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A wide variety of diseases have a significant genetic component, including major causes of
morbidity and mortality in the western world. Many of these diseases are also angiogenesis
dependent. In humans, common polymorphisms, although more subtle in effect than rare
mutations that cause Mendelian disease, are expected to have greater overall effects on
human disease. Thus, common polymorphisms in angiogenesis-regulating genes may
affect the response to an angiogenic stimulus and thereby affect susceptibility to or pro-
gression of such diseases. Candidate gene studies have identified several associations
between angiogenesis gene polymorphisms and disease. Similarly, emerging pharmacoge-
nomic evidence indicates that several angiogenesis-regulating polymorphisms may predict
response to therapy. In contrast, genome-wide association studies have identified only a
few risk alleles in obvious angiogenesis genes. As in other traits, regulatory polymorphisms
appear to dominate the landscape of angiogenic responsiveness. Rodent assays, including
the mouse corneal micropocket assay, tumor models, and a macular degeneration model
have allowed the identification and comparison of loci that directly affect the trait.
Complementarity between human and animal approaches will allow increased understand-
ing of the genetic basis for angiogenesis-dependent disease.

Angiogenesis is the process by which new
blood vessels are formed from existing

vessels. Angiogenesis is regulated by a wide
variety of endogenous molecules, most of
which have additional functions. It is often
implicitly assumed that a given angiogenic
stimulus (hypoxia, VEGF gradient, etc.) will
produce the same response. However, such an
assumption ignores the possibility of quan-
titative and even qualitative differences in
angiogenic response resulting from genetic
variation. Angiogenesis-regulating genetic var-
iation affects the ability of an organism to
respond to angiogenic stimuli. Thus, it may

affect susceptibility to, or the progression of,
angiogenesis-dependent disease.

IDENTIFYING ANGIOGENESIS-
REGULATING GENETIC VARIATION

Genetic variations that alter angiogenic respon-
siveness can be detected by a variety of methods.
In animals, there are several models of angio-
genesis in which variation has been observed,
and in many cases strain-related differences
among these models are correlated. The best
studied of these is the corneal micropocket assay
where the amount of growth factor required to
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elicit a given response can vary by more than
10-fold between different strains of mice.

In the case of humans, assays have not been
identified that can measure angiogenic respon-
siveness. Nevertheless, there are a number of
mechanisms by which angiogenesis response
alleles might be identified. There are several
Mendelian diseases that result in telangiectasia
and other vascular abnormalities. However,
such traits often reduce reproductive fitness,
are thus not common in the population, and
as a result contribute little to overall human dis-
ease. However, they can provide leads for candi-
date genes for other studies. In candidate gene
studies, polymorphisms in genes previously
identified as being involved in angiogenesis
are tested for their association with the trait in
question. Importantly, because it begins with
candidate genes, this method does not allow
novel genes or pathways involved in angiogene-
sis to be discovered. In contrast, advances in
genetics have allowed performance of genome-
wide association studies (GWASs). Currently,
these studies are performed by testing tag single
nucleotide polymorphisms (SNPs) for their
association with a phenotype in question. Gen-
erally, such studies require very large sample
sizes to overcome statistical problems with mul-
tiple testing and imperfect linkage disequili-
brium implicit in the tag SNP approach. As a
result, detailed phenotyping and subgroup
analysis are not typically available in GWASs;
however, this method allows the identification
of novel genes associated with a particular trait
in the general population.

CANDIDATE GENE STUDIES IN HUMANS

For the reasons outlined above, the vast major-
ity of angiogenesis genetic studies in humans
have taken a candidate gene approach; that is,
they have focused on asking whether poly-
morphisms in genes associated with angiogene-
sis can affect angiogenesis-dependent disease.
However, the converse has not been done;
that is, the question of which polymorphisms
most strongly affect angiogenesis has not been
asked. Thus, it is possible that the common hu-
man polymorphisms that most strongly affect

angiogenesis have not been identified. As a
result, the overall effect of genetic polymor-
phism on angiogenesis-dependent disease has
not yet been rigorously tested. Nevertheless,
polymorphisms in several angiogenesis-related
genes have been shown to affect disease suscept-
ibility and/or progression. For these genes we
outline (1) the role of a given gene in angiogen-
esis, (2) the nature of observed common poly-
morphisms in that gene and any functional
consequences known, (3) the association of
polymorphisms with known angiogenesis-
dependent diseases, and (4) whether the
observed correlation seems likely to be medi-
ated by changes in the angiogenic response. In
the majority of cases, polymorphisms associ-
ated with differences in angiogenic response
are regulatory in nature. This is consistent
with the observation in expression quantitative
trait locus (eQTL) studies that regulatory poly-
morphisms dominate the variation landscape
(Schadt et al. 2003; Stranger et al. 2007; Cahan
et al. 2009).

