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Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug
seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal
syndrome in the absence of the drug. Accumulating evidence suggests an important role for
synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors
and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol
facilitates g-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and
postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission.
Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-D-aspartate
(NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-
D-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing
factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and
anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmis-
sion. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a
recruitment of those systems during the transition to alcohol dependence.

Alcoholism (i.e., dependence on alcohol) is a
complex and dynamic disease process. Al-

cohol dependence is a chronically relapsing dis-
order characterized by (1) compulsive drug
seeking and drug taking, (2) loss of control in
limiting intake (in terms of amount of drug per
bout and number of drug-taking bouts), and
(3) the emergence of a withdrawal syndrome
in the absence of the drug that includes, but

is not limited to, dysphoria, sleep disturbances,
disruption of autonomic processes, and in-
creases in anxiety and irritability (ICD-10 and
DSM-IV). Many years of research have shaped
the current view that excessive alcohol con-
sumption is largely mediated by an organism’s
past experience with alcohol (e.g., intake pat-
tern and frequency), and is driven by the emo-
tional disturbances, rather than the physical
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disturbances, associated with alcohol withdraw-
al and abstinence (Koob 2003; Heilig et al.
2010). Although the central amygdala (CeA) is
known to play a role in such negative affective
alcohol responses, the neuronal circuitry un-
derlying these behavioral stages is still under
considerable scrutiny. This article will focus
on neurotransmission in the central amygdala
and its role in driving the negative affect char-
acteristic of the withdrawal phase of alcohol ad-
diction. Throughout this article, acute alcohol
exposure refers to in vitro application of alcohol
onto the slice preparation, whereas chronic al-
cohol exposure refers to long-duration (at least
several weeks) in vivo alcohol exposure.

CENTRAL AMYGDALA IS A HUB FOR
NEGATIVE EMOTIONAL CIRCUITRY

Chronic consumption of large quantities of
drugs, including alcohol, promotes a transition
from casual drug use to drug dependence that is
defined in part by down-regulation of dopamine
signaling in the mesocorticolimbic reward sys-
tem, hyperactivity of glutamate signaling, and
dysregulation of brain stress systems (Koob and
Volkow 2010). Chronic alcohol effects on brain
stress systems can refer to either alcohol-induced
changes in neuroendocrine function (i.e., hypo-
thalamic-pituitary-adrenal [HPA] axis; Kiefer
and Wiedemann 2004; Clarke et al. 2008) or the
recruitment of extrahypothalamic brain stress
systems such as the amygdala (Koob 2009).
The present article details the effects of acute
and chronic alcohol on synaptic transmission
and plasticity in the CeA and neighboring re-
gions, and the role of these regions in mediat-
ing alcohol-related behaviors. We also will re-
view the literature on peptidergic modulation
of inhibitory and excitatory transmission in
the central (and extended) amygdala, because
these peptides share a common cellular target
and interact with each other and alcohol.

Many of the long-term emotional distur-
bances associated with alcohol abuse and de-
pendence are attributed to neurotransmission
within a conceptual macrostructure in the basal
forebrain called the “extended amygdala” (Koob
2008). In the context of drug addiction, the

major constituents of the extended amygdala
are the CeA, the lateral portion of the bed nu-
cleus of stria terminalis (BNST), and nucleus
accumbens (NAc) shell (Heimer and Alheid
1991). These regions show similar morphology,
a high degree of interconnectivity, and overlap-
ping afferents from limbic cortices, hippocam-
pus, and basolateral amygdala (BLA). The out-
puts of the extended amygdala project largely
to effector regions, including lateral hypothala-
mus and various brain stem regions, that pro-
duce behaviors related to fear and anxiety (Da-
vis et al. 2010).

The role of the extended amygdala in fear
and anxiety has been previously described in
detail (Ciocchi et al. 2010; Davis et al. 2010).
The CeA and BNST are integral in mediating
fear and anxiety responses. The BLA receives
significant sensory input from thalamus and
cortex, sends prominent glutamatergic projec-
tions to CeA and BNST, and is integral in both
conditioning (Phelps and LeDoux 2005) and
extinction (Quirk and Mueller 2008) processes.
The CeA is composed mostly ofg-aminobutyric
acid-ergic (GABAergic) projection neurons and
interneurons (Sun and Cassell 1993; Veinante
and Freund-Mercier 1998), and the BNST is a
major target of CeA projection neurons (Krettek
and Price 1978; Weller and Smith 1982; Sun and
Cassell 1993; Veinante and Freund-Mercier
1998). Of major relevance for this article, con-
nections between CeA and BNST often contain
neuropeptide cotransmitters. For example, the
CeA is a major source of corticotropin-releas-
ing factor (CRF) in the BNST (Sakanaka et al.
1986). Therefore, the CeA is uniquely situat-
ed to convert sensory information into behav-
ioral and physiological responses, and this is
particularly true for stress- and alcohol-related
stimuli.

