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Abstract
Individual differences in biological ageing (i.e., the rate of physiological response to the passage
of time) may be due in part to genotype-specific variation in gene action. However, the sources of
heritable variation in human age-related gene expression profiles are largely unknown. We have
profiled genome-wide expression in peripheral blood mononuclear cells from 1,240 individuals in
large families and found 4,472 human autosomal transcripts, representing ~4,349 genes,
significantly correlated with age. We identified 623 transcripts that show genotype by age
interaction in addition to a main effect of age, defining a large set of novel candidates for
characterization of the mechanisms of differential biological ageing. We applied a novel SNP
genotype×age interaction test to one of these candidates, the ubiquilin-like gene UBQLNL, and
found evidence of joint cis-association and genotype by age interaction as well as trans-genotype
by age interaction for UBQLNL expression. Both UBQLNL expression levels at recruitment and
cis genotype are associated with longitudinal cancer risk in our study cohort.
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1. Introduction
1.1. Transcriptional ageing

While there is on-going theoretical debate whether biological ageing is intrinsically
‘programmed’ or incidental to cumulative environmental effects (Medawar, 1952;
Charlesworth et al., 2000; Holliday, 2006), both poles of the debate are consistent with
individual variation in the rate at which ageing occurs (as variation in the developmental
program on one hand, or as robustness to environmental insult on the other). Recent
technological advances have enabled direct investigations of differences in global gene
expression with age (Ly et al., 2000; Hawse et al., 2000; Welle et al., 2003, 2004; Lu et al.,
2004; Rodwell et al., 2004; Melk et al., 2005; Storey et al., 2005; Zahn et al., 2006). To date,
most human studies have compared gene expression between age classes of individuals
(e.g., young vs. old), but such categorical comparisons do not reveal the trajectories of age-
related change. Moreover, while many genes are expected to show age-related changes in
expression, much of the individual variation in biological ageing may result from
genotype×age interaction (G×AI) effects on a smaller number of genes. Indeed, interaction
between specific genetic variants and environmental exposures (age included) are a possible
source of the ‘missing heritability’ (Maher, 2006; Manolio et al., 2009) not yet accounted for
in standard genome-wide association studies.

Here we examine the effects of age and GxAI on genome-wide transcriptional profiles of
peripheral blood mononuclear cells (PBMCs) collected at the time of original recruitment
from 1,240 members of extended families participating in the San Antonio Family Heart
Study (SAFHS); (data collection described in Göring et al., 2007). Of 47,289 targets
queried, 19,648 transcripts representing ~18,519 autosome-encoded genes were expressed at
levels greater than background at a 5% false discovery rate (FDR; Benjamini & Hochberg,
1995). Approximately 85% of these phenotypes exhibited heritable variation in expression
level at 5% FDR.

At the time of blood collection the study cohort had a median age = 37.6y (range 15.4–
94.2y, interquartile range 25.1–49.6y). The broad range of ages represented by members of
the pedigreed sample allowed us to assess age effects in the cross-sectional gene expression
data. Our goal was to identify transcripts that change significantly with age and to test
hypotheses about the genetic basis of differential transcriptional ageing, including G×AI.

1.2. Genotype × age interaction
Many genes are expected to show changes in expression with age, but (presumably) only a
subset of these contribute to individual variation in transcriptional response to ageing. In
classical studies of genetically identical model organisms (e.g., Drosophila, Dobzhansky &
Spassky, 1944; pure-strain agricultural cultivars, Finlay & Wilkinson, 1963; algae, Bell,
1990) reared in different conditions, genotype × environment interaction revealed itself in
divergent phenotype means (norms of reaction) across discrete environments. “Genotype” in
these experiments typically referred to the genomic “type” as a whole. More recently, the
capacity for transcriptional profiling has permitted identification of specific loci exhibiting
genotype × environment interaction – e.g., by comparing gene expression in different culture
conditions in yeast (Landry et al., 2006) and C. elegans (Li et al., 2006).