These polymorphisms have occasionally
been associated with conditions that are not
typically believed to be angiogenesis related.
For example, a polymorphism in the VEGF
gene has been associated with kidney function
in chronic kidney disease. Although this may
indicate that angiogenesis has an as-yet under-
appreciated role in kidney disease, it is possible
that the regulation of kidney development and
podocyte function provided by VEGF is the
mechanism by which this polymorphism affects
kidney disease (Kottgen et al. 2010). We will
typically not highlight such a role because the
gene in question often has other nonangiogen-
esis-related functions. Similarly, we will not
highlight cases where association studies have
failed, because such failures are often a result
of power issues.

In candidate gene studies, polymorphisms
in VEGF, VEGFR2, eNOS, HIF-1a, MMP2,
TIMP3, IL-8, CXCR2, and av and b3 integrins
are clearly angiogenesis-dependent disease asso-
ciated and upon further study those in PAR-1,
galectin-3, and adrenomedullin are likely to be
connected. Less certain are associations with
polymorphisms in BDNF, thrombospondin,
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angiopoietins, and TIE2, whereas associations
with endostatin and erythropoietin polymor-
phisms are unlikely to be biologically relevant.
In the cases of polymorphisms in VEGFR1,
IL-6, IL-10, TNF-a, other MMPs, TIMPs, clot-
ting cascade proteases, and BMP-9 pathway
members there appear to be associations with
disease; however, it is unclear whether these
are angiogenesis mediated or not.

VEGF

Vascular endothelial growth factor (VEGF) was
originally described as vascular permeability
factor and is a relatively specific endothelial
cell mitogen and chemotactic factor that is
important in a wide variety of angiogenic proc-
esses. In addition, it is also involved in kidney
and lung function as well as serving as a survival

factor for neuronal cells. The gene is critical to
life; thus, even the haploid state results in
embryonic lethality in mice. Nevertheless, the
triploid state appears to be compatible with
life in humans (Mandal et al. 2007).

The VEGF gene is highly polymorphic, with
hundreds of polymorphisms currently anno-
tated in dbSNP (Fig. 1). Of these there are dozens
with a minor allele frequency . 1%. These are
organized into three major regions of linkage
disequilibrium, one well upstream of the
transcription start point, one encompassing
the promoter and the first six exons, and a third
covering the last two exons, including the 30UTR
(Garcia-Closas et al. 2007). Little is known about
the first block; however, one study implicates a
polymorphism in this region in bladder cancer
susceptibility (Garcia-Closas et al. 2007). The
third (30 UTR) region contains one well-studied
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Figure 1. VEGF gene polymorphisms. The VEGF gene and surrounding sequence are outlined. Each þ repre-
sents a polymorphic site. The position of the full-length transcript, exons, and longest splice form are dia-
grammed. The position of commonly assessed polymorphisms according to both of the commonly used
numbering schemes (from the transcription start point “mRNA,” and from the translation start point
“ATG”) are indicated. The three major regions of linkage disequilibrium are shown, together with common hap-
lotypes. The haplotype numbering schemes of Stevens (s) (Stevens et al. 2003), Awata (a) (Awata et al. 2005),
Garcia-Closas (g) (Garcia-Closas et al. 2007), and McKay (m) (McKay et al. 2009) are indicated, as well as
the frequency of the haplotypes in the indicated control populations. Shaded genotypes indicate a difference
with the chimpanzee or orangutan genome, suggesting that the shaded allele is the derived allele. The position
of the 936C . T polymorphism in the 30 UTR is also indicated.
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polymorphism, 936C . T (rs3025039). In car-
riers of the 936Tallele (heterozygous or homozy-
gous) in the 30UTR, the VEGF plasma level is, on
average, one-third that of noncarriers (Renner
et al. 2000).