Neuropeptides in the CeA are important for
producing the negative affective state observed
during withdrawal from drugs, including alco-
hol (Koob 2008). Here we will describe alcohol-
induced neuroadaptations in select peptidergic
systems (CRF, nociception, and NPY), largely
in the context of the CeA. It is becoming in-
creasingly evident that these peptides inter-
act in complex ways in the CeA to modulate

M. Roberto et al.

2 Cite this article as Cold Spring Harb Perspect Med 2012;2:a012195

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



GABAergic inhibitory and glutamatergic excit-
atory transmission, and that dysregulation of
these peptide systems by alcohol alters the way
in which they modulate such neurotransmis-
sion. Conceptually, these neuropeptides have
been divided into prostress peptides and anti-
stress peptides that respectively, promote and
rescue negative affective disturbances during
drug abstinence following heavy drug use. Pro-
stress peptides include CRF, dynorphin, orexin,
and vasopressin, whereas antistress peptides in-
clude neuropeptide Y (NPY), enkephalin, and
nociceptin; however, owing to space limitations
we will discuss only a select few of these pep-
tides.

AMYGDALAR GABAergic SYSTEM
AND ALCOHOL

GABA, the major inhibitory transmitter in
the brain, acts on two classes of GABA recep-
tors: GABAA (which includes GABAA-rho sub-
class—formerly GABAC) and GABAB. GABAA

receptors are ligand-gated ion channels, where-
as GABAB receptors are G protein coupled.
There is considerable evidence that GABAergic
transmission mediates some aspects of alcohol-
drinking behavior, but there is ambiguity in the
literature with respect to the directions of these
effects. Early studies showed that systemic ad-
ministration of GABAAR agonists increased vol-
untary alcohol drinking, whereas GABAAR an-
tagonists and benzodiazepine inverse agonists
decreased alcohol drinking (Boyle et al. 1993;
Rassnick et al. 1993). Infusion of both GABAAR
agonists and antagonists into the nucleus ac-
cumbens (NAcc) suppressed alcohol drinking
by nondependent rats (Hodge et al. 1995). Sys-
temic administration of a GABABR agonist sup-
pressed alcohol drinking by all rats, but alcohol-
dependent rats were more sensitive to this effect,
suggesting an up-regulation of GABABR func-
tion (Walker and Koob 2007). Other studies
highlight a role for GABA circuitry in alcohol-
drinking behavior, particularly in regions impli-
cated in the negative reinforcing properties of
the drug (i.e., extended amygdala). Hyytia and
Koob (Hyytia and Koob 1995) found that injec-
tion of GABAAR antagonists in the three major

regions of the extended amygdala suppressed
alcohol drinking by nondependent rats, but
this effect was most potent and selective for
alcohol when infused into the CeA. Another
study showed that antagonism of GABAARs in
the BNSTreversed decreases in alcohol drinking
elicited by a D2 receptor antagonist infused into
the ventral tegmental area (VTA) of alcohol-
preferring (P) rats (Eiler and June 2007). Inter-
estingly, infusion of a GABAAR agonist directly
into the amygdala suppresses drinking by alco-
hol-dependent rats without affecting intake by
nondependent controls (Roberts et al. 1996).
Although there are considerable methodolog-
ical differences between these studies, they sug-
gest that (1) chronic alcohol produces neuro-
adaptations in GABAergic neurotransmission
and changes sensitivity to GABAergic com-
pounds, (2) GABAergic neurotransmission reg-
ulates alcohol drinking, and (3) in the case of
excessive alcohol consumption by alcohol-de-
pendent rats, the CeA is a strong candidate re-
gion for localization of these effects.

