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Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in
Artibonite region and in the ensuing months the disease spread to every department in the country. The rate
of increase in the number of cases at the start of epidemics provides valuable information about the basic
reproductive number (<0). Quantitative analysis of such data gives useful information for planning and
evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on
the cumulative number of reported hospitalized cholera cases in Haiti.<0 varied by department, ranging from
1.06 to 2.63. At a national level, 46% vaccination coverage would result in an (<0) ,1, which would suppress
transmission. In the current debate on the use of cholera vaccines in endemic and non-endemic regions, our
results suggest that moderate cholera vaccine coverage would be an important element of disease control in
Haiti.

A
cholera outbreak was confirmed in Haiti on October 21, 2010 by the National Laboratory of Public Health
of the Ministry of Public Health and Population (MSPP). Cholera had not been documented in Haiti for
decades, and outbreaks had been thought unlikely after the earthquake on 12 January 20101. Cholera was

heralded in the Artibonite region, a rural area north of Port-au-Prince, followed in the ensuing months by spread
of the disease throughout the country. Spread was facilitated by the earthquake-related disruptions to water and
sewage facilities and damage to a local public health infrastructure that was already weak1. Haiti’s populations
were immunologically naı̈ve to cholera after its long absence, so the potential for a severe cholera epidemic was
high, much like recent cholera epidemics in Zimbabwe and other emerging epidemic-prone regions. Following
the initial epidemic wave, there were also concerns about the possibility of cholera establishing long-term
endemicity in Haiti, marked by the traditional recurrent seasonal epidemics that are characteristic of the disease.

There is an increasing appreciation of the utility of mathematical models in informing public health policy,
both in the emergency situation of an initial cholera epidemic2–6 (Table 1), and in long-term public health
management of seasonal epidemics. Here, we consider a model that we developed in association with the
2008–2009 Zimbabwe epidemic to explicitly estimate the basic reproductive numbers (<0) for the disease, and
make public health recommendations on the usefulness of cholera vaccines on a finer scale. In contrast to earlier
models applied to the Haitian epidemic, this model permits incorporation of recently recognized differences in
transmission pathways for cholera: a ‘‘fast,’’ or ‘‘human-to-human’’ transmission pathway that takes advantage of
the lower infectious dose of hyperinfectious V. cholerae in freshly passed stool, vs. a ‘‘slow’’ transmission pathway
that involves movement between environmental reservoirs and human populations. We also explore the impact
of variation in parameter estimates, including estimates for rates of asymptomatic carriage, environmental
contamination, and infectious dose from environmental exposure. The Haitian Ministry of Health is currently
considering implementation of a national vaccination campaign for cholera. Our results underscore the geo-
graphic variability in <0 in the initial Haitian epidemic, and the corresponding variability in the needed vac-
cination coverage for effective disease control.

Results
Table 2 provides estimates of the basic reproductive number (<0), and partial reproductive numbers due to ‘‘fast’’
human-to-human transmission (<h) and ‘‘slow’’ transmission through the environment (<e); it also provides
data on the corresponding minimum vaccination coverage needed for a cholera vaccine with an estimated 78%
efficacy7 for the 10 departments and the country as a whole. The cumulative cholera cases were fit with math-
ematical models for each department and for the whole country (Figure 1). The results in Table 2 show that
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Artibonite department had the highest <0 (2.63) and environmental
transmission accounted for most of the transmission (< 97%) com-
pared to lower values (< 9–55%) in other departments. Artibonite
department was the first to report cholera cases1 and epidemiological
studies have revealed that, the contamination of the Artibonite River
and its tributaries (i.e. sources of drinking and cooking water for
villagers) triggered the epidemic8. Thus our estimates support the
notation that contamination of drinking water sources sparked the
outbreak in Artibonite. These results also show that departments
neighboring Artibonite had slightly higher <0 values (1.37–1.73)
compared to other departments (1.06–1.44), suggesting that it was
the epidemic focal point. Our analysis showed that <h and <e esti-
mates are determined by the time scales of the unfolding epidemic i.e.
with fast growing epidemic curves giving a higher percentage of <h

