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The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities. Indeed, 
the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool 
to study embryonic development, but also offers great therapeutic potential within the field of regenerative medicine. 
However, it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentia-
tion into the desired cell type very difficult. Therefore, in order to harness ESCs for clinical applications, a detailed 
understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is 
necessary. In this respect, through a variety of transcriptomic approaches, ESC pluripotency has been found to be 
regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as 
a key factor in modulating the ESC transcriptome. Here in this review, we summarize our current understanding of 
the transcriptional regulatory network in ESCs, discuss how the control of various signalling pathways could influ-
ence pluripotency, and provide a future outlook of ESC research.
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Introduction

Embryonic stem cells (ESCs) are derived from the in-
ner cell mass (ICM) of pre-implantation embryos [1-3]; 
and the two defining features of ESCs are their ability to 
self-renew, as well as give rise to all cell lineages of the 
organism. This unique feature of ESCs to form the vari-
ous tissue types, termed ‘pluripotency’, besides enabling 

the in vitro study of early mammalian development, has 
also facilitated the advancement of regenerative medi-
cine, whereby ESCs could be used to create clinically 
relevant cell types for the replacement of worn-out tis-
sue. However, it is this same remarkable developmen-
tal plasticity of ESCs which poses a major challenge 
towards the efficient control of ESC differentiation into 
the desired lineage. Therefore, to better understand mam-
malian development, as well as to exploit the tremendous 
therapeutic potential of ESCs, it is necessary to identify 
the molecular mechanisms governing a pluripotent or 
differentiated ESC fate. Here in this review, we will sum-
marize the current progress towards understanding the 
ESC transcriptional regulatory network, and also discuss 
how modulation of the various signalling pathways in 
ESCs could influence pluripotency.

Dissecting the ESC transcriptional regulatory 
network

The core ESC pluripotency factors: Oct4, Sox2 and 
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Nanog
In ESCs, the pluripotent state is mainly regulated 

by the core transcription factor trio of Oct4, Sox2 and 
Nanog [4].

Oct4 (encoded by the Pou5f1 gene), belongs to the Pit-
Oct-Unc (POU) family of homeodomain proteins, and is 
exclusively expressed within the totipotent mouse blas-
tomeres, pluripotent epiblast as well as primodial germ 
cells (PGCs) [5, 6]. Importantly, Oct4 plays a critical role 
in the establishment and maintenance of pluripotency, as 
Pou5f1-null embryos do not form a pluripotent ICM, but 
rather, differentiate into trophectodermal tissue [7]. Simi-
larly, Oct4 is also critical for maintaining mouse ESCs 
(mESCs) in an undifferentiated state and has to be tightly 
regulated. Depletion of Oct4 mRNA by 50% is sufficient 
to result in the formation of trophectoderm cells, while 
Oct4 overexpression by 50% will promote mesodermal 
and endodermal differentiation [8].

Sox2, which contains the high-mobility group box 
DNA-binding domain, is expressed within the ICM and 
extraembryonic ectoderm of pre-implantation blastocysts 
[9]. Like Oct4 knockout mice, Sox2-null blastocysts fail 
to form a pluripotent ICM [9], and mESCs deficient in 
Sox2 differentiated primarily into trophectoderm [10]. 
This similarity of phenotypes produced by Sox2 and 
Oct4 loss is attributed to the synergistic action of Oct4/
Sox2 in the regulation of various ESC-specific genes [11-
16], including themselves [17-19]. Indeed, ectopic Oct4 
expression was found to be sufficient in rescuing the dif-
ferentiation phenotype of Sox2−/− mESCs [10]. 

Nanog, the third member of the core ESC transcrip-
tion factors, was discovered through a screen for pluri-
potency factors that could sustain mESC self-renewal in 
the absence of leukemia inhibitor factor (LIF) [20, 21]. 
Although Nanog-null pre-implantation embryos do not 
possess a pluripotent ICM [21, 22], Nanog−/− mESCs 
could be established through the in vitro disruption of 
both endogenous Nanog alleles [21, 23]. Importantly, 
these Nanog-null mESCs although prone to differentia-
tion, could still be kept pluripotent [21, 23]. Therefore, it 
is believed that Nanog, while necessary for the acquisi-
tion of pluripotency, is dispensable once pluripotency is 
achieved [23].

Given the important roles of the core ESC transcrip-
tion factors in establishing a pluripotent stem cell fate, 
chromatin immunoprecipitation (ChIP) technologies 
have been used to map the genomic-binding sites of 
these core ESC factors in mESCs and hESCs. Together, 
these studies found extensive Oct4, Sox2 and Nanog co-
binding at numerous active, as well as silent genomic 
target sites [24, 25]. Together, it is proposed that the core 
ESC transcription factors serve to establish a pluripotent 

state by: (1) activating the expression of other pluripo-
tency-associated factors while simultaneously repressing 
lineage-specific genes, and (2) by activating their own 
gene expression and that of each other [4]. Importantly, 
this model may account for how ESCs can sustain self-
renewal and pluripotency, while still remain poised for 
differentiation.