ACUTE ALCOHOL AUGMENTS GABAergic
TRANSMISSION IN CeA

The acute effects of alcohol on GABAAR func-
tion has been extensively studied, mostly in in
vitro brain slice preparations, an approach that
allows multiple methods for detecting changes
in presynaptic transmitter release (for a review,
see Criswell and Breese 2005; Siggins et al. 2005;
Weiner and Valenzuela 2006; Lovinger and Ro-
berto 2011). Alcohol (1–100 mM) selectivelyen-
hances the function of GABAARs containing
certain subunit compositions, but such findings
have been inconsistent across laboratories test-
ing heterologous systems (reviewed in Aguayo
et al. 2002; Lovinger and Homanics 2007).
Alcohol increases GABAergic synaptic trans-
mission in the CeA (Roberto et al. 2003) and
BLA (Zhu and Lovinger 2006) via increased
presynaptic GABA release. Specifically, alcohol
augments evoked inhibitory postsynaptic cur-
rents (IPSCs), decreases paired-pulse facilita-
tion (PPF) of evoked IPSCs, and increases the
frequency of miniature inhibitory postsynaptic
currents (mIPSCs) (i.e., in Tetrodotoxin to

Central Amygdala and Alcohol

Cite this article as Cold Spring Harb Perspect Med 2012;2:a012195 3

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



eliminate action potential firing) in most CeA
neurons, suggesting that alcohol increases vesic-
ular GABA release.

Although the molecular mechanism(s) for
alcohol effects have yet to be identified, we
showed that activation of adenylyl cylase (AC)
and/or protein kinase C (PKC) mediate GA-
BAergic transmission in CeA synapses (Bajo
et al. 2008; Cruz et al. 2011). In CeA slices of
mice lacking PKC1 or pretreated with a PKC1
antagonist, the ability of acute alcohol to aug-
ment IPSCs is impaired (Bajo et al. 2008), sug-
gesting that PKC1 facilitates alcohol-elicited
vesicular GABA release. Notably, basal GABA
release is greater in CeA of PKC1 knockout
than wild-type (WT) mice, suggesting that un-
der normal conditions in WT neurons, PKC1
limits spontaneous GABA release. Therefore,
PKC1 serves at least two roles in the CeA: (i)
limiting baseline GABA release, and (ii) facili-
tating alcohol-stimulated release of GABA.

The ability of alcohol to facilitate GABA
neurotransmission may be limited by GABA
feedback onto presynaptic GABABRs (Wan et al.
1996; Ariwodola and Weiner 2004). For exam-
ple, acute alcohol facilitates GABAergic trans-
mission in hippocampus (Wu and Saggau 1994;
Wan et al. 1996; Ariwodola and Weiner 2004)
and nucleus accumbens (Nie et al. 2000) only if
GABAB receptors are blocked. However, in the
CeA, GABAB receptor blockade is not required
for the enhancement of IPSPs by acute alcohol
nor does it potentiate this effect (Roberto et al.
2003). Thus, the involvement of GABAB recep-
tors in alcohol-induced GABA release may de-
pend on the presence of presynaptic GABAB

receptors in certain brain regions (Ariwodola
and Weiner 2004; Breese et al. 2005).

CHRONIC ALCOHOL EFFECTS ON
GABAergic TRANSMISSION IN CeA

Our in vitro electrophysiological results show
that chronic alcohol exposure augments GABA
release in the CeA (Roberto et al. 2004a). Com-
pared to alcohol-naı̈ve controls, alcohol-depen-
dent rats show larger baseline evoked GABAA-
mediated IPSP/C amplitudes, smaller baseline
PPF of evoked IPSCs, and higher baseline fre-

quency of mIPSCs in CeA neurons. Interesting-
ly, acute alcohol augments IPSCs, decreases PPF
of IPSCs, and increases mIPSC frequency simi-
larly in alcohol-dependent and alcohol-naı̈ve
rats, suggesting a lack of tolerance for these
acute effects of alcohol (Roberto et al. 2004a).
In vivo microdialysis studies indicate a fourfold
increase of baseline dialysate GABA concentra-
tions in the CeA of alcohol-dependent rats rel-
ative to naı̈ve controls, as well as lack of toler-
ance for acute alcohol-induced increases in
dialysate GABA levels (Roberto et al. 2004a),
strongly suggesting that both acute and chronic
alcohol alter presynaptic elements of GABAergic
synapses in the CeA. Future studies need to de-
termine the molecular mechanisms responsi-
ble for chronic alcohol-induced adaptations
in CeA neurons and their behavioral implica-
tions in alcohol-dependent and/or alcohol-
withdrawn organisms. These ongoing studies
may elucidate the mechanism(s) underlying re-
ductions in alcohol withdrawal hyperexcitability
produced by GABAmimetic drugs (Ticku and
Burch 1980; McCown et al. 1985; Breese et al.
2006; Roberto et al. 2008), and could impact
treatment of pathological alcohol-drinking be-
haviors.