Extending these studies to uncontrolled environmental effects on outbred populations –
specifically, humans – poses technical and analytical challenges that have only recently
become tractable. A flurry of recent studies report the effects of observed environmental
factors on allelotypes of specific candidate genes, including ADH1B genotype × alcohol use
interaction effects on breast cancer risk (McCarty et al., 2012) and effects on behaviour of
dopamine D4 receptor (DRD4) copy-number polymorphism interactions with measured
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environmental factors (alcohol use, Creswell et al., 2012; socioeconomic status, Schweitzer
et al., 2012).

In the present study, we undertook an agnostic search of all age-correlated expression
phenotypes by performing formal tests of polygenic G×AI. Theory suggests that this
interaction may take two forms (Bell, 1990; Blangero, 1993). The genetic variance of a
given transcript (σ2

g) may be age-dependent, suggesting differences in the scale of gene
action (Fig. 1b). Alternatively (or simultaneously), the genetic correlation (ρg) between
expression levels at different ages may be age-dependent, suggesting that the relative effect
sizes of the genes contributing to a given trait vary with age (Fig. 1c). For our cross-
sectional data, we extended the covariance-decomposition mixed models to express both σ2

g
and ρg as continuous functions of the age difference between individuals (Blangero &
Konigsberg, 1991; Blangero, 1993; Almasy et al., 2001; Diego et al., 2003). The two tests
are that σ2 g is constant across all ages (the null for variance-type interaction) and that ρg
between measures of the trait at different ages = +1 (the null for correlation-type
interaction). In principle, of course, either, both, or neither null may be rejected, depending
on the genes contributing to the trait of interest and their responses to age.

An analogous dichotomy of G×AI should be observable at the level of individual genes and
genetic variants. Supposing the regulation of gene expression to be a polygenic process, the
gene-specific equivalent of interaction σ2

g could be reflected in an age-related change in
variance attributable to a cis-acting variant (that is, a regulatory variant that is proximal to
the physical location of a gene of interest), while the gene-specific equivalent of interaction
ρg could be seen as a trans-acting variant – another regulatory site whose effect on
expression of the gene of interest changes with age. We have developed a novel statistical
test for distinguishing such effects and applied it to our polygenic G×AI candidates.

2. Materials and methods
2.1. Study cohort

Recruitment of the Mexican American families in SAFHS began in 1991 with ascertainment
on family size rather than any disease state, although the cohort reflects the elevated risk of
this ethnic stratum for Type 2 diabetes (15.3% at recruitment) and other cardiovascular risk
factors (Mitchell et al., 1996). Subjects have been recalled up to three times to provide a
wealth of genetic and phenotypic data. All procedures have been performed with the
informed consent of the participants and with approval of the Institutional Review Board of
the University of Texas Health Science Center – San Antonio.

The 1,240 SAFHS participants with gene expression data represent 46 extended families
ranging in size from 3–87 phenotyped relatives. The complex family structure provided
information on 12,548 pairwise relationships distributed across multiple households and
over a very broad range of age difference (Table 1). All 1,240 individuals, including 107
marry-in spouses without phenotyped children, contributed to the estimation of the effect of
SNP genotype.

