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Introduction

Human oncogene DEK located on chromosome 6p22-23.1,2 It 
is a 375 amino acid (43 kDa) abundant nuclear protein with 
important functions in the architectural regulation of chroma-
tin assembly.3,4 DEK was initially identified as a fusion protein 
with CAN nucleoporin in a subtype of acute myeloid leukemia 
(AML) involving the t(6;9) translocation.5 Subsequent studies 
have repeatedly identified DEK as a frequently overexpressed 
gene independent of the t(6;9) translocation in a number of 
neoplasms including melanoma, hepatocellular carcinoma, glio-
blastoma, retinoblastoma, uterine cervical cancers, ovarian can-
cers, and bladder cancer.1,6-12 Furthermore, autoantibodies to 
DEK have been detected in juvenile rheumatoid arthritis, sys-
temic lupus erythematosus and sarcoidosis.13,14 Though precise 
cellular function of DEK remains unclear, several studies have 
implicated DEK in a variety of cellular processes, such as DNA 
replication, splice site recognition, and gene transcription, as 
well as in the control of cell viability, differentiation, and cell-
to-cell signaling.15-23 The mechanisms through DEK mediates its 
oncogenic effects are only partially understood. However, it has 
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been proposed that the oncogenic role of DEK is mediated by its 
ability to destabilize p53 protein and to inhibit p53 activity and 
p53-mediated apoptosis.10,24-26 DEK can cooperate with the onco-
genes E6 and E7 to overcome senescence,27 and promote epithe-
lial transformation in vitro and in vivo when overexpressed.28,29

Chronic lymphocytic leukemia (CLL) is the most common 
adult leukemia in the Western world, but less frequent in Eastern 
countries. The clinical course of CLL is highly variable. One 
third of CLL patients require therapy as soon as they are diag-
nosed, one third survive for many years without therapy, and one 
third have disease progression over the years and require treat-
ment at some point.30 Previous study reported upregulation of 
DEK in a subset of CLL with del(11q23) and advanced clinical 
stage.31

In this study, we detected DEK expression by real-time quan-
titative reverse transcriptase-polymerase chain reaction (qPCR) 
in 65 Chinese patients with CLL to investigate the DEK expres-
sion level in CLL, and analyze the correlation between DEK 
expression and CLL prognostic markers such as clinical stage, 
immunoglobulin heavy-chain variable region (IGHV) muta-
tional status, ZAP-70, CD38, and chromosomal abnormalities. 
Furthermore, primary CLL samples were treated in vitro with 
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either fludarabine, which represented the treatment of choice for 
CLL, or Nutlin-3, which showed promising cytotoxic activity 
against CLL,32-36 to explore the role of DEK in the response to 
either chemotherapeutic drugs or nongenotoxic activators of the 
p53 pathway.

Results

Clinical characteristics of CLL patients. The characteristics of 
65 CLL patients are summarized in Table 1. Forty-three patients 
were male and 22 were female (male: female, 2.0), and the 
median age was 60 y (rang: 44–84). According to the Binet stag-
ing system,37 29 (44.6%) patients were in stage A, 10 (15.4%) in 
stage B, and 26 (40.0%) in stage C.

DEK mRNA expression in 65 CLL patients and the cor-
relations between DEK expression and prognostic factors. 
The median expression levels of DEK mRNA were 6.792 × 10-2 
(1.438 × 10-2-3.201 × 10-1) in 65 patients with CLL. The cor-
relations between DEK expression and prognostic factors were 
shown in Table 2. A marked increase of DEK mRNA expres-
sion was observed in CLL patients with unmutated IGHV (p = 
0.025), CD38-positive (p = 0.047), del(17p13) (p = 0.006).

The clinical characteristics of the CLL patients with cell 
culture. For preparation of primary cell cultures, CLL cells were 
from 22 untreated CLL patients. The clinical and biological 
characteristics of these patients are detailed in Table 3. Four cases 
showed p53 mutations paired to del(17p13), one cases showed 
del(17p13) in the absence of p53 mutations. The function of p53/
p21 was detected by flow cytometry both at the beginning of 
isolation and after 24 h fludarabine treatment. The level of p53 
protein was not increased after treatment with fludarabine in five 
patients. The level of p21 protein of eight patients showed no 
increase after fludarabine-treatment, implying p53 dysfunction. 
In the rest cases, the p21 protein was increased after fludarabine-
treated, suggesting p53 normal function.38