than<e and vice-versa. However the inference about the estimates of
<0 is likely more robust than the estimates of the individual trans-
mission components (i.e. <e vs. <h). Aggregated cholera data for
Haiti compared with the department estimates will, on average, over-
estimate the required country-wide vaccination coverage by about
20% (Table 2). Thus for effective disease control, surveillance and
resource allocation there is a need to quantify the magnitude of
cholera outbreaks using data on a finer resolution. Analysis of data
on a finer grain would likely reveal additional heterogeneities in
transmission, but the spatial scales at which it is appropriate to ag-
gregate data for the purposes of planning control interventions
remain poorly understood. Since cholera vaccines have different
efficacies9–12, we also carried out sensitivity analysis to show possible
scenarios that may arise from using different types of vaccines by
considering an efficacy range of 50–100%.

The results suggest that a vaccine with 50% efficacy may result in
cholera control in most of the departments except for Artibonite,
which would require a vaccine with at least 65% efficacy (Table 3).
However most of the new-generation cholera vaccines have shown
an efficacy more than 65%7,9–12 for periods sufficient to contain epi-
demic cholera (i.e. depending on vaccination coverage). But, there

are still concerns that most of the studies on vaccine effectiveness
were conducted in cholera endemic areas with some degree of
immunity within the population, thus these study results may not
hold for Haiti where the population was initially immunologically
naı̈ve to the disease13,14.

Mapped<0 values illustrate the differences in transmission across
Haiti (Figure 2). Reproductive numbers were estimated separately
for Port-au-Prince (Table 2), and the part of Ouest that does not
include Port-au-Prince, as in the data sets on the MSPP website15. We
also estimated the reproductive number for the whole Ouest depart-
ment, combining hospitalized cases from both Port-au-Prince and
Ouest**, which was used for mapping (Figure 2).

We performed sensitivity analysis using a deterministic version of
our model to ascertain the robustness of our<0 estimates. We carried
out sensitivity analysis of k (the 50% infectious dose for envir-
onmental exposure) and x (the rate of environmental contamination
by cholera infected individuals). On the basis of studies conducted by
our group in Lima and Bangladesh, peak environmental counts of
ctx-positive V. cholerae from pristine areas have been found to range
from 101 to 102 cfu/mL16,17; even in areas with heavy sewage contam-
ination, peak environmental counts of ctx-positive V. cholerae were
not observed to exceed 106 cfu/ml16. The infectious dose for media-
grown V. cholerae ingested by healthy North American volunteers
ranges from 108 to 1011 cfu/mL; this drops to 104–108 when the
inoculum is given with bicarbonate or food18–20. In a series of studies
conducted at the Center for Vaccine Development, University of
Maryland, the ‘‘standard’’ V. cholerae inoculum in challenges
employing health North American volunteers was 106, administered
with bicarbonate20.

In the context of these data, we carried out sensitivity analysis to
explore the effects of k on<0 estimates. Results using aggregated data
for Haiti are shown in Figure 3, which is a plot of estimated <0 and
corresponding values of k. Varying k in a plausible range of 105 to 1.5
3 109 cells/ml, which covers the concentration range of vibrios in
sewage-contaminated water and also falls within the range of the

Table 2 | Estimates of<e,<h,<0 and minimum vaccination coverages. Ouest department includes Port-au-Prince and Ouest** hospitalized
cases. The population estimates were extracted from http://www.citypopulation.de/Haiti.html