2.2. Gene expression phenotypes
Collection, extraction, and standardization of the expression phenotypes are described in
Göring et al. (2007). Briefly: RNA was extracted from PBMCs collected at recruitment and
quantified using Illumina Sentrix Human Whole Genome Series I BeadChip microarrays.
Average gene expression levels obtained from BeadStudio analysis of microarray output
were standardized as Z-scores, adjusted for individual variation in overall signal, and
normalized by inverse-Gaussian (rank-normal) transformation.
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2.3. Genotyping
A panel of ~550K haplotype-tagging SNP genotypes (Illumina Bead Station 500 GX) was
available for 1,189 of the SAFHS participants with gene expression phenotypes. The
experimental error rate (based on duplicates) was 2 per 100,000 genotypes, and the average
call rate per sample was 97%. Specific SNPs were removed from analysis if they had call
rates <95% (about 4,000 SNPs) or deviated from Hardy-Weinberg equilibrium genotype
frequencies at a 5% FDR (12 SNPs). SNP genotypes were checked for Mendelian
consistency using the program SimWalk2 (Sobel & Lange, 1996); approximately 1 per
1,000 genotypes was blanked due to Mendelian errors. Maximum likelihood techniques that
account for pedigree structure were used to estimate allelic frequencies. Missing genotypes
were imputed with MERLIN (Burdick et al., 2006). Association tests were performed using
genotype scores that represented the number of copies of each SNP’s minor allele (0,1,2, or
a weighted fractional score for imputed genotypes).

2.4. Statistical and quantitative genetic analyses
The statistical programming language R (R Development Core Team, 2011) was used for
descriptive statistics and graphics as well as the survival analyses (described in section 2.5).

Quantitative genetic analyses were conducted in SOLAR (Almasy & Blangero, 1998) with
extensions written by the present authors. Because of the complex pedigree structure of the
extended families, individual measures of gene expression could not be treated as
statistically independent observations. Consequently, we analysed mixed models that
included the random effect of kinship as well as the fixed effects of covariates. Briefly:

Observe that an individual’s phenotype yi can be decomposed as

(Eqn. 1)

where µ is the phenotype mean, xi a vector of covariate measures (including SNP genotype
scores if desired), β a vector of regression beta coefficients, gi the deviation from the mean
due to additive genetic effects, and ei an error term. After regressing out the covariate
effects, the covariance of residual phenotypes between any two individuals i, j can be
decomposed as

(Eqn. 2)

where ki,j is the expected proportion of alleles shared identical by descent (0.5 for parent-
child or full sibs, 0.25 for 2nd degree relatives, etc.); σ2

g and σ2
e are, respectively, the

additive genetic and residual components of total phenotypic variance; and Ii,j is an indicator
variable that is 1 if i and j are the same individual and 0 otherwise (Almasy & Blangero,
1998). The standardized additive genetic variance is called the heritability (h2) – the
proportion of total variance attributable to additive genetic effects. In practice, each system
of pairwise covariance equations was fitted simultaneously to estimates of all parameters
(regression and covariance decomposition alike) until maximum likelihood estimates were
obtained. Note that estimating the SNP covariate betas (when present in the association
tests) jointly with the other parameters provided an appropriate correction for the non-
independent observations.

The linear decomposition of the phenotypic covariance is extremely flexible. In particular,
the variance components in Eqn. 2 can be expressed as:

(Eqn. 3)
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(Eqn. 4)

such that σ2
g and σ2

e are replaced by exponential functions of each individual’s deviation in
age (δi, δj) from the sample mean. The additive genetic term also includes a genetic
correlation between measures of the phenotype in i, j that depends on their absolute
difference in age (Δagei,j) – that correlation being 1 if Δagei,j = 0. This expanded statement
models the two theoretical types of G×AI (Blangero & Konigsberg, 1991; Almasy et al.,
2001; Diego et al., 2003) with respect to the expected genome-wide allele sharing among
relatives. We used this polygenic G×AI model to identify candidate gene expression
phenotypes for more focussed SNP-based association tests.

SNP association tests were performed by including genotype scores as covariates in mixed
models that also included covariates sex and age and the random effect of kinship. The first
four principal components from analysis of genotype correlations were also included as
covariates to guard against spurious association due to population structure (Price et al.,
2006). We extended the association model to include a multiplicative age × SNP genotype
interaction term – the SNP-specific equivalent of variance-type G×AI. To model correlation-
type G×AI, we further tested this saturated model against a null model in which the
regression slopes for both SNP genotype and the interaction term were constrained to 0 (a
test with 2 degrees of freedom, df) to search for trans-acting variants whose association with
the phenotype was detectable only contingent on interaction with age.