As outlined in Figure 1, the second region
of linkage disequilibrium, which contains the
VEGF gene promoter, is complex. It has at least
four major common haplotypes, as well as sev-
eral minor haplotypes, resulting in more than
10 common promoter genotypes in humans.
There have been several studies that have
assessed the effect of differing haplotypes on
promoter activity. However, the effect of poly-
morphisms on gene promoter activity and
RNA levels seems to be cell-type and stimulus
specific. Nevertheless, circulating VEGF levels
are highly heritable (Pantsulaia et al. 2004)
and correlations have been found between gen-
otype in both the second and third regions of
LD and VEGF levels in multiple tissues and flu-
ids, as well as with microvessel density, although
there are conflicting reports as well. For exam-
ple, multiple studies have found no correlation
between cancer patient serum VEGF and
VEGF gene polymorphisms. This is unsurpris-
ing because any genetic signal is likely to be
lost in tumor-induced variability. Also, for a
tumor to grow it must have first produced suf-
ficient angiogenic factor to induce angiogene-
sis, and this requirement does not change with
VEGF genotype. In the case of normal controls,
conflicting reports about the effect of a given
polymorphism or haplotype are likely because
the effect of genotype on VEGF expression is
cell-type and stimulus specific. This situation
is further complicated by the fact that individ-
ual polymorphisms are often studied in isola-
tion, but are not inherited in isolation. Rather,
they are inherited as part of a larger haplotype,
and thus individuals grouped according to gen-
otype at a single polymorphism are actually
mixtures of individuals who bear different hap-
lotypes of the VEGF promoter.

There are currently more than 350 studies
examining the association between VEGF geno-
type and human disease (Table 1). However,
many of these studies are difficult to interpret
because they examine only individual SNP

genotypes, rather than looking at haplotypes.
As a result, it is possible that many studies
may fail to see an association as a result of dilu-
tion of affected with unaffected individuals. For
example, in early studies, the C allele of the
405G . C polymorphism, which is contained
in haplotype 1, was associated with endome-
triosis susceptibility. In contrast, the T allele of
the 2460T . C polymorphism, which is con-
tained in both haplotypes 1 and 2, fails to
show significant association despite a promis-
ing trend (Bhanoori et al. 2005). This is likely
because of a dilution of the “active” haplotype
1 with haplotype 2, and later studies have amply
confirmed the importance of VEGF promoter
polymorphisms in endometriosis.

To discriminate the major genotypes in
the VEGF promoter, it is necessary to genotype
at least three polymorphisms (e.g., 21540/
22578/rs699947, 2116/21154/rs1570360, and
405/2634/rs2010963). In addition, the þ936
(rs3025039) polymorphism in the 30 UTR
should be tested. In general, current tag SNP
approaches seem to be less powerful in detect-
ing association, as such approaches fail when
assessment of “functional” SNPs succeeds. For
example, from studies on traditional SNPs there
is substantial although not uniform evidence
that VEGF polymorphisms play a small role in
susceptibility to macular degeneration (Galan
et al. 2010) and a somewhat stronger role in pro-
gression to the wet form of the disease (Francis
et al. 2009). However, neither of the studies tak-
ing a tag SNP approach (Hanaoka et al. 2009;
Zablotna et al. 2010) have noted the association.

In addition to macular degeneration, VEGF
gene polymorphisms have been associated with
a wide variety of diseases and other phenotypes
(Table 1). Unsurprisingly, haplotype 3 has even
been associated with an increase in overall life-
span in an Italian population (Del Bo et al.
2008). As might be expected, VEGF polymor-
phisms are associated with a wide variety of
cancer-related phenotypes, including overall
incidence of cancer, as well as thrombotic com-
plications in some, but not all cancer types.
Importantly, VEGF may have different (or no)
effects at different times in disease progression.
For example, in the case of cancer, VEGF may
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Table 1. Phenotypes in which VEGF polymorphisms have been studied

Life span
Cancer thrombosis
Glioma/glioblastoma
Head and neck cancer
Nasopharyngeal carcinoma
Thyroid carcinoma
Oral cancer
Laryngeal squamous cell carcinoma
Esophageal cancer
Esophagogastric junction cancer
Gastric cancer
Colorectal cancer
Hepatocellular carcinoma
Gallbladder cancer
Pancreatic cancer
Lung cancer
Renal cancer
Breast cancer
Transplant-related Kaposi’s sarcoma
(2)Melanoma
Leukemia/lymphoma
(2)Prostate cancer
Bladder cancer
Ovarian cancer
Cervical cancer
Endometrial cancer
Leiomyoma
Sarcoidosis
Polycystic ovary syndrome
Endometriosis
Adenomyosis
In vitro fertilization implantation
Recurrent pregnancy loss
Preterm delivery
(2)Ectopic pregnancy
(2)Preeclampsia
HELLP
Low birth weight, necrotizing enterocolitis
Sudden infant death syndrome
Heart defects
Coronary artery disease
Chronic heart failure prognosis
Giant cell arteritis
Kawasaki disease
(2)Behcet’s disease
(2)Systemic sclerosis
Arthritis
Ankylosing spondylitis
Atopy
Lupus
Psoriasis