The expanded ESC pluripotency network
To uncover additional novel ESC regulators, one 

method is to perform RNA interference (RNAi)-mediated 
gene knockdown and to observe for any loss of pluripo-
tency. Indeed, large-scale RNAi knockdown studies have 
led to the discovery of important mESC factors such as 
Esrrb, Tbx3 and Tcl1 [26], as well as the chromatin regu-
lators Tip60-p400 [27] and SetDB1 [28]. Similarly, unbi-
ased genome-wide siRNA screens were able to identify 
Cnot3 and Trim28 [29], Paf1C [30] and the mediator and 
cohesin complex [31] as important mESC transcriptional 
cofactors. Extending this approach into hESCs, Chia et 
al. [32] used a similar genome-wide siRNA screening to 
identify components of the INO80 chromatin remodeling 
complex, the mediator and TAF transcriptional regulato-
ry complexes, and the COP9 signalosomes as important 
hESC factors. Importantly, the PRDM14 transcription 
factor was found to be an essential factor for hESCs, but 
not in mESCs, hence highlighting that critical species-
specific differences exist between mouse and human 
ESCs (hESCs) [32].

Determining the protein-binding partners of known 
pluripotency factors is another method of identifying 
novel ESC regulators. Through the coupling of affinity 
purification methods with mass spectrometry technology, 
numerous co-binding proteins of the core pluripotency 
transcription factors have been identified [33-40]. Taken 
together, these studies reveal an extensive protein-protein 
interaction network which includes other ESC transcrip-
tion regulators, chromatin remodeling and modifying 
factors, DNA methyltransferases and Polycomb group 
proteins (PcG). This therefore suggests that the core ESC 
factors may regulate gene expression through the modu-
lation of chromatin states. Importantly, this large and in-
tricate network of protein interactions could suggest how 
small changes in the levels of core ESC factors, like Oct4 
or Sox2, are sufficient to perturb the ESC self-renewal 
programme to trigger differentiation [8, 41].

Using ChIP with massively parallel DNA sequenc-
ing (ChIP-seq) [42], or in vivo biotinylated ChIP with 
DNA microarray [43], two independent groups examined 
the context in which these additional pluripotency fac-
tors could play in the specification of an ESC identity. 
Together, these studies observed the binding of multiple 
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transcription factors onto a similar genomic region; and 
importantly, these factors could also be grouped into 
either an Oct4- or Myc-centric module based on their 
genomic targets [43]. These data thus indicate that within 
ESCs, the Myc-cluster appears to function independently 
from the core pluripotency network [29, 42, 43].

The role of Myc in ESC transcriptional regulation
The Myc module which consists of c-Myc, n-Myc, 

Rex1, Zfx and E2f1, is known to be involved in self-
renewal and cell metabolism [42-44]. Although approxi-
mately one-third of all active ESC genes are bound by 
both c-Myc and the core ESC pluripotency factors [45], 
the functions of these two modules in gene regulation 
appear to differ. For instance, Oct4, Sox2 and Nanog in 
concert with the Mediator complex are able to recruit 
RNA polymerase II (RNA Pol II) for gene transcription 
[31], while c-Myc is believed to control the transcrip-
tional pause release of RNA Poly II via the p-TEFb 
cyclin-dependant kinase [45]. It is thus believed that the 
core ESC factors will select ESC genes for expression 
through the recruitment of RNA Pol II, while c-Myc 
functions to control gene expression through the release 
of transcriptional pause [4]. Importantly, it should also be 
highlighted that initial reports of cancer cells possessing 
an ESC-like transcriptional program [46, 47] were later 
attributed to be a consequence of Myc-module activity, 
as opposed to the core ESC factors [48].

Recent data by Lin et al. [49] and Nie et al. [50] sug-
gest that rather than activating new genes, Myc acts only 
to amplify the existing transcriptional output of active 
genes. By increasing the levels of Myc, both groups 
found the loading of Myc proteins onto the promoters 
of active genes, but not for promoters of silent genes. 
This therefore indicates that Myc is unable to initiate de 
novo gene activation. Indeed, higher levels of p-TEFb 
occupancy with increased levels of elongation-associated 
RNA Polymerase II phosphorylation were found at Myc-
bound sites [49], consistent with the previously proposed 
idea that c-Myc controls transcriptional pause release 
[45]. Taken together, this ability to amplify existing ac-
tive gene transcription may in part suggest how the addi-
tion of c-Myc during reprogramming is able to increase 
the efficacy of induced pluripotent stem cell (iPSC) for-
mation [51].