Genome-wide significance for the association tests was assessed based on an empirical
threshold obtained from the distribution of P-values in 10,000 simulated null genome-wide
association scans using the SAFHS SNP genotypes and pedigree structure. A test was
declared ‘significant’ at P<1.3×10−7, the cut-off for the lower 5% tail of the empirical
distribution, or ‘suggestive’ at a P-value not expected to occur more than once per genome
scan (P<1.9 ×10−6). The same thresholds were used for the 2df tests of SNP G×AI (joint test
of association with SNP genotype and age) although these criteria may be conservative (see
Discussion).

2.5. Survival analysis
Mortality in the SAFHS cohort was assessed as of a reference date (31 October 2009) as
follows: Copies of death certificates were obtained, where possible, for participants whose
death had been reported by study recruiters. Individuals with death certificates were right-
censored at date of death, and ICD10 codes for causes of death were supplied by a
professional nosologist based on medical examiners. notes from de-identified death
certificates. All other individuals were right-censored as ‘alive’ at the last date of contact
with study recruiters. Incident cancer, diabetes, and cardiovascular events (heart attack or
heart surgery) were recorded based on self-reports at SAFHS clinic visits. Cox proportional
hazard analyses were performed using the R routine coxme which, like SOLAR,
incorporates the random effect of kinship (Pankratz et al., 2005; Therneau, 2011).

3. Results
Our exploration of age-related gene expression proceeded as a stepwise prioritization of
candidate genes: starting with all heritable, autosomal gene expression phenotypes, we
filtered these by (a) association with age; (b) polygenic G×AI; (c) prior linkage evidence
(Göring et al., 2007) for cis-regulation; (d) corresponding evidence of cis-association; (e)
evidence of trans-interacting SNP G×AI. Finally, we present a detailed characterization of
an interesting example, UBQLNL.
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3.1. Age-related expression profiles
Every quantitative genetic analysis in SOLAR included age as covariate (see Methods). To
examine trajectories of gene expression with age, we modified the age dependence of
expression levels using four general regression functions: linear (the default), log-linear,
quadratic, and a linear change-point function in which expression level reaches a plateau
after a critical age. Sex was included as a covariate in each model and, as in all models, a
residual genetic variance was estimated to account for non-independence among individuals
due to kinship. The resulting mixed models for each transcript were ranked by the Bayesian
information criterion (BIC; Raftery, 1995; Kass & Raftery, 1995), which took into account
the additional parameters estimated in the quadratic and change-point models.

Of the 16,678 autosomal transcripts with heritable variation in expression, 4,472 (26.8%)
were significantly correlated with age at FDR = 5% (P.0.0134). The best-fit regression
model was linear for 54.8% of the transcripts and log-linear for 42.1%, consistent with an
established tenet of gerontology that physiological processes relevant to senescence tend to
decline in a linear fashion (Kohn, 1985; Shock, 1985; Sehl & Yates, 2001). The more
complex change-point and quadratic regression models gave the best fit for 123 and 13
transcripts, respectively (Supplementary Table S1). For the transcripts whose profiles were
best described by the linear change-point model, the estimated median change-point age
(that is, the age at which linear change with age ceased) was 25.9y (range 19.3–65.7y). The
SAFHS sample did not include juveniles, so processes specific to early development could
not captured in this study.

The direction of change of expression with age for each transcript was defined by
calculating the expected value of the expression phenotype at ages 25 and 70y using the
best-fit regression model for the transcript. Significantly more transcripts showed decrease
in expression level with age than increase (2,550 vs. 1,922; Fisher’s exact test: odds
ratio=1.327, P=3.17×10−11).