Chronic alcohol exposure produces toler-
ance to many behavioral effects of the drug, in-
cluding the anxiolytic, sedative, ataxic, and pos-
itive reinforcing effects (Kumar et al. 2004,
2009). Chronic alcohol also produces physical
and motivational dependence,and alcoholwith-
drawal is associated with increased neuronal ex-
citability in several brain regions (but not CeA)
(Kliethermes 2005; Weiner and Valenzuela 2006).
Chronic alcohol effects may reflect, in part, com-
pensatory adaptations to the facilitatory effects
of alcohol on GABAergic synapses (Siggins et al.
2005; Weiner and Valenzuela 2006). We showed
that evoked IPSCs in CeA slices from alcohol-
dependent rats are significantly larger than those
from naive controls (Roberto et al. 2004a). Some
CeA neurons from alcohol-dependent rats also
show increased mIPSC amplitudes relative to
naı̈ve rats, suggesting a postsynaptic effect of
chronic alcohol (Roberto et al. 2004a). Substan-
tial evidence suggests that alcohol-induced be-
havioral and neural adaptations are attributable
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to changes in GABAAR subunit composition
rather than changes in the number of GABAARs
(Morrow et al. 1992; Eckardt et al. 1998; Grobin
et al. 1998; Papadeas et al. 2001; Kumar et al.
2004, 2009).

In alcohol-naı̈ve rats, a GABABR antagonist
increased the amplitude of evoked IPSCs and
decreased PPF of IPSCs in CeA, suggesting tonic
activation of presynaptic GABABRs (Roberto
et al. 2008). Conversely, a GABAB agonist mark-
edly depressed evoked IPSC amplitudes and in-
creased PPF of IPSCs in the CeA of alcohol-na-
ı̈ve rats, indicating decreased presynaptic GABA
release. These effects of GABABR agonists and
antagonists were absent or greatly attenuated in
the CeA of alcohol-dependent rats, suggesting
chronic alcohol-induced down-regulation of
the GABABR system that may explain the in-
creased GABAergic tone observed in the CeA
of dependent rats (Roberto et al. 2008). These
alcohol dependence-induced neuroadaptations
of the GABABR system also may account for
chronic alcohol-induced changes in gabapentin
effects on inhibitory transmission in CeA. Ga-
bapentin, a structural analog of GABA (Sills
2006), increases the amplitudes of evoked IPSCs
in CeA neurons from nondependent rats (an
effect blocked by a GABABR antagonist), but
decreases IPSC amplitudes in CeA of alcohol-
dependent rats. Notably, gabapentin infused
into the CeA reverses dependence-induced in-
creases in operant alcohol responding, but tends
to increase alcohol drinking by nondependent
rats (Roberto et al. 2008).

ALCOHOL AND GLUTAMATERGIC
TRANSMISSION IN AMYGDALA

Glutamate, the major excitatory neurotransmit-
ter has long been implicated in the reinforc-
ing actions of alcohol. Glutamate receptors in-
clude three major classes of ionotropic receptors
(iGluRs), with varying ratios of selectivity for
Naþ, Kþ, and Ca2þ. The iGluRs include AMPA
(AMPARs), NMDA (NMDARs), and kainate
receptors (KARs). Additionally, there are vari-
ous subclasses of metabotropic glutamate re-
ceptors (mGluRs) that are G-protein-coupled
receptors (GPCRs).

In contrast to its potentiating effects on
GABA systems, alcohol generally inhibits gluta-
mate neurotransmission in the brain (Lovinger
and Roberto 2011). Dysregulation of glutamate
systems may contribute to hyperexcitability and
craving associated with alcohol withdrawal (Pul-
virenti and Diana 2001). In the CeA of alcohol-
preferring (P) rats, long-term consumption of
high quantities of alcohol increases expression of
mGluRs, NMDA receptor subunits, and a scaf-
folding protein regulating expression of these
receptors in the cell membrane (Obara et al.
2009). Group II mGluRs also may block stress-
and cue-induced reinstatement of alcohol-seek-
ing behavior via neuronal activation in CeA
or BNST (Zhao et al. 2006). Excitatory trans-
mission in the CeA may also mediate some of
the aversive aspects of withdrawal from abused
drugs [e.g., morphine (Watanabe et al. 2002)].

Acamprosate, approved for treatment of al-
coholic patients, modulates glutamate trans-
mission via actions at NMDARs and/or mGluRs
(Berton et al. 1998; Blednov and Harris 2008;
Mann et al. 2008). Interestingly, acamprosate
dampens the increased glutamate levels in absti-
nent alcoholics measured by magnetic resonance
spectroscopy (Umhau et al. 2010) and reduces
excessive alcohol drinking in alcoholics, pre-
sumably by reducing craving and negative affect
(for a review, see Littleton 2007). AMPARs may
be important in regulating relapse-like behav-
iors without playing a central role in alcohol
consumption per se (Sanchis-Segura et al. 2006).