Transcriptional control of non-coding RNAs in ESCs
MicroRNAs (miRNAs), which post-transcriptionally 

regulate mRNA levels, are important for proper ESC 
function [52, 53]. Importantly through ChIP-seq, Marson 
et al.[54] found the binding of Oct4, Sox2, Nanog and 
Tcf3 transcription factors at ESC-related miRNA genes, 

as well as transcriptionally silent PcG-occupied tissue-
specific miRNAs, suggesting that the core ESC transcrip-
tional network is able to regulate miRNA expression. A 
notable example of these inactive miRNAs includes let-
7, which is known to target c-Myc and the pluripotency 
factors Sall4 and Lin28 [55]. Interestingly, the ESC-relat-
ed miRNA-302/367 cluster which is also regulated by the 
ESC transcriptional circuit [54], is able to reprogramme 
fibroblasts into iPSCs without the need for additional 
protein factors [56]. 

Large intergenic non-coding RNAs (lincRNAs) ex-
pressed in mESCs are also known to be the targets of 
several pluripotency-associated transcription factors, and 
have been demonstrated to be essential for maintaining 
a pluripotent state and suppress lineage specification 
[57]. Upon knockdown, many of these ESC lincRNAs 
were shown to induce gene expression changes similar 
to the depletion of known ESC factors. Importantly, it 
was found that lincRNAs could associate with multiple 
chromatin complexes, hence suggesting the possibility 
that lincRNAs may serve as scaffolds for the recruitment 
of different protein complexes for specific functions. In 
that regard, it would be interesting to examine how the 
ESC-specific lincRNA expression signature, through the 
assembly of various protein complexes, is able to sustain 
ESC pluripotency.

Extrinsic signalling and ESC transcriptional regu-
lation

Signalling in mouse ESCs
Traditionally, mESCs were cultured and kept pluripo-

tent on a layer of mitotically inactivated feeder cells in 
serum-supplemented media [1, 2] (Figure 1). However, 
the undefined nature of feeder co-culture posed a signifi-
cant challenge in mapping the specific extrinsic signal-
ling factors, cellular pathways involved and their effects 
upon gene transcription which ultimately control ESC 
self-renewal and differentiation.

After the initial discovery of mESCs in 1981, work 
over the next 20 years then identified the IL-6 family 
cytokine LIF as the key active component produced 
by feeder cells which sustains mESC growth [58, 59], 
as well as Bone morphogenic protein 4 (BMP4) which 
could substitute for the use of serum in mESC culture 
[60]. Critically, the combinatorial use of LIF and BMP4 
alone in a defined feeder- and serum-free culture was 
sufficient to derive and maintain germ-line transmittable 
mESCs [60], hence delineating the signalling pathways 
controlling mESC self-renewal and pluripotency. At the 
transcriptional level, LIF and BMP4 signalling is able 
to induce phosphorylation and activation of their down-
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Figure 1 Interconversion between mouse pluripotent states. mESCs are derived from the inner cell mass (ICM) of mouse 
pre-implantation blastocysts, while EpiSCs are isolated from the epiblast compartment of post-implantation embryos. The 
conversion between the pluripotent mESC and EpiSC states is possible through cell culture; introduction of transcription 
factors (TFs), or application of chemical inhibitors. Unipotent PGCs are derived from the embryonic gonad and can also be 
differentiated from EpiSCs using BMP4; or with BMP4, BMP8b, LIF, and stem cell factor (SCF). Subsequently, PGCs can be 
restored to pluripotency through the culture with LIF, FGF2 and SCF to form mouse embryonic germ cells (EGCs). mESCs 
are also known to transiently cycle into a 2-cell (2C)-like state with expanded developmental potential, giving rise to both em-
bryonic and extraembryonic tissues. The process and mechanism by which this 2C transition occurs are still not known, and 
whether 2C-like cells could be directly isolated from 2C embryos has not been established.

stream transcription factors Stat3 and Smad1 respectively 
[60, 61]. Importantly, genome-wide mESC transcription 
factor mapping studies reveal the co-binding of Stat3 and 
Smad1 transcription factors at Oct4, Sox2 and Nanog re-
gions, thus demonstrating how LIF and BMP4 signalling 
may sustain the core ESC transcriptional network [42].