Continued

Psoriatic arthritis
Renal graft survival
Heart transplant acute rejection
Acute respiratory distress syndrome
(2)Type 2 diabetes
Type 1 diabetes
Diabetic neuropathy
Diabetic nephropathy
Diabetic retinopathy
Retinopathy of prematurity
Age-related macular degeneration
Ptergium
Ocular pseudoxanthoma elasticum
VO2 max
Asthma
(2)Smoking COPD
Depression
Migraine
Alzheimer’s disease
(2)Stroke
(2)Parkinson’s disease
Brain arteriovenous malformation
Amyotrophic lateral sclerosis
Frontotemporal lobe degeneration
Vascular dementia
Hippocampus morphology
Childhood urinary tract infection vesicoureteral

reflux, renal scarring
Henoch –Schonlein purpura nephritis
Hypertensive nephropathy
Type 2 diabetes chronic renal insufficiency
End stage renal disease
Progression of IgA nephropathy
Progression to chronic kidney disease stage 5
Primary glomerulonephritis
Calcium oxylate stone disease
Gastroduodenal ulcer
Bisphosponate-induced osteonecrosis of the jaws
Osteonecrosis of the femoral head
Osteoporosis
Biliary atresia
Occupational benzene hematotoxicity
(2)High-altitude pulmonary edema
Bronchopulmonary dysplasia
Encapsulating peritoneal sclerosis in
Progressive increase in peritoneal transport,

mortality
(2)Baseline peritoneal permeability
Hydrocele in lymphatic filariasis
PM2.5-induced heart rate variability
(2)Steroid-sensitive nephrotic syndrome
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play a minor role in tumor initiation, but a
significant role in progression or metastasis.
Melanoma is a rare example of a cancer in which
the pre-angiogenic lesion is readily detected
and is thus instructive. VEGF polymorphisms
have not been associated with risk of disease;
however, a low-expressing VEGF haplotype is
associated with thin (i.e., nonangiogenic) mela-
noma (Howell et al. 2002). This observation is
consistent with the notion that angiogenesis
polymorphisms play a less important role in
tumor initiation than in tumor progression
and metastasis.

In addition, gene–gene interactions can
affect whether a particular polymorphism
affects cancer risk. For example, several meta-
analyses have shown that the risk of developing
breast cancer is not associated with genotype in
the þ936C . T polymorphism in the general
population. However, in BRCA1 carriers the
low-VEGF T-allele confers protection from
disease (Jakubowska et al. 2008). Similarly,
although large case-control studies have failed
to find an association between prostate cancer
risk and VEGF polymorphisms (Jacobs et al.
2008), when gene–gene interactions are consid-
ered, several smaller studies have shown that
VEGF polymorphisms can play a role in disease
risk or aggressiveness (Sfar et al. 2010; Van-
Cleave et al. 2010).

Association between a disease and VEGF
polymorphisms does not necessarily mean
that the disease is angiogenesis dependent. For
example, hydrocele development in lymphatic

filariasis patients is strongly affected by geno-
type at the 2460 polymorphism. However,
because this condition is characterized by exten-
sive vascular leak, it is likely that the effect is
mediated by induction of vascular permeability
by VEGF, rather than by angiogenesis. Another
example arose from the observation that mice
with a deletion of the hypoxia response element
in the VEGF promoter develop adult-onset
motor neuron degeneration reminiscent of
amyotrophic lateral sclerosis (ALS) (Oosthuyse
et al. 2001). This clue led to the discovery that
VEGF is a survival factor for neural cells.
Thus, the observation that the 22578AA geno-
type is associated with ALS in men does not
necessarily indicate that angiogenesis is
involved in ALS; rather, it suggests that VEGF
protects neurons from the insults that lead to
neuronal degeneration in the disease. Similarly,
development of type 1 diabetes has been associ-
ated with particular genotypes in the VEGF
gene (Del Bo et al. 2006). However, long dis-
tance linkage has been demonstrated between
the VEGF gene and the adjacent HLA complex
(Chen et al. 2009). Given the very strong associ-
ation between HLA genotype and type 1 diabe-
tes, it is possible that the VEGF association
results from linkage disequilibrium with the
HLA complex, rather than from differences in
VEGF regulation.