Department
Population
Size/1000 <e SE % <0 <h SE % <0 <0 SE

Vaccination Coverage
Resulting in <0 ,1

Haiti[Country] 9923.24 0.84 7.00 3 1021 54.01 0.71 0.29 45.35 1.55 0.41 45.4
Artibonite 1571.02 2.54 2.32 3 1021 96.70 0.09 0.06 3.30 2.63 0.18 79.5
Centre 678.63 0.58 4.82 3 1021 42.12 0.79 0.24 57.88 1.37 0.24 34.3
Grande Anse 425.88 0.59 4.31 3 1021 46.31 0.68 0.09 53.70 1.27 0.35 27.2
Nippes 311.50 0.09 2.84 3 1024 8.86 0.96 0.21 91.15 1.06 0.21 6.9
Nord 970.50 0.16 7.79 3 1022 10.24 1.37 0.24 89.76 1.53 0.23 44.4
Nord Ouest 662.78 0.20 2.56 3 1024 14.26 1.20 0.11 85.74 1.40 0.11 36.4
Nord Est 358.28 0.22 1.43 3 1023 14.99 1.22 0.21 85.01 1.44 0.21 38.9
Ouest**[Ouest] 1187.83 0.45 2.04 3 1024 37.67 0.74 0.16 62.33 1.18 0.16 19.9
Port-au-Prince[Ouest] 2476.79 0.74 3.68 3 1024 39.27 1.15 0.13 60.73 1.89 0.13 60.5
Sud 704.76 0.21 1.32 3 1023 14.65 1.23 0.19 85.36 1.44 0.19 39.5
Sud Est 575.29 0.13 2.31 3 1024 11.11 1.04 0.14 88.89 1.17 0.14 18.3
Ouest 3664.62 0.43 1.78 3 1023 25.41 1.30 0.30 74.75 1.73 0.30 54.2

Table 1 | Haiti <0 estimates

Data source Estimate

Bertuzzo et al4 MSPP 1.98
Chao et al.5 MSPP 2.60
Chunara et al.28 MSPP 1.27–3.72 (Before Hurricane Tomas)

1.06–1.73 (After Hurricane Tomas)
Chunara et al.28 Informal sources (HealthMapp & Twitter) 1.54–6.89 ( Before Hurricane Tomas)

1.04–1.51(After Hurricane Tomas)
Tuite et al.3 MSPP 2.06–2.78
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infectious dose (with bicarbonate, or food) demonstrated among
North American volunteers19,20, we note that <0 estimates will
change by less than 1%. However, these estimates will change by
about 13% in vibrio concentration ranging from 1.5 3 109 to
1011 cells/ml. In Figure 4 we present sensitivity analysis results on
the effects of x on <0 estimates by plotting estimated <0 and corres-
ponding values of x. This parameter may be influenced by a number

of socio-economic factors, including adequacy of sewage disposal,
and consequently may vary within communities. The distribution of
exposure doses would be, in all likelihood, highly skewed. In Figure 4,
we note that a change in x from 1 to 100 only affects our estimates by
approximately 3%. Thus, while there may be uncertainty around
estimates for k and x, changes in these parameters do not substan-
tially affect our results. The discontinuities in Figures 3 and 4 explain

Figure 1 | Cholera model fitting for the cumulative cholera cases where the bold green lines represent the model fit and the blue circles mark the
reported data for the cumulative number of cholera cases in the departments for 1000 runs.
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points where the curves stops being sensitive to changes in the para-
meters and the fitting procedure abruptly switches to favor the <h

component.
In addition, we also explored the effects of other forms of unre-

ported cholera infection such as asymptomatic colonization on<0 by
assuming that the current data represent a certain percentage of
reported cases in the clinical spectrum of cholera infection, and then
fitting the model to Haitian data. Here, we extend our basic cholera
model to incorporate a class of cholera asymptomatic cases as a
proportion of total infections. We fit cholera reported data to the

class of symptomatic cases in the model based on the assumption that
the available reported data only represent a percentage of the total
cholera cases. This model also assumes that asymptomatic patients,
who shed approximately 103 vibrios per gram of stool for only one
day, do not significantly contribute to cholera infection21. Studies in
the early 1970s suggested infection with cholera strains of classical
biotype (responsible for the sixth cholera pandemic) resulted in
severe cholera cases in only 11% of total infections; 59% of infections
were asymptomatic and the remainder represented illness of mild to
moderate severity. Other studies during the same period showed that