In contrast to the self-renewing effect of LIF and 
BMP4, mESC autocrine stimulation by fibroblast growth 
factor 4 (Fgf4) [62, 63], working through the Mek/Erk 
signalling pathway, is known to induce mESCs to exit 
self-renewal and initiate differentiation [64, 65]. This 
pro-differentiation effect of Fgf/Mek/Erk signalling can 
be further inferred through complementary experiments, 
whereby chemical inhibition or genetic knockout of Fgf/
Mek/Erk signalling cascade components caused impaired 
mESC differentiation [64-68]. The exact mechanism by 
which active Mek/Erk signalling induces mESCs to exit 
pluripotency is still not known. Given that terminal sig-
nalling kinases such as Erk have been previously shown 
in other cell types to regulate gene expression activity via 
transcription factor phosphorylation [69, 70], phosphory-
lation of chromatin remodelling complexes [71], and di-
rect binding onto DNA as a transcriptional repressor [72], 
it would be interesting to determine if Erk may adopt 
similar mechanisms in regulating mESC pluripotency.

mESCs are also responsive to Wnt-signalling, but 
whether Wnt signalling promotes self-renewal or causes 
mESC differentiation is still being actively debated [73, 

74]. Active canonical Wnt-signalling leads to the stabi-
lisation of β-catenin, hence allowing for the association 
of β-catenin with the TCF/LEF family of transcription 
factors for gene activation [73]. Tcf3, which is the most 
abundant Tcf protein in mESCs [75], has been previ-
ously shown to co-localize with the core Oct4, Sox2 
and Nanog-binding sites [54, 76], therefore suggesting 
that Wnt signalling, like LIF and BMP pathways, is in-
tegrated into the ESC transcriptional regulatory core. 
In mESCs, Tcf3 functions primarily as a transcriptional 
repressor [75, 77, 78] and Tcf3-null mESCs are resistant 
towards differentiation [75, 79]. However, as the process 
in which Tcf3 regulates gene expression is still not clear, 
and with multiple models being proposed to account for 
the mechanism of how β-catenin and Tcf3 interaction 
could initiate gene expression [73], additional studies 
are clearly needed to define the role of Wnt-signalling in 
ESCs. Additionally, given that Wnt-signalling in hESCs 
has not been well explored, it would also be interesting 
to determine if similar Wnt-regulatory pathways are con-
served in hESCs.

Signalling in hESCs
Although hESCs may share the same Oct4-Sox2-

Nanog core ESC transcriptional regulatory circuit [24, 
25]; they differ from mESCs in their extrinsic signalling 
requirement to maintain self-renewal and pluripotency. 
Previous studies have shown that LIF is dispensable for 
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hESC culture [80], while the presence of BMP4 will 
cause hESC differentiation into trophoblast [81]. Rather, 
FGF2 and Activin/Nodal signalling is critical for the 
maintenance of an undifferentiated hESC state [82-84].

The exact mechanism by which FGF2-signalling 
sustains hESC pluripotency is still not clear and is com-
plicated by the fact that FGF-signalling could activate 
multiple signalling cascades [85]. Issues pertaining to 
signalling ‘crosstalk’ by other receptor kinases onto FGF-
receptor-associated pathways [86, 87], as well as varying 
hESC culture conditions employed by different groups, 
have made the dissection of hESC FGF2-signalling more 
difficult. However, previous studies have indicated that 
FGF-signalling through its downstream protein ERK 
is necessary to prevent extra-embryonic differentiation 
of hESCs [88, 89], and that FGF2 may cooperate with 
other growth factors (like Activin signalling, through 
SMAD2/3 transcription factors), to upregulate the ex-
pression of the core pluripotency gene NANOG  [84, 90].

There have already been several large-scale attempts 
at profiling the global hESC phosphoproteome via 
mass spectrometry techniques [91-94], with two studies 
seeking to specifically address the dynamics of FGF2-
dependent tyrosine and serine/threonine phosphorylation 
[95, 96]. Together, FGF2-signalling in hESCs not only 
resulted in phosphorylation of proteins of various sig-
nalling cascades such as that of PI3K, MAPK, Wnt, but 
could also lead to phosphorylation of pluripotency-asso-
ciated transcription regulators like OCT4, SOX2, SALL4 
and DPPA4 [95, 96]. These studies while informative in 
revealing a possible phospho-interactome downstream 
of FGF2-FGFR, unfortunately do not factor in signal-
ling ‘crosstalk’ by other receptor kinases onto FGFR-
associated pathways [86, 87]. Therefore, future attempts 
at studying the hESC signalling pathways, aside from 
adopting defined culture conditions, should also seek 
to utilize specific kinase inhibitors, gene knockdown or 
gene deletion strategies to more accurately delineate the 
cell-signalling events.

