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Cancer is an Age-Related Disease

Common cancers such as lung, breast, prostate, colon, gastric, 
esophageal, pancreatic, thyroid, brain and certain leukemias, are 
age-related diseases, meaning that their incidence is dramatically 
increased with aging and about one third of elderly people die from 
cancer. In rapidly aging mammals such as mice, cancer develops by 
the age of 1 to 2 years. In humans, common cancers are delayed 
and occur toward the end of the life, too. Centenarians, people who 
live more than 100 years, are especially protected from cancer.1-3 In 
long-lived mice, cancer is delayed.4 In slow-aging naked mole-rats, 
cancer is uncommon despite high levels of oxidative damage.5 Also 
CR slows down aging and delays cancer.6-14 In contrast, overeating, 
high caloric food and obesity accelerate cancer.15

mTOR in Organismal Aging

So why do overeating, obesity and nutrients accelerate aging? 
One explanation is that nutrients and insulin activate the 
nutrient-sensing mTOR pathway. This pathway drives cellular 
mass growth.16-19 Growth factors, insulin and nutrients activate 
nutrient-sensing and growth-promoting pathways, which in 
turn drive developmental growth. Later in life the same path-
way drives aging, which is a continuation of developmental 
growth.20-22 In agreement, calorie restriction, which deactivates 
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Common cancer is an age-related disease. Slow aging is 
associated with reduced and delayed carcinogenesis. Calorie 
restriction (CR), the most studied anti-aging intervention, 
prevents cancer by slowing down the aging process. Evidence 
is emerging that CR decelerates aging by deactivating MTOR 
(target of rapamycin). Rapamycin and other rapalogs suppress 
cellular senescence, slow down aging and postpone age-
related diseases including cancer. At the same time, rapalogs 
are approved for certain cancer treatments. Can cancer 
prevention be explained by direct targeting of cancer cells? 
Or does rapamycin prevent cancer indirectly through slowing 
down the aging process? Increasing evidence points to the 
latter scenario.
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the TOR pathway, slows growth early in life and delays aging 
later in life.10,11 This is simple and straightforward. This predicts 
that rapamycin would slow down aging and extend life span.23 In 
fact, rapamycin extends life span in yeast,24 Drosophila25,26 and 
mice.27-33 Also, genetic manipulations that decrease the activity of 
TOR in turn increase life span in diverse species.34-41

mTOR and Cellular Aging (Geroconversion)

In proliferating cells, growth factors (GFs) activate both the 
growth-promoting mTOR pathway and the cell cycle. Therefore 
cellular growth is balanced by cell division. When the cell cycle 
is blocked, yet mTOR is active, cells undergo gerogenic conver-
sion or geroconversion.42 At first, the arrested cell is not senescent. 
Overtime, the mTOR pathway converts arrest into senescence.42-44 
Also activation of mTOR converts quiescence into senescence, 
when the cell cycle is still locked.45-47 This type of geroconver-
sion may imitate physiological aging of post-mitotic cells in the 
organism. Aged cells are hypertrophic and hyper-functional.48,49 
In turn, aging cells due to their hyper-functions cause diseases of 
aging such as obesity, pro-inflammatory syndrome, atheroscle-
rosis, hypertension, neurodegeneration and osteoporosis.50-55 It is 
very important to emphasize that geroconversion is not a transi-
tion from proliferation to arrest. Geroconversion is a transition 
from arrest and quiescence to senescence. In the young organism, 
post-mitotic cells are quiescent, becoming senescent over time. In 
theory, a proliferating cell may also undergo pro-gerogenic con-
version. This condition may be manifested as cancer.