ACUTE ALCOHOL EFFECTS ON
GLUTAMATERGIC TRANSMISSION IN CeA

We showed that acute alcohol (5–66 mM) de-
creases excitatory postsynaptic potentials (EPSPs)
and currents (EPSCs) in the CeA, and that these
effects are mediated by both NMDAR and non-
NMDAR mechanisms (Roberto et al. 2004b). In
contrast to alcohol effects on GABA release, the
majority of studies indicate that acute alcohol
either has no effect on or inhibits glutamate re-
lease (for a review, see Siggins et al. 2005) and
inhibits NMDAR, AMPAR, and KAR function
in some neuron types (for a review, see Lovinger
and Roberto 2011).
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CHRONIC ALCOHOL EFFECTS ON
GLUTAMATERGIC TRANSMISSION IN CeA

Chronic alcohol exposure produces neuroadap-
tation in glutamatergic synaptic transmission.
For example, acute alcohol decreases NMDAR-
mediated EPSPs and EPSCs in the CeA of alco-
hol-dependent rats more than in alcohol-naı̈ve
controls. With local NMDA application, acute
alcohol inhibits NMDA currents more in slices
from alcohol-dependent rats, suggesting that al-
cohol dependence sensitizes NMDARs to alco-
hol (Roberto et al. 2004b, 2006). NMDARs con-
taining the NR2B subunit are most sensitive to
chronic alcohol exposure (Floyd et al. 2003; Car-
penter-Hyland et al. 2004; Roberto et al. 2004b;
Kash et al. 2009). Chronic alcohol increases
NR2B mRNA and/or protein levels (Roberto
et al. 2006; Kash et al. 2009) in the CeA and
BNST, but not in other brain regions (Cebers
et al. 1999; Floyd et al. 2003; Lack et al. 2005).
It is not yet clear if increased NR2B subunit ex-
pression is the major driving force behind alco-
hol-induced increases in NMDAR function, or
what molecular mechanisms underlie these sub-
unit changes.

Microdialysis experiments in the amygdala
show increases in glutamate release following
chronic alcohol exposure (at 2–8 h withdrawal
in CeA: Roberto et al. 2004b; at 24 h withdrawal
in BLA: Lack et al. 2007). Our laboratory found
that chronic alcohol exposure unmasks the ab-
ility of acute alcohol to increase presynaptic glu-
tamate release in CeA (Roberto et al. 2004b),
and that this effect persists 2 weeks into absti-
nence (Roberto et al. 2006). Collectively, these
data suggest that multiple factors contribute to
increased extracellular glutamate levels and in-
creased glutamatergic transmission following
chronic alcohol exposure and withdrawal.

CENTRAL AMYGDALA NEUROPEPTIDES
AND ALCOHOL DEPENDENCE

Neuropeptides play prominent roles in regulat-
ing anxiety-like and alcohol-drinking behaviors
in subjects that are either alcohol dependent,
genetically vulnerable to developing excessive
drinking (e.g., via selective breeding), repeated-

ly cycled through periods of alcohol withdraw-
al, and/or innately anxious. The CeA contains
high concentrations of prostress (e.g., CRF) and
antistress (e.g., NPYand nociceptin) neuropep-
tides, and many effects of these neuropeptides
on anxiety- and alcohol-related behaviors have
been localized to the CeA. Here we review the
actions of a few neuropeptides on inhibitory
transmission in the CeA, with focus on the
CRF system that is heavily recruited during
the transition from casual alcohol use to depen-
dence (Koob 2010).

The CeA is the major output center of the
amygdala, and about 95% of CeA neurons are
medium spiny GABAergic neurons (McDonald
1982). The CeA is not a homogeneous neuro-
anatomical structure, and can be subdivided
into lateral (CeL) and medial (CeM) aspects
that differ in neuropeptide content, origin of
afferents, and target sites of efferent projections
(for a review, see Pitkanen et al. 2000). The
CeL contains a much higher density of neuro-
peptides (e.g., dynorphin, CRF [Veening et al.
1984; Cassell et al. 1986; Shimada et al. 1989])
than the CeM, receives input from cortex and
thalamus, and projects to the substantia in-
nominata. In contrast, the CeM receives prom-
inent inputs from other amygdaloid nuclei
(especially glutamatergic afferents from BLA),
and projects to effector regions such as hypo-
thalamus and brain stem nuclei (Krettek and
Price 1978). Both the CeL and CeM project to
the BNST (Sun et al. 1991).