Unlike the ambiguity surrounding FGF2 signalling, 
Smad2/3, the downstream effectors of Activin/Nodal 
signaling are previously known to directly bind and 
regulate the expression of NANOG [97]. Recent ChIP-
seq in hESCs also found the binding of SMAD2/3 at 
OCT4, TERT, MYC and DPPA4 genes, with SMAD2/3 
sharing approximately one-third overlap with NANOG 
genomic targets [98]. Importantly, the authors found that 
NANOG overexpression could sustain SMAD2/3 target 
gene expression even in the absence of Activin/Nodal 
signalling, thus suggesting that NANOG may function as 
a SMAD2/3 transcriptional co-factor during active Ac-
tivin/Nodal signalling in hESCs [98]. In a separate study, 

ChIP-seq revealed extensive co-occupancy of SMAD3 
along with the hESC genome with OCT4, although it 
was not verified if SMAD3 could bind alongside other 
hESC pluripotency factors [99]. Taken together, these 
data provide important insight into the potential mecha-
nisms by which Activin/Nodal signalling helps sustain 
hESC pluripotency.

Transcriptional regulation of ground state mESCs
As previously mentioned, the conventional culture 

of mESCs requires the presence of LIF and BMP4 [58-
60]. However, even in the presence of LIF/BMP4, the 
autocrine pro-differentiation Fgf4/Mek/Erk signalling in 
mESCs is still active [60, 100]. This therefore suggests 
that pluripotency is sustained by LIF and BMP4 acting 
downstream of the Erk pathway to prevent mESC differ-
entiation.

Expanding upon this observation, Ying et al. [100] 
surprisingly found that the requirement of external LIF/
BMP4 in mESC culture could be abrogated via the usage 
of small molecule kinase inhibitors. This two inhibitor 
(2i) culture, consisting of PD0325901 and CHIR99021 to 
respectively target Mek and Gsk3, serves to protect pluri-
potent mESCs from the pro-differentiation effect of Fgf4 
stimulation [64], as well as the transcriptional repressor 
activity of Tcf3 [101]. More importantly, by using the 2i 
culture, germ-line transmitting ESCs could be generated 
from previously recalcitrant mouse strains [100, 102], 
and from the rat [103, 104].

When mESCs are cultured under conventional LIF 
conditions, there is a heterogeneous expression of pluri-
potency transcription factors such as Nanog, Rex1 and 
Stella [23, 105, 106]. Interestingly, after FACS-purifica-
tion, these sorted cells rather than maintaining a pure cell 
population, will revert into a heterogeneous population. 
These data therefore suggest that gene transcription of 
mESCs under LIF culture conditions exists in a fluctuat-
ing and dynamic state. Upon transfer into 2i conditions, 
Nanog and Rex1 expression will become homogeneously 
high [107]. As Nanog-low cells are prone to differentiate, 
and Rex-low mESCs do not contribute to chimera forma-
tion upon blastocyst microinjection [23, 105], the capture 
of a Nanog/Rex1-high mESC state indicates that pluripo-
tency may have been stabilised under 2i conditions [107]. 
Interestingly, under 2i or Mek-inhibition, the Nanog gene 
expression in mESCs switches into a biallelic expression 
mode, as opposed to the monoallelic expression status in 
conventional LIF/serum culture [108]. With these unique 
characteristics, 2i-cultured mESCs are said to reside in a 
novel and distinct ‘ground state’ pluripotency [100]. 

Although the protein levels of pluripotency regulators 
like Nanog and Rex1 are known to become uniformly-
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high when mESCs are switched from LIF/serum into 2i 
media [107], Marks et al. [109] however found through 
RNA-sequencing (RNA-seq) that apart from Tcl1, the 
mRNA levels of most other pluripotency genes like 
Pou5f1, Sox2, Nanog, Esrrb, Klf2, Klf4 and Tbx3 did not 
change between the two culture conditions. The reason 
behind this discrepancy is still unclear, and may have 
arisen due to the presence of LIF with the 2i media used 
in this study [109]. It is also possible that translational 
and/or post-translational regulatory mechanisms are in-
volved.

This study by Marks et al. [109] also found that lin-
eage genes were suppressed under 2i/LIF conditions, and 
that 2i/LIF mESCs had higher expression of metabolic 
genes. Taken together, these data argue against the hy-
pothesis proposed by Efroni et al. [110] that an innate 
global transcriptional hyperactivity results in pluripotent 
developmental plasticity. Rather, it is believed that the 
presence of lineage gene expression in conventional 
mESC culture may be the result of serum stimulation 
[109]. Additionally, unlike cells cultured under LIF/
serum conditions, 2i/LIF mESCs were found to contain 
more proximal-promoter pausing by RNA Polymerase II 
(RNA Pol II), especially at many lineage-specific genes. 
It was also proposed that this RNA Pol II pausing could 
be important towards establishing the ground state pluri-
potency.