Fludarabine and Nutlin-3 regulate DEK expression 
depended on p53 status. To assay the interaction of p53 status 
and DEK mRNA expression, we detected the mRNA expression 
in fludarabine-treated (n = 22) or Nutlin-3-treated (n = 11) CLL 
cells by qPCR. The primary CLL cells with normal p53 function, 
without deletion or mutation of p53, the level of DEK expres-
sion was significantly decreased after 24 h treatment with fluda-
rabine and Nutlin-3 compared with the cells in medium only 
(p = 0.042, p = 0.038; p = 0.021, p = 0.017; p = 0.037, p = 0.017) 
(Fig. 1). However, the DEK was not downregulated in the pri-
mary CLL cells with dysfunction of p53, with deletion or muta-
tion of p53 (p = 0.834, p = 0.477; p = 0.111, p = 0.378; p = 0.263, 
p = 0.378) (Fig. 1). These results indicated that fludarabine and 
Nutlin-3 regulated DEK expression depended on p53 status, but 
certainly not consistently.

Discussion

The chromatin architectural factor DEK is an oncogene located 
on the region of 6p22–23.1,2 It was discovered by the identifica-
tion of the t(6;9) in a subset of patients with AML, and was 

Table 1. Clinical and biological characteristics of 65 patients with 
chronic lymphocytic leukemia

Characteristics Value (%)

Gender

Male 43 (66.2)

Female 22 (33.8)

age (years)

≥ 60 33 (50.8)

< 60 32 (49.2)

Binet stages

Binet a 30 (46.2)

Binet B or C 35 (53.8)

LDh (n = 45)

≥ 250U/L 12 (26.7)

< 250U/L 33 (73.3)

β2-MG (n = 41)

≥ 3 mg/L 25 (61.0)

< 3 mg/L 16 (39.0)

CD38 (n = 63)

> 30% 22 (34.9)

≤ 30% 41 (65.1)

Zap-70 (n = 63)

> 20% 14 (22.2)

≤ 20% 49 (77.8)

Del(13q14) (n = 53)

positive 19 (35.8)

Negative 34 (64.2)

Trisomy 12 (n = 50)

positive 15 (30.0)

Negative 35 (70.0)

Del(17p13) (n = 54)

positive 9 (16.7)

Negative 45 (83.3)

Igh rearrangements (n = 47)

positive 11 (23.4)

Negative 36 (76.6)

Del(11q22.3) (n = 57)

positive 9 (15.8)

Negative 48 (84.2)

IGhV mutational status (n = 59)

Mutated 44 (74.6)

Unmutated 15 (25.4)

p53 mutations (n = 58)

Mutated 11 (19.0)

Unmutated 47 (81.0)

abbreviations: β2-MG, β 2-microglobulin; IGhV, heavy chain variable 
region; LDh, lactate dehydrogenase.
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named based on the initials of the patient DEK.5 The obser-
vation that this chromosomal change was associated with an 
accelerated tumor onset and poor prognosis prompted a series 
of studies that ultimately support a causative role of DEK in 
tumor development.3,4 DEK has been shown to be upregulated 
in AML,5,39,40 retinoblastoma,2,41,42 glioblastoma,6 hepatocellu-
lar carcinoma,7 melanoma,9 and in an increasing list of other 
tumor types.1,8,10 However, the mechanisms leading to this pref-
erential accumulation of DEK in cancer cells are not completely 
understood.

With the increasing list of tumor types, high expression of 
DEK raises the exciting possibility of using DEK as a tumor 
marker. The finding that DEK expression levels can distinguish 
benign nevi from malignant melanomas is a prime example of a 
clinically relevant setting in which DEK may prove to be highly 
useful.10 Moreover, as DEK may be present at higher levels in 
immature cells than in their differentiated counterparts,43 it 
could also aid in gauging the differentiation potential of tumor 
cells. In fact, t(6;9) translocation has been suggested to be con-
sidered in AML prognostic stratification.44 In this study, the cor-
relations between DEK expression and prognostic factors of CLL 
were analyzed. A marked increase of DEK mRNA expression 
was observed in CLL patients with unmutated IGHV, CD38-
positive, and del(17p13). This is the first study to correlate DEK 
expression levels in CLL with prognostic factors to understand 
the role of DEK upregulation in CLL progression. Our results 
suggest that the expression level of DEK might be applied for the 
assessment of prognosis in patients with CLL.