Table 3 | Sensitivity analysis of vaccination efficacies from 50%–100% and the corresponding percentage coverage’s in the departments
and the whole country. Ouest department includes Port-au-Prince and Ouest** hospitalized cases

Vaccination Coverage (%) Resulting in <0 ,1

Department 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Haiti [Country] 70.8 64.4 59.0 54.5 50.6 47.2 44.2 41.6 39.3 37.3 35.4
Artibonite .100 .100 .100 95.4 88.6 82.7 77.5 72.9 68.9 65.3 62.0
Centre 53.6 48.7 44.6 41.2 38.3 35.7 33.5 31.5 29.8 28.2 26.8
Grande Anse 42.4 38.6 35.4 32.6 30.3 28.3 26.5 25.0 23.6 22.3 21.2
Nippes 10.7 9.8 8.9 8.3 7.7 7.2 6.7 6.3 6.0 5.6 5.4
Nord 69.2 62.9 57.7 53.2 49.4 46.1 43.3 40.7 38.5 36.4 34.6
Nord Ouest 56.8 51.6 47.3 43.7 40.5 37.8 35.5 33.4 31.5 29.9 28.4
Nord Est 60.6 55.1 50.5 46.7 43.3 40.4 37.9 35.7 33.7 31.9 30.3
Ouest**[Ouest] 31.1 28.2 25.9 23.9 22.2 20.7 19.4 18.3 17.3 16.3 15.5
Port-au-Prince [Ouest] 94.4 85.8 78.7 72.6 67.4 62.9 59.0 55.5 52.5 49.7 47.2
Sud 61.6 56.0 51.3 47.4 44.0 41.1 38.5 36.2 34.2 32.4 30.8
Sud Est 28.6 26.0 23.9 22.0 20.4 19.1 17.9 16.8 15.9 15.1 14.3
Ouest 84.6 76.9 70.5 65.1 60.4 56.4 52.9 49.7 47.0 44.5 42.3

Figure 2 | Map of Haiti showing corresponding <0 values in the departments.
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only 2% infected with seventh pandemic biotype El Tor strains had
severe disease, and 75% of infected persons were asymptomatic22,23.
However; recent studies have noted substantial increases in the per-
centage of patients with severe dehydration24, and the percentage of
asymptomatic infected patients appears to be much smaller (,50%,
in a recent study by Harris et al. in Bangladesh25), attributed to
genetic changes in the organism26,27. Based on these studies we car-
ried out sensitivity analysis to assess the effects of varying the

percentage composition of reported symptomatic cases in the range
15–100% on the basic reproductive number. The range of the per-
centage composition of reported symptomatic cases (15–100%) con-
sidered here is consistent with recent findings which suggest an
increase in the percentage of severe cases24 and a smaller percentage
of asymptomatic carriage (,50%)25. The results in Figure 5 show that
incorporating other forms of unreported cholera infection into the
model changed <0 estimate by less than 5%.

Figure 3 | The relationship between the basic reproductive number estimate (<0) and k using aggregated data for Haiti using population sizes in
Table 2 and parameter values in Table 4. The blue line denotes range of k from 105 to1.5 3 109 cells/ml and the red line denotes range range of k from 1.5

3 109 to 1011 cells/ml (here our scale only shows 1.5 3 109 to 1010).