Interconversion between alternative pluripotent 
states

Mouse epiblast stem cells
While the presence of LIF is necessary for mESCs 

to maintain pluripotency, the discovery of a novel LIF-
independent pluripotent stem cell population derived 
from E5.5 to E7.5 post-implantation mouse embryos [111, 
112], suggests that other states of pluripotency may exist 
(Figure 1). As these cells were isolated from the post-im-
plantation epiblast tissue of the developing embryo, they 
were hence termed mouse epiblast stem cells (EpiSCs). 
While EpiSCs can self-renew and were demonstrated to 
be pluripotent through teratoma assays and through in 
vitro differentiation into germ cells [111-113], it should 
be noted that EpiSCs exhibit limited developmental po-
tential and are generally considered inefficient in the for-
mation of chimeras [111, 112, 114].

Similarly, while EpiSCs do express the core Oct4, 
Sox2 and Nanog pluripotency factors, they differ mark-
edly from mESCs with regards to their gene expression 
profile, epigenetic status and usage of signalling path-
ways to maintain a stem cell identity [106, 111, 112, 115, 
116]. Notably, EpiSC cultures like that of hESCs, require 

the addition of Activin and Fgf2, but not LIF or BMP4 
for self-renewal [117]. The expression levels of pluripo-
tency markers such as Rex1, Stella, Klf2, Klf4 are lower 
in EpiSCs, with a concomitant higher expression of dif-
ferentiation markers [112]. It should also be highlighted 
that while female mESCs are in the pre-inactivation state 
with two active X-chromosomes (XaXa), EpiSCs have 
already undergone X-inactivation (XaXi), consistent with 
a more developmentally advanced stage [117]. Therefore, 
these findings indicate that EpiSCs have already been 
‘primed’ for differentiation, as opposed to mESCs which 
exist in a more developmentally ‘naive’ state.

Overall, EpiSCs appear to partially resemble hESCs, 
and may potentially be the counterpart of hESCs. There-
fore, EpiSCs could serve as a more relevant mouse mod-
el for the study of early human embryonic development, 
as compared with mESCs. However, despite the afore-
mentioned similarities with hESCs, inhibition of Fgf2/
Erk signalling in EpiSCs does not result in loss of Nanog 
expression, and no evidence of Oct4-mediated transcrip-
tional regulation at Fgf2 promoters was observed for 
EpiSCs [118]. Similarly, certain key features of EpiSCs 
like the absence of Rex1, a mESC pluripotency marker, 
and the expression of the Fgf5 epiblast marker, are not 
shared by hESCs [118]. Further research is thus needed 
to establish whether these dissimilarities are due to spe-
cies- or developmental-specific differences.

The transition between naive and primed pluripotency
As mESCs are derived from a developmentally ear-

lier timepoint (pre-implantation embryos) as compared 
to EpiSCs (post-implantation embryos), the conversion 
of mESCs into EpiSCs would therefore correspond to 
a differentiation step along the normal developmental 
pathway (Figure 1). In this regard, culturing mESCs 
with FGF2 and Activin A readily results in the forma-
tion of EpiSCs [114]. Similarly, FGF treatment together 
with LIF/Stat3 blockade could also convert mESCs into 
EpiSCs [118].

In contrast, the reverse transition of EpiSCs into 
mESCs is more difficult, occurring at an extremely low 
frequency through culture with LIF [102, 114]. The 
reversion rates may be improved by 104-105 fold if the 
pluripotency factors Klf2, Klf4, Nanog, Nr5a2 or Esrrb 
were to be ectopically expressed [22, 102, 114, 119, 
120]. Similarly, a chemical approach can also be adopted 
to convert EpiSCs into naive mESCs using a combina-
tion of LSD1, ALK5, MEK, FGFR and GSK3 inhibitors 
[121] (Figure 1).

Recently, Prdm14 and Klf2 were found to synergize 
with each other to rapidly induce the reprogramming of 
EpiSCs into mESCs within 3-4 days [122], in contrast to 
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the usual process of 8-10 days. By itself, the introduction 
of Prdm14 does not have much effect on the reversion 
process. However, transcriptomic analysis revealed that 
Prdm14 actually serves to prime EpiSCs for conversion 
through the simultaneous repression of lineage-associat-
ed genes and activation of early epiblast genes. The syn-
ergistic effect of Prdm14-Klf2 can also be attributed to 
the ability of Prdm14 to enhance Klf2 recruitment onto 
key mESC pluripotency gene loci such as the Nr5a2 pro-
moter and the Oct4 distal enhancer [122]. 

Establishing a mESC-like hESC state
In addition to post-implantation embryos, EpiSCs 

can also be readily isolated from pre-implantation stage 
mouse blastocysts [123], which have been traditionally 
used to derive mESCs (Figure 1). This meant that modu-
lation of the signalling environment could influence 
the formation of naive or primed pluripotency states. 
Because hESCs resemble EpiSCs more than mESCs, 
despite also having been derived from pre-implantation 
blastocysts, it is believed that during the hESC derivation 
process, pre-hESCs may have progressed into a more 
developmentally advanced EpiSC-like state [124]. In 
support of this ‘primed’ pluripotent state of hESCs, non-
human primate ESCs from rhesus monkeys, like mouse 
EpiSCs, are unable to contribute to chimera formation 
[125].