Pathway analysis by Ingenuity Pathway Analysis v4.1 software was employed to assign the
age-correlated transcripts to broad categories of gene function and to look for over-
representations of age-dependent transcripts. A right-tailed Fisher’s exact test was
performed for each category to compare the number of age-correlated genes in the category
to the total number of occurrences of these genes in all categories of annotation. Functional
assignments were obtained for 1,748 (37.3%) of the transcripts and 448 (9.6%) could be
characterized further by canonical pathway (Fig. 1).

Several broad patterns emerge from pathway analysis. Among the top 12 functional
assignments, there was an excess of up-regulation with age for transcripts related to immune
response and inflammation, cell compromise, and cell death, as found in some earlier studies
(Ly et al., 2000; Hawse et al., 2004; Lu et al., 2004). Eleven of the top 12 canonical pathway
assignments exhibited an excess of up-regulation with age. The prominence of canonical
pathway assignments related to immune response, oxidative stress, and cellular damage may
reflect expression patterns specific to the lymphocyte source tissue as well as age effects.
The functional patterns of age-related change in expression are suggestive of both
diminished cellular maintenance and accumulation of cellular damage with age, consistent
with theoretical expectation (Vijg & Suh, 2005). These results are broadly in agreement with
a meta-analysis of our data by Hong et al. (2008), although their analysis did not account for
the non-independence of family members and used different criteria for correcting for
multiple tests. In particular, the meta-analysis noted the preponderance of down- vs up-
regulated transcripts and the enrichment for inflammation-related genes in the PBMC-based
expression data.
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3.2. Genotype × age interaction: polygenic
Of the 4,472 transcripts that were significantly correlated with age, none exhibited variance-
type G×AI after correction for multiple testing; however, 623 (13.94%) exhibited significant
correlation-type G×AI at 5% FDR (P≤0.007; Supplementary Table S1). These results
suggest that, in this sample, individual variation in the response of gene expression to ageing
primarily reflects age-differential contributions of multiple loci. The functional assignments
for this subset are shown in Fig. 2.

3.2. Genotype × age interaction: localized
To begin detailed exploration of the molecular basis of transcriptional ageing, we focused
our attention on a very small subset of 17 G×AI transcripts that had prior evidence of cis-
regulation (i.e., the primary signal in a genome-wide linkage scan was localized at or near
the structural locus of the expressed gene; Göring et al., 2007) confirmed by association
tests including tests for cis- and trans-acting SNP G×AI (see Methods).

Of the 17 expression phenotypes analysed, three (UBQLNL, VSTM1, ZNF638) gave
significant evidence (P<1.3×10−7), based on the stringent 2 df test, of correlation-type SNP
G×AI at genomic positions other than the primary cis-association loci (Supplementary Table
S2). Seven (ABCC3, SNRNP25, GRHPR, HNRNPL, MT2A, PIGB, and TMEM8A) also
showed suggestive evidence (P<1.9×10−6) of correlation-type G×AI at one or more trans
loci (Supplementary Table S2).

3.4 UBQLNL
NM_145053, a transcript of the ubiquilin-like gene UBQLNL, attracted our attention as a
member of the ubiquitin gene family whose biological functions are not yet well understood.
Two SNPs within 1Mb of the chromosome 11 UBQLNL structural gene locus were
associated with UBQLNL expression at genome-wide significance, consistent with the
evidence for cis-linkage (Table 2; Fig 3, Panel A). SNPs rs7939159 (P=3.7×10−10, df=1)
and rs7129909 (P=1.1×10−8, df=1) are located within a tripartite motif-containing protein
gene cluster (TRIM34 and TRIM22, respectively) and are in low linkage disequilibrium
(LD; r = 0.061) in our sample.

In addition, three SNPs at a trans-locus near PPP1R3C on chromosome 10 showed
significant evidence by the 2 df test for association contingent on G×AI (Table 2; Fig. 3,
Panel B). These SNPs were in near complete LD (r > 0.99) with one another but not with the
cis-acting variants (| r | < 0.05). For subsequent analyses, rs11597974 (P=2.8×10−8, df=2)
was taken as representative of the set. While physically located near PPP1R3C, these SNPs
were not associated with its expression, and PPP1R3C expression (which was not heritable)
was not correlated with that of UBQLNL. Thus, the trans-association of these SNPs with
UBQLNL does not appear to be mediated by a cis-effect on the nearby gene.