The crosstalk between DEK, p53 and the apoptotic machin-
ery deserves attention, as this information may guide the devel-
opment of improved therapies. In response to a variety of stimuli, 
such as cellular stress induced by chemotherapeutic drugs, the 
p53-MDM2 interaction is disrupted and p53 rapidly accumulates 
within the cells.32 Alternatively, p53 can accumulate in response 
to selective small-molecule inhibitors of the p53-MDM2 interac-
tion, which binds MDM2 in the p53 binding pocket with high 
selectivity and can release p53 from negative control leading to 
effective stabilization of p53 and activation of the p53 pathway.36 
In this study, we have shown that both chemotherapeutic drugs 
(fludarabine) and nongenotoxic activators of the p53 pathway 
(Nutlin-3) significantly downregulated DEK in the primary CLL 
cells with normal p53 function, or without deletion or mutation 
of p53. However, the DEK was not downregulated in the primary 
CLL cells with p53 dysfunction, or with deletion or mutation of 
p53. Although these data clearly indicate that a p53 status is nec-
essary to observe the DEK downregulation in response to either 
fludarabine or Nutlin-3 in CLL cells, the exact role of p53 in 
DEK regulation remains to be determined.

In conclusion, we provide evidence that increased expression 
of DEK correlates with IGHV mutational status, CD38-positive 
and del(17p13), and DEK can therefore be considered as poten-
tial prognostic factor. As the result that fludarabine and Nutlin-3 
regulate DEK expression depended on p53 status, therapeutic 
strategies able to downregulate DEK expression should be further 
explored to improve the antileukemic activity of both conven-
tional and novel antileukemic drugs.

Table 2. The differences of DeK mRNa expression level between various 
groups of patients

Clinical features DEK [M (P5-P95)] p value

age (years) 0.773

≥ 60 7.815 × 10-2 (1.712 × 10-2-3.828 × 10-2)

< 60 8.390 × 10-2 (2.238 × 10-2-5.455 × 10-1)

Binet stages 0.612

a 7.757 × 10-2 (2.903 × 10-2-2.364 × 10-2)

B+C 8.407 × 10-2 (1.841 × 10-2-6.077 × 10-1)

LDh (n = 45) 0.115

≥ 250U/L 9.121 × 10-2 (1.438 × 10-2-2.535 × 10-1)

< 250U/L 6.255 × 10-2 (2.20 × 10-2-4.989 × 10-1)

β2-MG (n = 41) 0.33

≥ 3 mg/L 9.016 × 10-2 (1.771 × 10-2-4.029 × 10-1)

< 3 mg/L 6.987 × 10-2 (2.281 × 10-2-5.885 × 10-1)

CD38 (n = 63) 0.047

≤ 30% 9.333 × 10-2 (2.210 × 10-2-6.029 × 10-1)

> 30% 7.563 × 10-2 (1.835 × 10-2-3.713 × 10-1)

Zap-70 (n = 63) 0.552

≤ 20% 8.098 × 10-2 (1.738 × 10-2-4.531 × 10-1)

> 20% 8.205 × 10-2 (2.247 × 10-2-5.407 × 10-1)

Del(13q14) (n = 53) 0.159

positive 6.562 × 10-2 (1.745 × 10-2-3.861 × 10-1)

Negative 9.190 × 10-2 (2.247 × 10-2-6.364 × 10-1)

Trisomy 12 (n = 50) 0.546

positive 7.962 × 10-2 (3.443 × 10-2-5.407 × 10-1)

Negative 8.520 × 10-2 (2.128 × 10-2-6.364 × 10-1)

Del(17p13) (n = 54) 0.006

positive 1.374 × 10-1 (2.256 × 10-2-3.201 × 10-1)

Negative 7.405 × 10-2 (1.919 × 10-2-5.885 × 10-1)

Igh rearrangements 
(n = 47)

0.883

positive 7.778 × 10-2 (3.126 × 10-2-1.103 × 10-1)

Negative 8.935 × 10-2 (2.241 × 10-2-6.449 × 10-1)

Del(11q22.3)  
(n = 57)

0.498

positive 1.070 × 10-1 (2.256 × 10-2-3.861 × 10-1)

Negative 7.899 × 10-2 (1.607 × 10-2-7.126 × 10-1)