Currently, hESCs suffer from very poor gene-targeting 
efficacy unlike mESCs, making the genetic manipulation 
of hESCs for research or therapeutic purposes extremely 
difficult [126]. Critically, the developmental stage differ-
ences between the two cell types imply that many of the 
protocols for mESC differentiation into various lineages 
may not work in a hESC system. In light of these prob-
lems, the creation of a mESC-like hESC state would not 
only make hESCs more amenable to gene targeting, but 
also enable the transfer of existing mouse differentiation 
protocols into hESCs.

There have been several attempts by various groups 
to generate mESC-like human pluripotent stem cells. 
The methods include either a direct conversion from 
conventional hESCs [127, 128] or the reprogramming 
of somatic cells into mESC-like hESCs [128-131] (Fig-
ure 2). Unfortunately, these cells either were dependent 
upon transgene expression for long-term culture, or have 
not been thoroughly characterised for features such as 
naive mESC characteristics and complete transgene in-
dependence. Taken together, while these studies have 
demonstrated the feasibility of creating hESCs which 
exhibit characteristics of naive pluripotency, future ef-
forts should focus on improving the culture conditions 
to enable transgene-free long-term maintenance of these 

Figure 2 Methods to create mESC-like hESCs. (A) hESCs with 
mESC-like characteristics can be generated directly from con-
ventional hESCs using OCT4 with SOX2, or, KLF4 with KLF2, 
in the culture with LIF/PD/CH [128]. Similarly, the generation 
of hESCs which resemble mESC colonies could be achieved 
through culture with LIF/PD/SB [127]. (B) Human fibroblasts can 
also be reprogrammed into mESC-like human iPSCs through 
expression of OCT4, SOX2, NANOG, LIN28 with LIF/PD/CH/
A83 [129]; through OCT4, SOX2, KLF4, c-MYC, NANOG with 
LIF [130]; using OCT4, SOX2, KLF4 with LIF/PD/CH [128]; 
or OCT4, SOX2, KLF4, c-MYC, NR5A2, RAR-γ with LIF/PD/
CH [131]. PD: MEK inhibitor PD0325901. CH: GSK3 inhibitor 
CHIR99021. SB: p38 inhibitor SB203580. A83: ALK4,5,7 inhibi-
tor A83-01.

mESC-like hESCs.
Several studies have also explored the possibility of 

generating mESC-like hESCs directly from pre-implan-
tation human embryos. Female hESCs derived from the 
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culture of human blastocysts in hypoxic (5% O2) condi-
tions were found to be in an XaXa status, a characteristic 
of mouse naive pluripotency [132]. However, these cells 
were maintained in conventional FGF-containing media 
and were not tested further for features of naive pluripo-
tency.

The generation of naive hESCs from embryos using 
2i media was reported to be unsuccessful [133]. In mice, 
culturing 8-cell stage embryos under MEK inhibition 
will result in the failure to form the hypoblast compart-
ment with a reciprocal expansion of the pluripotent 
epiblast [134]. However, culturing early human embryos 
with MEK inhibitor does not block hypoblast formation, 
and neither would the development of the NANOG-
positive epiblast compartment be affected [133, 135]. 
Thus taken together, these studies suggest that additional 
signalling pathways could be involved in the segregation 
of the human ICM into the epiblast and hypoblast, or that 
species-specific differences exist between mouse and hu-
man embryos in the biological functions of FGF/MEK 
signalling.

The totipotential of 2C-like mESCs?
Recently, Macfarlan et al.[136] reported the discovery 

of a rare transient population of mESCs, which can give 
rise to both embryonic and extraembryonic tissues. By 
comparing the gene expression signature between mouse 
oocytes and 2-cell (2C)-staged embryos using RNA-seq, 
the authors found that the 2C transcriptome contained 
many genes, which were driven by retroviral elements. 
Among these repeats, the MuERV-L family of retroele-
ments were found to be the most abundant. Indeed, by 
combining this MuERV-L regulatory sequence with a td-
Tomato red fluorescence gene, the authors demonstrated 
through zygotic injection that strong MuERV-L reporter 
fluorescence was detected at the 2C stage, which would 
then gradually decrease and become undetectable by the 
blastocyst stage.