We applied a Bayesian test (Blangero et al., 2009) of all possible combinations of these
three SNPs and their interactions with age. The best model includes as covariates the cis-
acting SNPs and the trans-acting G×AI term, each with posterior probability = 1.
Cumulatively, these three covariates account for 11.6% of the total phenotypic variance,
with 2.5% of total variance (= 21.6% of the covariate effect) attributable to trans-G×AI
(Table 3).

G×AI can be visualized by joint regression (Finlay & Wilkinson, 1963) of the phenotypic
values of specified genotypes on the environment of interest. In the absence of G×AI, the
norms of reaction of each genotype should be similar in slope but (assuming association of
genotype with trait) different in intercept. The left panels of Figure 4 show the norms of
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reaction of UBQLNL expression on age for the two cis-acting SNPs. The intercepts at mean
age are distinct and consistent with an additive effect of the alleles, while the overall trend
for all cis-genotypes is age-decreasing, with decrease in variance with age (reflected in the
convergence of genotype means). The remaining columns in the figure, which stratify the
results by trans-genotype, reveal a more complex response: the trans minor allele is
evidently associated with increased UBQLNL expression with age, countering the overall
trend. The contrast between the major- and minor-allele trans homozygotes, for which the
slopes of the norms of reaction are generally opposite in sign, is a classic indicator of
correlation-type G×AI (Bell, 1990). An exception to this pattern is the rare allele of
rs7939159, which shows less variation in relation to trans-genotype.

3.5. Relationship to clinical outcomes
As noted, our gene expression phenotypes were obtained from PMBCs collected at baseline,
and evidence for age correlation and G×AI is based on cross-sectional data. In the ~16y
since initial recruitment, SAFHS participants have been recalled up to 3 times for follow-up
and companion studies, providing longitudinal data on the same cohort (Fig. 5). 158
participant deaths have been identified during recalls; of 123 decedents for whom death
certificates were available, cancer was primary or contributing cause of death for 36, the
second most common cause after cardiovascular disease (N=73). In addition, medical
histories taken at each clinic visit included self-reports of incident cancer for 51 surviving
participants. We employed a mixed-model Cox proportional hazards analysis implemented
in R routine coxme (Pankratz et al., 2005) that, like our SNP association method, includes a
random effect of kinship. Both UBQLNL expression level at baseline and rs7939159
genotype had a nominally significant effect (P<0.05) on all-cause and cancer mortality and
significantly affected combined cancer outcomes (expression, P=0.0016; rs7939159
genotype, P=0.00007; Table 4). Neither UBQLNL expression nor rs7939159 genotype was
a significant hazard for death by cardiovascular disease. While these results should be
treated with caution, given the small number of cancer cases and the heterogeneity of cancer
type, they do suggest a possible physiological role for UBQLNL that should be addressed in
future studies.

In a massive whole-transcriptome correlation analysis of the SAFHS expression data
(H.H.H.G., E.I.D., unpublished), UBQLNL expression is significantly correlated with 80
other validated autosomal transcripts of genes involved in mitochondrial function and cell
cycle regulation (Supplementary Table S3). In addition, the panel of cis-acting and trans-
interacting SNPs is associated (at either genome-wide significance or suggestive evidence)
with expression of three of these genes, including a key responder to DNA damage, the
ataxia-telangiectasia mutated gene ATM (Supplementary Table S3). These relationships,
combined with the Cox proportional hazards data, suggest that variation in UBQLNL
expression may reflect genotype-specific differences in cellular response to age-related
accumulation of DNA damage.