Figure 4 | The relationship between the basic reproductive number estimate (<0) and x using aggregated data for Haiti using population sizes in
Table 2 and parameter values in Table 4 and varying x from 1 to 100.
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Discussion
Estimated basic reproductive numbers varied across the departments
ranging from 1.06 to 2.63. With the exception of the work by
Chunara et al.28, these results are in the same general range as the
estimates from other mathematical models of the initial Haitian epi-
demic (Table 1), and are similar to those obtained for the 2008–2009
Zimbabwe outbreak6. However, in our model partial reproductive
numbers were also highly heterogeneous suggesting that the patterns
of transmission and transmission routes varied by department,
and that some departments would be more amenable to vaccination
compared with other kinds of interventions. The results in Table 2
suggest that on average, human-to-human transmission accounted
for 68% of all the transmission, but both transmission pathways

contributed to initiating and sustaining cholera outbreaks across
the departments. These quantities of <0.1 obtained for the depart-
ments and the whole country (see Table 2) suggest that future epi-
demics are highly likely, after population immunity has waned,
unless effective control measures are put in place. These patterns
address the concern that cholera may become endemic in Haiti
because of a combination of a large estuarine system which may
act as possible long-term ecological reservoirs for cholera, combined
with continued transmission within human populations. In this set-
ting, there would appear to be clear utility in mass vaccination with
cholera vaccine with even moderate uptake, particularly in light of
the significant herd protection afforded neighboring non-vaccinated
individuals noted in prior studies29. However, to achieve optimal

Figure 5 | The relationship between <0 and the percentage composition of reported symptomatic cholera cases reported using aggregated data for
Haiti, parameter values from Table 4, and population size from Table 2.

Figure 6 | Model flow diagram.
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protection of the population, vaccination would need to be combined
with other measures that permanently improve water systems and/or
otherwise decrease the risk of transmission from environmental
sources.

As alluded to above, the Haitian cholera epidemic has resulted in
the development of several mathematical models (Table 1), driven, in
part, by the close proximity of Haiti to the United States (with res-
ultant interest in the outbreak), as well as recent developments in
modeling techniques. The prediction of the sequence and timing of
regional cholera epidemics in Haiti using a spatial approach was
reported by Tuite et al.3. A similar spatial transmission model con-
sidering hydrologic and human mobility drivers of pathogen dis-
persal was proposed by Bertuzzo et al.4. Chao et al.5 used an
individual, agent-based, dynamic transmission model to understand
the dynamics of the of the cholera epidemic in Haiti. Not unexpect-
edly, these and other models have given somewhat different results
(Table 1). Nonetheless, the range of values for <0 has been fairly
consistent; there is also clear convergence in the models related to
the importance of vaccination, combined, potentially, with efforts to
minimize transmission from environmental sources. The Haiti situ-
ation provides a unique opportunity to apply modeling results in
development and implementation of practical public health inter-
ventions. As the history of cholera plays out in Haiti, it will be
important to use the actual outcomes of these interventions to appro-
priately parameterize and assess the value of this and other models
and modeling approaches.

Methods
The cholera model compartmentalizes the human population (Figure 6), of density N,
into susceptibles S, infected I and recovered R (see on-line supplemental material
included with reference6 for a complete mathematical description of the model). The
concentration of vibrios in contaminated water is denoted by B. As previously
described in application of the model to the Zimbabwe cholera epidemic of 2008-09,
susceptible individuals acquire cholera infection either by ingesting environmental
vibrios from contaminated aquatic reservoirs (a ‘‘slow’’ transmission route requiring
a higher infectious dose) or through close contact with infected humans associated
with ingestion of ‘‘hyperinfectious’’ vibrios30,31 (a ‘‘fast’’ transmission route related to
the observed decrease in infectious dose seen among V. cholerae within a matter of

hours of passage in diarrheal stool) at daily per-capita rates le~
beB

kzB
and lh~bhI

respectively, with the subscripts e and h denoting environment-to-human and
human-to-human transmission routes. The constant k is a shape parameter that
determines the human infectious dose: when B equals k the probability of ingestion
resulting in human disease is 0.5. be and bh are rates of exposure to vibrios from the
contaminated environment and through human-to-human interaction respectively.
Infected individuals recover from infection at a rate c. Cholera infected individuals
contribute to V. cholerae in the aquatic environment at a daily rate x and vibrios have
a net death rate d in the environment. Readers interested in the model formulation,
parameters and other properties should refer to6,23. The resulting model as a system of
coupled stochastic differential equations is as follows.