mTOR in Cancer

The PI3K/mTOR is almost universally activated in cancer56-62 
and is a promising therapeutic target.63-78 The similarity between 
cancer and aging is not coincidental. Aging can be viewed as 
“twisted growth,” when actual growth is precluded.43 Cancer is 
actual growth and proliferation of pro-gerogenic cells (it is suf-
ficient to ensure cell cycle arrest and then gerogenic conversion 
will occur). Oncogenic proteins such as growth factor-recep-
tors, activated Ras, tyrosine (Src) and serine/threonine kinases, 
such as Raf, MEK, PI3K, Akt, all activate mTOR. Inactivation 
of tumor suppressors such as PTEN, NF-1, TSC2 activate the 
mTOR pathway.56-62 Inactivation of some tumor suppressors (Rb, 
p53 and p16) overcomes cell cycle arrest and prevents the senes-
cent phenotype. P53 inhibits mTOR.79-81 Here it is important to 
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Remarkably, their cancer-preventive effects were 
initially detected in humans. Patients, who received 
rapamycin due to renal transplantation, had a pecu-
liar “side effect”: a decrease in cancer incidence.109-114 
In cancer-prone mice, rapamycin dramatically delays 
cancer. For example, rapamycin decreased incidence 
and progression of tobacco carcinogen-induced lung 
tumors.115 Also everolimus (rapalog), delayed tumor 
onset and progression in a transgenic mouse model of 
ovarian cancer.116 Rapamycin inhibited multiple stages 
of tumor progression in a transgenic mouse model of 
HER2-positive breast cancer.117 Rapamycin also pre-
vents skin tumors induced by phorbol esters.118 It was 
assumed that rapalogs delay cancer by targeting can-
cer cells directly. Yet, there were some indications that 
the effect might be indirect via targeting normal cells. 
Lkb1(+/-) mice were treated with rapamycin from the 
age of 8 weeks, well before the onset of polyposis. This 
decreased the number of gastric tumors. In the polyps 
from the treated mice, phosphorylation of S6 kinase 
(a marker of mTOR activity) was maintained.119 Still, 

in these studies, the effect of rapamycin on overall longevity and 
rate of aging was not determined. When the rate of aging was 
measured, it was revealed that rapamycin at least “formally” 
decreased the rate of aging and increased maximal longevity in 
transgenic HER-2/neu cancer-prone mice.120

Indirect “Anti-Aging” Model

It was suggested that cancer could be prevented by inhibiting 
aging with rapamycin or “by staying young.”121 Rapamycin 
decreased cancer incidence in normal (non-cancer-prone) geneti-
cally heterogeneous mice27,28 and inbred mice.29 These studies 
have been initiated in order to evaluate the effect of rapamycin 
on aging not cancer. Although retrospectively one may argue 
that life span was extended due to cancer prevention, this argu-
ment could (or not) be used to explain the life extending effect 
of calorie restriction as well. It is clear that dramatic difference 
in lifespan between man and C. elegans is not due cancer, but 
instead due to the speed of development and aging. Also in order 
to delay cancer and extend life span in p53+/- mice, treatment 
with rapamycin should be started earlier in life before tumors 
develop.122 Perhaps rapamycin is less effective when cancer had 
developed already. CR delays cancer in p53-/- mice.123-125

How to Distinguish between Two Models  
of Cancer Prevention

Two models of cancer prevention are very difficult to distinguish. 
One may believe that rapamycin prolongs life span by decreasing 
cancer (Fig. 1A). Yet, I believe that rapamycin prevents cancer by 
suppressing aging (Fig. 1B). It may be helpful to evaluate rapamy-
cin in strains of mice with low tumor incidences. This might con-
firm that rapamycin increases life span independently from cancer 
prevention. In fact, it is already known that rapamycin delays 
most age-related diseases in rodents,126,32 including age-related 

emphasize that p53 not only causes arrest but also can suppress 
geroconversion (conversion from arrest to senescence), ensuring 
instead quiescence.45,82-93 Therefore, p53 is so often inactivated in 
cancer cells, which can be viewed as proliferating senescent cells. 
In aging, the mTOR pathway is activated by signals from other 
cells and by feedback loops.94 In cancer, the mTOR pathway is 
activated by mutations and other stable alterations in upstream 
oncoproteins/tumor suppressors. Multiple rounds of cellular pro-
liferation and selection transform initially random mutations into 
non-random activation of the mTOR pathway. Growth-limiting 
conditions and senescence of normal cells provides such a selec-
tive advantage.94-97 Therapy further drives tumor progression.98