Surprisingly, stable integration of this MuERV-L td-
Tomato reporter into mESCs led to the detection of a 
similar red fluorescence within a very small population 
of cells (approximately 0.2%-1.5%); and gene expression 
profiling of these tdTomato+ mESCs revealed that they 
resembled 2C embryos (Figure 1). Like Nanog, Rex1 and 
Stella [23, 105, 106], MuERV-L tdTomato expression 
was also found to exist in a dynamic state. Subsequent 
genetic labelling experiments suggested that all mESCs 
within the culture could transiently pass through this 
2C-like state. Intriguingly, these 2C-like mESCs do not 
contain any Oct4, Sox2 and Nanog proteins, even though 
the transcript levels of these genes were unaffected. 
Perhaps the most fascinating aspect of this study, is the 

demonstration that injection of these 2C-like mESCs into 
morula stage embryos could result in the contribution of 
these 2C-like donor cells towards both embryonic and 
extraembryonic tissues, hence suggesting a totipotent-
like capability.

Together, this study raises several new interesting 
questions. First, what is the significance of this 2C-like 
stage, and why do mESCs transiently enter this phase? 
Second, as these 2C-like mESCs do not possess Oct4, 
Sox2 and Nanog proteins, how would the transcriptional 
network of these 2C-like mESCs be regulated? Third, 
as only a very rare population of mESCs are expressing 
MuERV-L at a given time, what would be the signalling 
pathways or cellular mechanisms that regulate the entry 
or exit of this phase? And lastly, do hESCs possess a 
similar transient 2C-like phase, and if so, would it also 
be regulated by endogenous retroviral elements? 

Future outlook

Deciphering the ESC transcriptional network is essen-
tial towards understanding the cellular mechanisms that 
govern pluripotency. In this regard, the different studies 
involving various experimental approaches have now 
enabled researchers to appreciate the processes by which 
the core ESC transcription factors establish an overall 
ESC identity.

To bring the potential of hESCs one step closer to-
wards its application in regenerative medicine, future 
research should likely focus upon dissecting the path-
ways that regulate lineage commitment. Recently, by 
probing the temporal gene expression and chromatin 
changes during the directed differentiation of ESCs into 
cardiac lineages, several novel regulators of cardiac tis-
sue formation have been identified [137, 138]. This is 
achieved either by (1) determining the stage-specific ac-
tivation of gene enhancers, and applying a DNA binding 
motif search to predict the transcription factors that are 
involved during cardiac differentiation [137]; or (2) by 
predicting key regulatory genes based on the induction 
of RNA expression, loss of repressive H3K27me3 marks 
and reciprocal increase of active H3K4me3 modification 
[138]. Therefore, it would be interesting to test if other 
novel tissue-specific regulators could be identified for 
different somatic lineages through analysis of temporal 
chromatin changes. In this regard, the ability to geneti-
cally modify and introduce hESCs reporter genes into 
that specify certain tissue lineages would be of tremen-
dous value for the purpose of studying directed differen-
tiation. For instance, by coupling these lineage-specific 
hESC reporters with high-throughput genome-wide siR-
NA screens or miRNA mimic libraries, numerous factors 
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that regulate differentiation into specific lineages could 
be identified.

Improving the efficacy of directed ESC differentiation 
into the desired cell-type, as well as overcoming the im-
mature phenotype of hESC-derived differentiated cells 
[139] represent key issues to be tackled in the future. 
Resolution of these problems likely will require the op-
timization of important cell culture parameters such as 
the extracellular matrix, growth factor and cytokine-sig-
nalling environment, three-dimensional (3D) cell orga-
nization and cell culture duration. Similarly, the capture 
of ESC-differentiated cells at the progenitor stage may 
enable easier expansion and more efficient differentiation 
into the desired cell type of choice. This can be achieved 
either through the co-culture of ESC-differentiated tissue 
with the appropriate mesenchymal cells [140], or through 
the isolation of self-renewing progenitors within a het-
erogenous cell population [141].

While directed differentiation is useful for the deriva-
tion of a single, or a few cell types for tissue replace-
ment, the complete generation of complex organs com-
prising many cell types that work in a coordinated fash-
ion presents a greater challenge. Most remarkably, it was 
recently demonstrated that pluripotent stem cells retain a 
self-organising ability to differentiate into 3D organoids, 
which resemble optic cups [142, 143] and adenohypo-
physis tissues [144]. Similarly, intestinal organoids have 
been reported to develop from hESC-derived posterior 
endoderm monolayers upon exposure to the appropriate 
signalling factors [145], and functional thyroid gland tis-
sue has been generated from mESCs [146]. Therefore, if 
one were to harness this powerful self-developing prop-
erty of pluripotent stem cells for the generation of novel 
complex organ types for research or medical purposes, 
it would be important to first determine the mechanisms 
underlying these processes. In this regard, studying the 
temporal transcriptional changes occurring at the whole-
organoid, or at the single-cell level, may be a good start-
ing point to dissect the pathways involved.
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