CRF AND ALCOHOL-RELATED BEHAVIOR

CRF plays a central role in arousal and hormon-
al, sympathetic, and behavioral responses to
stress. The CeA, BNST, and BLA contain abun-
dant CRF neurons and receptors (De Souza et al.
1984; Sakanaka et al. 1986). Hyperfunction of
CRF systems in the CeA, BLA, and BNST pro-
duce increases in anxiety-like behavior (Sajdyk
et al. 1999; Rainnie et al. 2004; Lee et al. 2008).
Extracellular CRF levels in CeA are elevated fol-
lowing exposure to stress and development of
alcohol dependence (Merlo Pich et al. 1995;
Zorrilla et al. 2001), and alcohol withdrawal
increases CRF synthesis and release in CeA
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(Funk et al. 2006; Sommer et al. 2008; Roberto et
al. 2010b). Likewise, alcohol withdrawal increas-
es extracellular CRF in BNST (Olive et al.
2002), and these increases are normalized by al-
cohol consumption. CRFR antagonists suppress
dependence-induced increases in alcohol drink-
ing during acute withdrawal and protracted
abstinence (Valdez et al. 2002) and reverse in-
creases in stress-induced anxiety during pro-
tracted abstinence (Valdez et al. 2003). CRF re-
peatedly administered into the CeA, BLA, or
dorsal BNST exaggerates alcohol withdrawal-
induced increases in anxiety-like behavior via
CRF1Rs (Huang et al. 2010). Conversely, antag-
onism of CRFRs in the CeA blunts the increases
in anxiety-like behavior in rats during withdraw-
al from chronic high-dose alcohol exposure
(Rassnick et al. 1993).

CRF1R antagonists block the anxiogenic ef-
fects of many stressors (Arborelius et al. 2000;
Zorrilla and Koob 2004). CRF1R antagonists
also block increases in alcohol self-administra-
tion elicited by stressors and withdrawal (Hans-
son et al. 2006; Funk et al. 2007; Gehlert et al.
2007; Marinelli et al. 2007; Lowery et al. 2008).
Chronic treatment with a CRF1R antagonist
abolishes dependence-induced escalation of
drinking in rats chronically exposed to high
doses of alcohol (Roberto et al. 2010b). Like-
wise, (1) stressors and alcohol withdrawal in-
crease CRF1R expression in limbic brain regions
(Aguilar-Valles et al. 2005; Sommer et al. 2008);
(2) rats bred for high alcohol preference show
increased anxiety-like behavior and CRF1R lev-
els (Ciccocioppo et al. 2006); and (3) CRF1R
knockout mice show decreased anxiety-like be-
havior (Muller et al. 2003) and decreased drink-
ing following withdrawal from chronic high-
dose alcohol (Chu et al. 2007).

CRF EFFECTS ON SYNAPTIC
TRANSMISSION IN CeA

We showed that CRF robustly increases GA-
BAergic transmission in CeA of rats (Roberto
et al. 2010b) and mice (Nie et al. 2004, 2009).
CRF increases, and CRF1R antagonists decrease,
presynaptic GABA release, suggesting tonic fa-
cilitation of GABA release by endogenous CRF.

CRF1R antagonists and CRF1R knockouts also
block the alcohol-induced augmentation of
GABAergic transmission in CeA. Both CRF-
and alcohol-induced facilitation of GABAergic
transmission in CeA require the PKC1 signaling
pathway (Bajo et al. 2008). Alcohol-dependent
rats show increased sensitivity to the effects of
CRF and CRF1R antagonists on GABA release in
CeA, suggesting up-regulation of the CRF-
CRF1R system. These findings are further sup-
ported by increased CRF and CRF1R messenger
RNA (mRNA) levels seen in the CeA of alcohol-
dependent rats, and by reversal of dependence-
induced elevations in amygdalar GABA dialy-
sate by a CRF1R antagonist (Roberto et al.
2010b). CRF also increases GABAergic trans-
mission in the BNST, likely via actions at post-
synaptic CRF1Rs (Kash and Winder 2006; Fran-
cesconi et al. 2009).