Cancer Treatment with Rapamycin

Given the universal activation of the mTOR pathway in cancer, 
rapalogs are used for cancer treatment.99-102 Temsirolimus, a pro-
drug of rapamycin (Sirolimus), became the first rapalog approved 
for cancer treatment.103 The uses of rapalogs in the therapies of 
cancer and other diseases are rapidly increasing.104,105 Hundreds 
if not thousands of clinical trials are under the way. Yet, rapalogs 
(rapamycin and its analogs) are not a panacea. Although effec-
tive for approved indications (otherwise the drugs would not be 
approved), rapalogs still play a modest role in cancer treatment. For 
one, rapalogs (rapamycin and its analogs) at relevant concentra-
tions are not toxic drugs: they do not kill cells but rather they slow 
their growth. While this is a disadvantage of rapalogs as antican-
cer drugs, this is an advantage as cancer-preventive and anti-aging 
agents. Rapalogs can reverse cell senescence in cancer stroma,106 
potentially contributing to cancer treatment and prevention.107,108

Tumor Prevention by Rapalogs

While rapamycin and other rapalogs are modestly-potent 
anticancer drugs, they are effective cancer-preventive agents. 

Figure 1. Two models of cancer-prevention by rapalogs. (A) Direct anticancer effect. 
Rapalogs (Rapa) suppress cancer cells, prevent cancer and thus extend lifespan. 
(B) Indirect anticancer effect due to aging-suppression. Rapalogs (Rapa) suppress 
aging (gerosuppression) and thus prevent cancer and other age-related diseases, 
extending lifespan.
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p53-inducing agent Nutlin-3 and metformin can selectively pro-
tect normal cells from chemotherapy.133-135 Remarkably, in mice 
rapamycin prevented epithelial stem cell senescence and protects 
from radiation-induced mucositis.136,137 Like rapamycin, fasting 
inhibits the mTOR pathway. Fasting also increases therapeutic 
window and decreases side effects chemotherapy in animals and 
humans.138-141

Conclusion

There are several lines of reasoning suggesting that the effects of 
rapamycin on cancer prevention are indirect. First, while rapa-
logs (as monotherapy) are relatively modest anticancer drugs, 
these drugs are potent cancer-preventive and anti-aging agents. 
Second, typical anticancer drugs do not and cannot be used for 
cancer prevention. For example, radiation, paclitaxel and doxo-
rubicin, just to mention a few, have no cancer-preventive effects 
in animals. In contrast, these treatments tend to cause secondary 
cancer in both animals and humans. Direct anticancer drugs are 
rather carcinogenic. Third, an anti-aging effect is sufficient to 
explain cancer-preventive effects. Yet, we might never indisput-
ably distinguish between the anticancer and anti-aging effects of 
rapamycin because both cancer and aging share the activation 
of a common signaling pathway, and this pathway is targeted by 
rapamycin.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

retinopathy127 and age-related obesity.128 Second, we can test the 
cancer-preventive effect of rapamycin at low doses that do not 
inhibit cancer cell growth. Other approaches might be suggested 
by the readers of this paper (please address as letter to the editor).

Rapalogs for Cancer Prevention

For cancer prevention via inhibiting the aging process, rapamy-
cin (and other rapalogs) could be used at lower doses in order 
to target normal cells, which are very sensitive to rapamycin.129 
There is no need to kill any cells. Furthermore, there is no need 
to inhibit mTOR completely: it could be inhibited just slightly 
to slow down aging. Second, administration of rapamycin can 
be intermittent, like intermittent fasting. In low doses or inter-
mittent schedules, rapalogs may have no side effects. Rapamycin 
prevents cancer in p53-/+ mice, which could be viewed as a model 
of Li-Fraumeni syndrome. Currently, there is no clinically-avail-
able therapy to prevent cancer in patients with Li-Fraumeni syn-
drome.130-132 Definitely, there is an excellent opportunity to start 
cancer prevention by rapalogs.

Selective Protection of Normal Cells  
from Therapy-Induced Cell Death and Senescence

Numerous studies have demonstrated that rapalogs potentiate 
chemotherapy against cancer cells. In theory, rapalogs could pro-
tect normal cells from chemotherapy and to increase therapeu-
tic index.63 In cell culture, rapamycin in combination with the 
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