IGhV mutation sta-
tus (n = 59)

0.025

Mutated 1.115 × 10-2 (1.724 × 10-2-2.264 × 10-1)

Unmutated 6.976 × 10-2 (2.386 × 10-2-6.021 × 10-1)

p53 mutations  
(n = 58)

0.655

Mutated 7.513 × 10-2 (1.438 × 10-2-1.142 × 10-1)

Unmutated 8.55 × 10-2 (2.350 × 10-2-4.406 × 10-1)

abbreviations: β2-MG, β 2-microglobulin; IGhV, heavy chain variable 
region; LDh, lactate dehydrogenase.
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homology of 98% was used as the cut-off between IGHV mutated 
and unmutated cases.

p53 mutational status analysis. p53 mutational status was 
studied by PCR and direct sequencing. We used the same prim-
ers as those mentioned in the previous study.48 PCR products of 
p53 were purified by standard methods (Invitrogen) and directly 
sequenced using the ABI3730XL 96-capillary DNA Analyzer 
(Applied Biosystems).

Detection of molecular cytogenetic aberrations by FISH. 
FISH analysis was performed on the sample for conventional 
cytogenetic studies. In order to detect prognostically relevant 
anomalies of chromosomal regions 6q, 11q, 13q, 14q, 17p and 
chromosome 12, the following fluorescent-labeled probes were 
used in interphase cytogenetic analyses: LSI MYB (6q23), 
LSI ATM (11q22), LSI D13S319 (13q14), LSI IGHC/IGHV 
(14q32), LSI p53 (17p13) and CEP12 (centromere 12) (all probes 
were purchased from Vysis, Downers Grove, IL, USA). FISH was 
performed as described.49 The cut-off levels for positive values 
(mean of normal control ± 3 SD), determined from samples of 8 
cytogenetically normal persons, was 7.5%, 7.7%, 10.3%, 8.9%, 
5.2% and 3.0% for del(6q23), del(11q22), del(13q14), 14q32 
translocation, del(17p13) and trisomy 12, respectively.

The protocol of primary cell culture. For preparation of pri-
mary cell cultures, CLL cells from 26 untreated patients were 

Materials and Methods

Patients. Our study population consisted of 65 consecutive 
patients with newly diagnosed and untreated CLL between 
December 2004 and January 2011. All patients provided their 
informed consent and the research project was approved by the 
University and Institutional Review Boards. The diagnosis was 
based on the revised NCI criteria.45 The staging of CLL was per-
formed according to the Binet stage system.37 Data collected at 
diagnosis included: age, gender, Binet stages, β2-microglobulin 
(β2-MG) and lactate dehydrogenase (LDH). A range of other 
prognostic markers was also analyzed for the majority of 
patients: IGHV and p53 mutational status, CD38 and ZAP-70 
expression and cytogenetics by florescence in situ hybridization 
(FISH).

Detection of CD38 and ZAP-70 by flow cytometry. Flow 
cytometric analysis of CD38 and ZAP-70 was performed as pre-
viously described.46 Cut-off points of 30% and 20% were used to 
define positivity for CD38 and ZAP-70, respectively.

IGHV mutational status analysis. IGHV mutational sta-
tus was detected by IGHV gene primer and IGH Somatic 
Hypermutation Assay for Gel Detection kit (InVivoScribe 
Company). The multiplex PCR products of IGHV were detected 
by direct sequencing as previously described.47 A germline 

Table 3. Clinical and biological characteristics in 22 CLL patients with cell culture