4. Discussion
Our analyses of transcriptional ageing are based on one of the largest samples studied to
date. Due to the relative ease of obtaining PBMCs, we were able to assess genome-wide
expression profiles in a sample of more than 1,200 individuals. This unique dataset allowed
us to characterize trajectories of change in expression with age, revealing a diversity of
trajectories consistent with observations on physiological traits (Arking, 2010). Use of
familial information enabled us to identify a substantial number of genes whose level of
expression is both age-correlated and heritable, thus defining a novel set of biomarkers of
ageing. These new biomarkers are by definition directly proximal to gene action, providing a
high-resolution resource for characterizing pathways of physiological ageing. Importantly,

Kent et al. Page 8

Mech Ageing Dev. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



the genes showing polygenic G×AI effects represent high-priority targets like UBQLNL for
molecular dissection to determine the mechanisms of differential biological ageing.

As noted in the Introduction, there has been limited discovery to date of specific genetic
variants in humans that clearly exhibit genotype × environment interaction, and published
studies typically focus on candidate genes and/or categorical environments. Here we present
a method for screening large numbers of genetic variants in a continuous environment (age)
for associations that are detectable only through interaction. Our threshold (P<1.3×10−7) for
detection of either association or G×AI is based on a large simulation of GWAS under the
null, with a stringent 2df test for G×AI. This test may be conservative: for the three
transcripts exhibiting trans-G×AI significant at our threshold (UBQLNL, VSTM1,
ZNF638), the levels of evidence were well below 5% FDR (qi = 0.007, 0.004, 0.002,
respectively). Thus, the evidence for these discoveries is strong; further work is needed to
fully characterize the null distribution of this novel test.

Little is currently known about the biological function of UBQLNL, although its sequence
homology with other members of the ubiquitin gene family suggests that it may share a role
in protein turnover and regulation of cell cycle progression (http://www.ncbi.nlm.nih.gov/
gene/143630; accessed 8/15/2011). UBQLNL is a positional candidate gene for type 2
diabetes in at least one genome-wide association study in Mexican Americans (Hayes et al.,
2007), although its expression is not significantly correlated with diabetes status in our
sample (data not shown). It is also one of many genes included in a proposed genetic risk
score for response to nicotine-patch therapy for cigarette addiction (Rose et al., 2010; Uhl et
al., 2010), although it was not identified in our profile of smoking-related gene expression in
SAFHS (Charlesworth et al., 2010). Our panel of cis-acting/trans-interacting SNPs is not
associated with smoking in SAFHS (data not shown).

Additional molecular work is needed to clarify the functions of UBQLNL and the trans-
interacting variants on chromosome 10. The published data suggest that UBQLNL may
function in response to a variety of environmental threats to cellular or genomic integrity,
including oxidative stress associated with diabetes and toxic effects of smoking. As noted,
rs7939159 genotype was a significant hazard in the mixed-model Cox proportional hazards
analysis, with the odds ratio suggesting increased risk of cancer outcomes associated with
the minor allele (Table 4) – the same allele that showed a paradoxical response to trans-
G×AI in the joint regression (Fig. 4).

Conclusion
We have identified a large set of human genes exhibiting G×AI in expression levels and
have implemented a method for distinguishing cis- and trans-acting variants contributing to
localized patterns of G×AI. This work sets the stage for detailed exploration of the genetic
processes contributing to differential biological ageing, exemplified by our application of
these methods to a candidate ubiquitin-family gene, UBQLNL. We have found that
UBQLNL expression levels as well as variation in an age-interacting associated SNP are
associated with subsequent cancer in our sample, demonstrating the utility for gene
discovery of PBMC-derived gene expression phenotypes in general and analysis of age
effects in particular.