NOCICEPTIN/ORPHANIN FQ AND
ALCOHOL-RELATED BEHAVIOR

Nociceptin is an opioid-like peptide (Meunier
et al. 1995; Reinscheid et al. 1995; Meunier
1997) that acts at opioid-like (NOP) receptors,
although it does not bind to opioid receptors
and opioids do not bind to NOP receptors
(NOPRs). Nociceptin is abundantly expressed
in the CeA and BNST (Neal et al. 1999) and is
described as a functional CRF antagonist (Cic-
cocioppo et al. 2003). Nociceptin and other
NOPR agonists have an anxiolytic-like profile
in animal studies (Jenck et al. 1997, 2000). No-
ciceptin knockout mice show increased anxiety-
like behavior (Koster et al. 1999) and are more
sensitive to social stress (Ouagazzal et al. 2003).

Nociceptin suppresses alcohol drinking and
prevents relapse-like behavior in rats (Cicco-
cioppo et al. 2004; Kuzmin et al. 2007). Noci-
ceptin blocks reinstatement of alcohol-seeking
behavior by cues predictive of alcohol availabil-
ity and footshock stress (Martin-Fardon et al.
2000; Ciccocioppo et al. 2004), a behavior me-
diated by brain CRF systems (Ciccocioppo et al.
2004). Generally, rats bred for high alcohol
intake show increased sensitivity to the sup-
pressive effects of nociceptin on drinking and
related behaviors (Economidou et al. 2008,
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2011). Human alcoholics express decreased lev-
els of mRNA for NOPR1 in the CeA (Kuzmin
et al. 2007), suggesting that the CeA is a critical
site for a role of nociceptin in alcoholism.

NOCICEPTIN AND SYNAPTIC
TRANSMISSION IN CeA

We found that nociceptin dose-dependently and
reversibly reduced GABAAR-mediated IPSCs in
CeA (Roberto and Siggins 2006). Nociceptin
increased PPF of evoked IPSCs and decreased
the frequency of mIPSCs in CeA, suggesting de-
creased presynaptic GABA release. Notably, no-
ciceptin both prevented (when applied before
alcohol) and totally reversed (applied during
alcohol) acute alcohol-induced increases in
evoked IPSC amplitudes and mIPSC frequen-
cies and decreases in PPF, thus preempting the
usual alcohol-induced increase in GABA release
in CeA. Further, the ability of nociceptin to de-
crease GABAergic transmission in CeA is aug-
mented following alcohol dependence, suggest-
ing that the nociceptin system in the CeA adapts
during chronic alcohol exposure (Roberto and
Siggins 2006).

NEUROPEPTIDE Y (NPY) AND
ALCOHOL-RELATED BEHAVIOR

The amygdala contains abundant NPY fibers
and receptors (Allen et al. 1984; de Quidt and
Emson 1986; Dumont et al. 1993; Gustafson
et al. 1997). NPY anxiolytic effects may involve
both the CeA (Heilig et al. 1993) and BLA (Saj-
dyk et al. 1999). Rats selectively bred for high
alcohol preference express low levels of NPYand
NPY mRNA in CeA that are restored by volun-
tary alcohol intake (Pandey et al. 2005). Alco-
hol-withdrawn rats show increases in anxiety-
like behavior and decreased amygdalar NPY,
possibly owing to changes in histone acetylation
(Roy and Pandey 2002; Zhao et al. 2007; Pandey
et al. 2008).

NPY microinjection into the CeA sup-
presses alcohol consumption in alcohol-depen-
dent and abstinent P rats (Gilpin et al. 2008a,b),
and also in rats showing innately high anxiety-
like behavior (Primeaux et al. 2006). Both post-

synaptic Y1 and presynaptic Y2 receptors (Y1Rs
and Y2Rs) are implicated in the effects of NPYon
anxiety-like behavior and alcohol consumption.
Early studies suggested roles for amygdalar Y1Rs
(Heilig et al. 1993) and Y2Rs (Sajdyk et al. 2002)
in anxiety-like behavior. Mouse studies indicate
that Y1Rs mediate the suppressive effects of NPY
on alcohol drinking (Thiele et al. 2002; Sparta
et al. 2004; Eva et al. 2006). Likewise, acute stress
and alcohol withdrawal increase amygdalar Y1R
expression in rodents (Aguilar-Valles et al. 2005;
Eva et al. 2006; Sommer et al. 2008).