Pharmacogenomic studies on angiogenesis
inhibitors are currently somewhat rare. How-
ever, one group has identified an association
between VEGF promoter polymorphisms and

(2)Chronic pancreatitis
(2)Circulating HHV-8 DNA
(2)Hot flashes
(2)Progressive massive fibrosis (coal miners)
(2)Hemifacial spasm
(2)Autosomal-dominant polycystic kidney disease

progression

Boldface text indicates that the bulk of evidence confirms an association between one or more VEGF polymorphisms and

the risk, severity, progression (including metastasis), age of onset, or outcome for the indicated trait. A (2) indicates that the

bulk of evidence shows no association of the trait with the VEGF polymorphism(s) studied. Italic text indicates conflicting

evidence. For other listed traits, only a single report is available and, thus, the association should be considered unconfirmed.

References available from the authors upon request.

Table 1. Continued

(2)Inflammatory bowel disease
(2)Familial Mediterranean fever
(2)Tropical spastic paraparesis in HTLV1-infected

individuals
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breast cancer response to bevicuzimab, with
genotypes consistent with haplotype 4 associ-
ated with dramatic extension of overall survival
(Schneider et al. 2008). In addition, genotypes
consistent with haplotype 1 reduced the inci-
dence of treatment-associated hypertension
(Schneider et al. 2008), an observation that
has since been confirmed (Etienne-Grimaldi
et al. 2010), and extended to sunitinib-treated
metastatic renal cancer patients (Kim et al.
2009b). In colorectal cancer, VEGF promoter
polymorphisms predict response and time to
progression with anti-VEGF therapy (Pander
et al. 2010). However, promoter polymor-
phisms have similar predictive power with che-
motherapy regimens lacking an anti-VEGF
component (Chen et al. 2010a). Similar results
are obtained in lung cancer (Heist et al. 2008).
This suggests either that current cytotoxic
chemotherapeutic regimens have a significant
antiangiogenic component even in the absence
of a targeted angiogenesis inhibitor, or that
growth in an environment with altered VEGF
availability affects the biological characteristics
of a tumor in a way that alters its response to
chemotherapy.

VEGFR2

VEGFR2 is a tyrosine kinase receptor contain-
ing several nonsynonymous SNPs of unknown
functional significance, and several regulatory
SNPs. For example, the 2604C allele decreases
transcriptional activity and protects against
age-related macular degeneration (Galan et al.
2010). In addition, there is evidence of gene–
gene interactions with VEGF genotype (Van-
Cleave et al. 2010). However, studies to identify
VEGFR2 polymorphisms that might predict
Lucentis response were negative (Kloeckener-
Gruissem et al. 2011).

In contrast, in colon cancer, the 2604CC
promoter genotype is associated with increased
microvessel density and decreased survival,
whereas the translationally silent 1192C . T
polymorphism is associated with decreased
microvessel density and increased survival
(Hansen et al. 2010). A tag SNP approach has
generated some evidence for association

between glioblastoma and VEGFR2 genotype
(Andersson et al. 2010). However, breast and
lung cancer studies are uniformly negative. In
a small study of prostate cancer, H472Q affects
the frequency of sorafanib-induced side effects,
which are in turn predictive of patient survival
(Jain et al. 2010). Similarly, in CML the
H472Q polymorphism has been shown to affect
the likelihood of complete cytogenetic response
to imatinib therapy as well as the odds of treat-
ment failure (Kim et al. 2010).

The 472Q variant is overrepresented in
endurance athletes, where it is also associated
with an increase in VO2 max and with muscle
fiber type (Ahmetov et al. 2009). Variation in
this polymorphism is also associated with
recurrent pregnancy loss (Su et al. 2011).
Finally, as is true of VEGF, osteonecrosis of
the femoral head has been associated with
VEGFR2 genotype (Hong et al. 2010) likely as
a result of the importance of angiogenesis to
bone repair.