Individual genes are never expressed in isolation, as exemplified by the extensive genetic
correlation of UBQLNL with other transcripts. Development of analytical tools for
incorporating high-dimensional relationships and multiple types of genomic information is
on-going (see, e.g., Zhu et al., 2012). A most interesting challenge will be to apply G×AI
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analytical techniques not only to individual gene expression phenotypes but also to the
networks that comprise them.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

> At least 4300 human genes show age-related changes in expression. > At least 623 of
these show genotype by age interaction (GxAI) effects on expression. > UBQLNL
expression exhibits both cis- and trans-acting GxAI effects. > A cis-regulatory SNP in
UBQLNL is associated with lifetime risk of cancer.
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Figure 1. Hypothetical norms of reaction
mean expression levels of a hypothetical gene for two genotypes G1, G2 measured at
different ages (after Bell (1990)). a, no interaction: G2 is more highly expressed at all ages,
so genotype responses to age have correlation=+1; trait variance does not change with age.
b, variance-type interaction: G2 is always more highly expressed (correlation=+1) but
genotype means diverge with age (and consequently variance increases with age). c,
correlation-type interaction: responses of G1 and G2 do not have correlation=+1 since ranks
of G1, G2 change with age; trait variance does not change monotonically with age.
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Figure 2. Functional characterization of age-correlated transcripts
a, top 12 assignments to functional class ranked by decreasing significance (range:
P=2.3×10−29, P=1.6×10−12). b, top 12 assignments to canonical pathway (range:
P=6.2×10−9, P=1.1×10−4). Legend: down-regulated with age, non-G×A: blue; down-
regulated G×A: green; up-regulated G×A: orange; up-regulated, non-G×A: red.

Kent et al. Page 16

Mech Ageing Dev. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Kent et al. Page 17

Mech Ageing Dev. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 3. Genome-wide plots for SNP association with UBQLNL expression
a, evidence for association with 536,821 haplotype-tagging SNPs (1 df test). b, 2 df test for
association contingent on SNP genotype × age interaction. Red horizontal lines represent
empirical thresholds for suggestive evidence of association (occurring once per genome scan
by chance, P=1.9×10−6) and genome-wide P=0.05 (P=1.3×10−7). Empirical thresholds were
obtained from 10,000 replicate GWAS of a simulated non-associated trait.
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Figure 4. Norms of reaction for cis- and trans-regulatory variants
Genotype-specific regressions of UBQLNL mRNA levels on age. Panel A, cis-SNP =
rs7939159; Panel B, cis-SNP = rs7129909; trans-SNP = rs11591635 in each case. Plot labels
= cis-/trans genotype. Left column: norms of reaction for cis-acting SNP genotypes without
stratification by trans-interacting genotype show an overall reduction of expression level
with age (red lines reflect maximum-likelihood estimates of regression slope and intercept at
cohort mean age). Remaining columns: cis-genotypes stratified by trans-genotype reveal
patterns of cis-trans G×AI (see text). Grey axes represent mean values for UBQLNL
expression (vertical axis, horizontal line) and age (horizontal axis, vertical line).

Kent et al. Page 20

Mech Ageing Dev. Author manuscript; available in PMC 2013 September 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 5. Experimental design of survival analysis
Expression phenotypes were measured in blood samples drawn at recruitment. G×AI
analyses were based on cross-sectional data for this time point, using the range of ages at
recruitment (15–94ya). Longitudinal disease incidence and mortality data were collected for
the cohort over the subsequent ~16y follow-up period. Cox proportional hazards analysis
was performed for hazards including the prospective effect of baseline expression levels of
UBQLNL and genotype for associated SNPs.
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Table 3

Bayesian quantitative trait nucleotide analysis of UBQLNL expression

Parameter Average point
Estimate

Standard error Posterior
Probability

Proportion of
variance explained

heritability 0.2467 0.0582 1 0.2467

rs7939159 0.3566 0.0513 1 0.0498

rs7129909 −0.2849 0.0435 1 0.0412

rs11591635 0 0 0 0

rs7939159 × age 0 0 0 0

rs7129909 × age 0 0 0 0

rs11591635 × age 0.0168 0.0028 1 0.0254
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