No. Gender Age (years)
Binet 

stages
IGHV mutation 

status
Fludarabine-treated p53 mutation 

status
p53 deletion ATM deletion

p53 p21

1 Female 78 a Mutated Yes Yes Wild type No No

2 Female 57 B Unmutated No No Mutated Yes Yes

3 Female 62 C Mutated Yes Yes Wild type No No

4 Male 83 B Mutated Yes No Mutated Yes No

5 Female 62 C Mutated Yes No Wild type No No

6 Female 52 C Unmutated Yes Yes Wild type No Yes

7 Male 48 C Unmutated No No Mutated Yes No

8 Male 58 C Unmutated No Yes Wild type No No

9 Male 50 a Mutated Yes Yes Wild type No No

10 Female 54 B Mutated Yes Yes Wild type No No

11 Male 80 C Unmutated Yes Yes Wild type No No

12 Female 70 B Unmutated No No Wild type No No

13 Female 67 a Mutated Yes Yes Wild type No No

14 Female 71 a Unmutated Yes Yes Wild type No No

15 Male 52 a Unmutated Yes Yes Wild type No No

16 Male 55 a Mutated Yes Yes Wild type No Yes

17 Female 61 C Mutated No No Wild type No No

18 Male 68 a Mutated Yes No Mutated No No

19 Male 53 C Mutated Yes Yes Wild type No No

20 Male 49 C Unmutated Yes No Mutated Yes No

21 Female 64 a Unmutated Yes Yes Wild type Yes No

22 Female 57 a Mutated Yes Yes Wild type No Yes

 “Yes” stands for raise up or positive; “No” stands for no change or negative.
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in 80% ethanol at -20°C. Fixed cells were washed with PBS 
and cell membrane ruptured with cell permebilization kit (BD 
Biosciences FIX&PERM) at room temperature for 30 min. 
CLL cells were labeled with CD19-allophycocyanin away from 
light for 15 min, and then washed with PBS. Fixed cells were 
stained with p53-phycoerythrin antibody (BD Biosciences) and 
p21-fluorescein isothiocyanate (Calbiochem) or the correspond-
ing isotype controls. After incubation at ambient temperature for 
15 min away from light, cells were detected on the FACSCalibur 
and data were analyzed using the CellQuest Pro software.38

qPCR analysis for DEK. DEK mRNA expression was 
investigated by qPCR. Total RNA was isolated from periph-
eral blood mononuclear cells or culture cells, which had > 90% 
CD5+CD19+ cells measured by flow cytometry. RNA (1μg) was 
reverse transcribed using random hexamers, and then amplifica-
tion was performed with fluorescent dye SYBR Green I, PCR 
Master Mix and primers (Table 4). The β-actin was used as 
internal reference. Cycle conditions for DEK and β-actin were 
1 cycle for 5 min at 95°C, 35 cycles for 10 sec at 95°C, 30 sec at 
62°C, 30 sec at 72°C, and finally, 1 cycle for 10 min at 72°C. The 
threshold cycle (Ct) was defined as the fractional cycle number 
at which the fluorescence passes the fixed threshold, and each 
sample was normalized based on its endogenous β-actin RNA 
content. Sequences of amplified products were verified by DNA 
sequencing. Each sample was replicated for two times.

isolated from heparinized venous blood by density gradient cen-
trifugation. The isolated cells were predominantly CLL B cells 
(> 90% CD5+CD19+), as assessed by flow cytometry (FACScan, 
Becton Dickinson). Freshly isolated CLL cells were seeded in 
6-well plates (5-10 × 106 cells/well), treated by 3.5 μmol/L fludara-
bine (Sigma) or 10 μmol/L Nutlin-3 (Sigma) or not, and cultured 
in RPMI-1640 medium supplemented with 10% fetal calf serum 
in a humidified atmosphere containing 5% CO

2
 at 37°C for 24 h.

Detection of the p53/p21 function by flow cytometry. The 
function of p53/p21 gene was detected by flow cytometry. Cells 
were harvested after in vitro culture 24 h with 3.5 μmol/L fluda-
rabine (Sigma) treatment. 5 × 106 cells were fixed in 2% para-
formaldehyde, -4°C 30 min, washed with PBS, and overnight 

Figure 1. The correlation between the p53 status and the level of DeK expression. In the primary CLL cells with normal p53 function (A and B), or 
without deletion (E and F) or mutation (I and J) of p53, DeK expression was significantly decreased after 24 h treatment with fludarabine or Nutin-3 
compared with the cells in medium only. however, this downregulation of DeK expression was not observed in the primary CLL cells with p53 dysfunc-
tion (C and D), or deletion (G and H) or mutation (K and L) of p53.

Table 4. The sequences of qRT-pCR primers of DeK and β-actin

Primer Sequence
Length of 
product

DeK

forward
5'-TCC aaa GCC TTC TGG Caa aCC 

aTT-3'
214 bp

reverse
5'-TGG TGG CTC CTC TTC aCT TTC 

TTT a-3'

β-actin

forward 5'-aGC GaG CaT CCC CCa aaG TT-3'

285 bp
reverse

5'-GGG CaC Gaa GGC TCa TCa 
TT-3'
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