical
reactions (Zhou, 2005a). Cross fertilization among different areas will accelerate
theoretical development in each area and perhaps lead to a unifying theoretical
framework.

4. More realistic modeling of crowding effects in calculations of rate constants. An
atomistic model of crowders and inclusion of interactions in addition to the
excluded-volume type will greatly increase the realism in representing intracellular
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environments. With such increased realism theories will be able to produce rate
constants that can be used in systems biology studies.
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Fig. 1.
Thermodynamic control versus kinetic control. A protein in state A has two reaction
pathways, leading to states B1 and B2, respectively. The forward and reverse rate constants
of the two pathways are k±1 and k±2. Three of the constants are fixed: k+1 = 10 s−1; k+2 =
0.1 s−1; and k−1= 0.01 s−1. The ratio, k+1/k+2, of the two forward rate constants is thus fixed
at 100. The fourth rate constant, k−2, is varied from 10−4 to 10−8 s−1, yielding the five values
for the ratio of the two equilibrium constants shown in the figure. The equilibrium
concentration of B1 is [B1]eq = Ctk+1k−2/(k+1k−2 + k+2k−1 + k−1k−2), where Ct is the total
protein concentration; [B2]eq is obtained by reversing the indices 1 and 2. With the protein is
initially in state A, the time dependence of the B1 concentration is given by

where λ± = [k+1 + k−1 + k+2 + k−2 ± ((k+1 + k−1 − k+2 − k−2)2 + 4k+1k+2)1/2]/2. Again [B2]
is obtained by reversing the indices 1 and 2. Thermodynamic control means [B1]/[B2] →
[B1]eq/[B2]eq, indicated by the arrows on the right, whereas kinetic control means [B1]/[B2]
→ k+1/k+2, indicated by the arrow at the top. Note that the two pathways can represent
either unimolecular or bimolecular reactions. An example of the latter case is a protein
binding with two different ligands; k+1 (or k+2) is then a pseudo-first-order rate constant
given by the product of the ligand binding rate constant and the ligand concentration. The
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time interval in which kinetic control dominates is shaded in purple; the time interval in
which thermodynamic control dominates is shaded in yellow.
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Fig. 2.
A simple model with intra-state equilibration and inter-state jump. (a) Illustration of the
model. The two states, A and B, are represented by boxes; microstates within state A are
represented by circles. (b) Time dependences of σ1 and ρ1/ρAeq, representing intra-state
equilibration, and of ρA, representing inter-state jump, for the following parameters values:
k12 = k21 = k13 = k23 = 1, k31 = k32 = 2, and ktr = 0.1. (c) The corresponding results when
k31 and k32 are decreased to 0.125 and ktr is increased to 1. The results are obtained from
kinetic simulations of a single molecule. Briefly, the waiting time of the molecule in an
initial microstate is generated from an exponential distribution function [see Eq. (2.10)],
with the average waiting time equal to the inverse of the sum of the rate constants for all the
pathways leaving that microstate. The probability for taking each of these pathways is
proportional to the corresponding rate constant. The results shown are the average of 106

repeat simulations; each simulation starts with the molecule in microstate 1. This simulation
procedure is similar in spirit to the stochastic simulation algorithm of Gillespie (1977).
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Fig. 3.
A one-dimensional model for unimolecular reaction. (a) The potential energy function. (b)
Results for the rate constant obtained from computer simulations (filled circles) and
predicted by Melnikov and Meshkov [Eqs. (3.69) and (3.71); curve], for the potential energy
function U(x) = (x2 − 1)2, with kBT = 1/4 and m = 1. The simulations results are from Zhou
(1989), by fitting the number correlation function [Eq. (3.20)] to an exponential function.
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Fig. 4.
Interaction energy functions. (a) Centrosymmetric model. The solid curve shows the energy
function, with locations of the unbound state (i.e., P + L), transient complex (i.e., P*L),
transition state, and native complex (i.e., PL) identified. The dashed curve is after smoothing
out the transition state. (b) A smoothed energy function in relative translational (r) and
rotational (Ω) space. The native complex is located in the deep well; the transient complex is
located at the outer boundary of the energy well.
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Fig. 5.
Specification of the transient complex for the barnase-barstar protein pair (Alsallaq & Zhou,
2008). (a) Scatter plot of allowed (i.e., clash-free) configurations. Each scatter point
represents a cluster of allowed configurations with the indicated contact number (Nc) and
angle (χ) of relative rotation. The Nc level defining the transient complex is shown in dark
color. (b) Transition of the standard deviation of χ, σχ, from the native complex (with high
contact numbers) to the unbound state (with low contact numbers). The start of the sharp
increase in, σχ, as indicated by an arrow, marks the transient complex.
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