dS
dt

~mN{be 1za1j1 tð Þð ÞS B
kzB

{bh 1za2j2 tð Þð ÞSI{mS,

dI
dt

~be 1za1j1 tð Þð ÞS B
kzB

zbh 1za2j2 tð Þð ÞSI{ czmð ÞI,

dR
dt

~cI{mR,

dB
dt

~xI{dB:

ð1Þ

Here, ai for i 5 1, 2 are real constants and j(t)5(j1(t), j 2(t)) is the Gaussian white
noise process to model environmental stochasticity satisfying , j i(t).50 where

,. denotes ensemble average. It can also be shown that a solution of model system
(Eqs. 1) is Markovian if and only if the external noises are white. We have assumed the
Stratonovich interpretation of stochastic differential equations (Eqs. 1), which
conserves the ordinary rule of calculus and in this case the stochastic differential
equations can be considered as an ensemble of ordinary differential equations32,33. A
code in MATLABH (The Mathworks, Inc., Version 7.10.0.499, R2010a) was used to fit
the stochastic model system (Eqs. 1) to data and estimate the basic reproductive
number and standard error for a given number of iterations. The code uses a fourth
order Runge–Kutta numerical scheme for numerical integration and the built-in
MATLABH least-squares fitting routine lsqcurvefit. In each iteration:

1. Two white noise time series, j1(t) and j2(t) were generated;
2. The fitting routine lsqcurvefit found the parameters that minimized the sum of

squared errors, including initial conditions (S0,I0,R0,B0) and parameters a1and
a2 that scale the variance of j1 and j2;

3. The estimates were stored in a table.

This was repeated 1000 times. The means and standard errors of these parameter
estimates are reported in Table 2.

We fit the cholera model system (Eqs.1) to cumulative hospitalized cholera cases to
estimate the basic reproductive numbers and critical vaccination coverage levels for
the geospatially localized cholera outbreaks in Haiti by using daily data on numbers of
hospitalized cases published on the MSPP website15. These data may well be under-
estimates due to the weak health system in Haiti. However, despite quality issues
surrounding the data set, it presents the best currently available platform for quan-
tifying the magnitude of the cholera outbreak in Haiti.

The basic reproductive number (<0), is defined as a measure of the average number
of secondary cases generated by a primary case. Understanding its magnitude and
variation can help to identify cholera ‘‘hot spots’’ and in designing targeted surveil-
lance programs. The two transmission routes of cholera are quantitatively described
by partial reproductive numbers, <h and <e that describe new cases that arise from
either the fast human-to-human or the slower environment-to-human transmission
routes, respectively. In the fitting, we estimate be and bh to match the reported
hospitalized cases in each department and for the whole country with other parameter
values fixed as given in Table 4 and calculate the corresponding values of <e, <h and
<0. For each department, we use the data points for the number of days that maximize
the basic reproductive number estimate at the onset of an outbreak (i.e. maximizing be

and bh), using data for the period from 30 0ctober 2010 to 25 December 2010. The
data sets used for the estimation of <0 were obtained by systematically testing dif-
ferent subsets of data from the start of an outbreak. We also normalize our population
data by 1000 thus computed estimates of be and bh are per capita.

The corresponding minimum vaccination coverage’s (c) for a cholera vaccine with
78% efficacy7 for the 10 departments and the whole country given are based on the
formula in34,

c§
1{<{1

0

1{ 1{rð Þ 1{sð Þ ð2Þ

where r is the fraction of the vaccinated population who are completely immunized
and s is the proportional reduction of the susceptibility for those partially immunized.
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