NPY AND SYNAPTIC TRANSMISSION IN CeA

Our lab found that NPY in CeA prevents acute
alcohol-induced increases in evoked IPSPs and
mIPSC frequency (Gilpin et al. 2011) and PPF
decreases, suggesting that NPYeffects arise from
decreased presynaptic GABA release. Tests with
antagonists confirm the presynaptic site of ac-
tion and suggest that NPY blocks alcohol effects
via actions at presynaptic Y2Rs. NPY also nor-
malizes alcohol dependence-induced increases
in GABA release in CeA, suggesting that chronic
exposure causes neuroadaptations in NPY sys-
tems that affect inhibitory transmission here.
These results concur with findings that NPY
modulates GABA release in BNST via activation
of presynaptic Y2Rs (Kash and Winder 2006)
and suggest that Y2Rs function as autoreceptors
regulating NPY release (Chen et al. 1997), and
also as heteroceptors regulating release of other
neurotransmitters (Greber et al. 1994). NPYac-
tions at postsynaptic Y1Rs appear to function
as a “brake” on presynaptic Y2R-mediated re-
ductions in GABA release, a result that may ex-
plain previous findings that intra-amygdala in-
fusion of a Y1R antagonist decreases alcohol
drinking in rats (Schroeder et al. 2003). These
combined results support the hypothesis that
NPY blocks stress-induced reinstatement of al-
cohol-seeking behavior via activation of inhib-
itory neurons in CeA (Cippitelli et al. 2010).

DISINHIBITION MODEL OF CeA OUTPUT

As noted above, most neurons in the CeA are
GABAergic inhibitory projection neurons or
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interneurons that cotransmit GABA and one or
more neuropeptides. Peptides that promote
anxiety-like behavior and alcohol self-adminis-
tration (e.g., CRF) generally increase, whereas
peptides that reduce anxiety-like behavior and
alcohol self-administration (e.g., nociceptin,
NPY) decrease GABAergic transmission in
CeA. In our slice preparation, we stimulate and
record locally in the medial portion of the
CeA, and recordings of GABAergic transmis-
sion reflect the activity of inhibitory inter-
neurons or projection neurons (via collaterals)
within CeA. Therefore, increases in GABAergic
transmission within CeA following application
of acute alcohol or CRF will inhibit the acti-
vity of GABAergic neurons projecting out of
CeA. Conversely, decreases in GABAergic trans-
mission in CeA neurons (e.g., following noci-
ceptin or NPY application) will reduce inhibi-
tion of GABAergic neurons projecting out of
CeA, thereby facilitating release of GABA in
downstream targets (e.g., BNST, periaqueductal
gray). Thus, increases or decreases in inhibitory
output from the CeA to downstream effector
regions may decrease or increase anxiety-like
behavior, respectively (Pare et al. 2004; Davis
et al. 2010; Tye et al. 2011). Furthermore, alco-
hol markedly affects excitatory transmission in
CeA, particularly via NMDARs (Roberto et al.
2004b, 2006), lending at least partial buffering
of alcohol effects on inhibitory transmission.
Finally, alcohol may alter the release of local
opioids (Lam et al. 2008), endocannabinoids
(Roberto et al. 2010a), and/or galanin (Bajo
et al. 2011) in CeA that in turn may increase
GABA-mediated inhibition of downstream tar-
get areas. Other neuropeptides (e.g., substance
P, vasopressin) are also likely to regulate the
synaptic transmission within CeA.

CONCLUSIONS

The data summarized here support the idea that
the CeA is a critical locus of neuroadaptation
during the transition to alcohol dependence.
Alcohol has strong and persistent effects, par-
ticularly on inhibitory transmission, in the CeA
of alcohol-dependent animals. Neuropeptides
present at high levels in the CeA profoundly

alter inhibitory transmission, and potentially
also excitatory transmission. The ability of these
neuropeptides to affect neurotransmission in
the CeA, either alone or in combination with
alcohol, is often dysregulated in alcohol depen-
dence. Although manipulation of many of these
peptides affects alcohol drinking in alcohol-
dependent but not nondependent animals, it
is unsurprising that these neuropeptides affect
basal neurotransmission in CeA of alcohol-
naı̈ve animals, especially because all these pep-
tides when microinjected into CeA modulate
anxiety-related behavior independent of alco-
hol exposure history. This point also enhances
our understanding of why these neuropeptide
systems are recruited and/or up-regulated dur-
ing the transition to alcohol dependence, a dy-
namic disease defined largely by a negative emo-
tional state in the absence of the drug. Finally,
our electrophysiological data suggest that syn-
aptic transmission and the special neuronal cir-
cuitry in the CeA may be an important point
of convergence for the neuroadaptations that
occur during the transition to alcohol depen-
dence. Our understanding of this pivotal system
as a “bellwether” target for therapeutic testing
for anxiety and alcohol use disorders may be
reliably predicted by drug effects on synaptic
transmission in the CeA. Thus, we predict that
most drugs that decrease GABAergic transmis-
sion in CeA neurons will be logical candidates
for treatment of anxiety and/or alcohol use dis-
orders.
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