VEGFR2 genotype is associated with several
additional diseases; however, whether the me-
chanism involved is angiogenesis related is
uncertain. Forexample, the V297I variant is asso-
ciated with atopy (Park et al. 2006), especially in
combination with TNF genotype (Park et al.
2007) as well as with hemorrhagic stroke (Zhang
et al. 2009). VEGFR2 SNPs are also associated
with sarcoidosis (Pabst et al. 2010), coronary
artery disease in both normal individuals
(Wang et al. 2007) and in Kawasaki disease
patients (Kariyazono et al. 2004), and saphenous
vein graft patency (Ellis et al. 2007), underlin-
ing the importance of the VEGFR2 gene in
atherosclerosis.

HIF-1a

HIF-1a is a transcription factor that is involved
with major cellular oxygen sensing pathways.
In hypoxia, the protein is stabilized and up-
regulates genes involved in erythropoiesis and
angiogenesis such as erythropoietin, adreno-
medullin, and VEGF. The oxygen sensitivity of
this response can vary widely between indi-
viduals (Brooks et al. 2009) and two polymor-
phisms in the gene appear to affect function
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(P582S rs11549465 þ1772C . T and A588T
rs11549467þ1790G . A) by increasing protein
levels and transcriptional activity (Tanimoto
et al. 2003). The functional nature of these alleles
is underlined by repeated reports that they are
overrepresented in high-performance athletes
and their association with maximal exercise-
induced oxygen consumption.

Interestingly, although there are only a few
positive reports of association between HIF-
1a polymorphisms and cancer incidence, there
are repeated reports in multiple tumor types of
association with tumor size and disease aggres-
siveness (Zhao et al. 2009). Interestingly, the
A588T polymorphism is associated with gastric
cancer in Tibetans (Li et al. 2009a). Impor-
tantly, this group shows a high frequency of
alleles that alter HIF-1a regulation and are
believed to contribute to high-altitude adapta-
tion (Simonson et al. 2010). Thus, this associa-
tion may only have relevance to this population.

The P582S polymorphism is associated with
an increase in coronary collateral arteries (Resar
et al. 2005) and thus cardiovascular disease
patients with this genotype tend to present
with stable angina rather than acute myocardial
infarction (Hlatky et al. 2007). In contrast, in
hemodialysis patients, polymorphisms are asso-
ciated with acute myocardial infarction and
hypotension (Zheng et al. 2009). It is also asso-
ciated with susceptibility to systemic sclerosis, a
disease characterized by vascular inflammation
and angiopathy (Wipff et al. 2009). Finally, dis-
tinct polymorphisms of unknown significance
are associated with osteonecrosis of the femoral
head (Hong et al. 2007).

Nitric Oxide Synthase (NOS3/eNOS)

Nitric oxide is a multipotent signaling molecule
with significant effects on angiogenesis, vasodi-
lation, vascular permeability, and inflamma-
tion. In addition, as a free radical it has
significant mutagenic potential. Endothelial
nitric oxide synthase (eNOS/NOS3) is the
major endothelial producer of nitric oxide.
Three polymorphisms in NOS3 have been well
studied: 2786T . C in the promoter, a varia-
ble number tandem repeat in the fourth intron,

and 894G . T in exon 7 which results in an
amino acid change (E298D) in the protein. All
of these polymorphisms can affect eNOS activ-
ity (Wang et al. 2000; Marangoni et al. 2008).
Although the polymorphisms were initially
identified in the context of cardiovascular dis-
ease, they have also been associated with several
angiogenesis-dependent diseases. Because the
E298D polymorphism has been associated
with differences in collateral formation (Lam-
blin et al. 2005), angiogenesis may be the mech-
anism by which this polymorphism affects a
subset of cardiovascular disease.

Retinopathy of prematurity is associated
with all three polymorphisms (Rusai et al.
2008; Yanamandra et al. 2010), whereas the cod-
ing polymorphism affects endometriosis (Kim
et al. 2009a), and the promoter polymorphism
affects idiopathic osteonecrosis of the femoral
head (Glueck et al. 2007).

In cancers such as non–small cell lung can-
cer (Fujita et al. 2010), acute lymphoblastic leu-
kemia (ALL), and breast cancer there is evidence
to suggest that NOS3 mutations can affect dis-
ease susceptibility (Haas et al. 2009; Hao et al.
2010; Zintzaras et al. 2010). Such susceptibility
might be a result of increased angiogenic activ-
ity and a consequently decreased threshold for
the angiogenic switch. In addition, increased
free-radical production might increase the
mutation rate in a tissue, thereby increasing
the rate of cancer formation. This possibility is
highlighted by reports of an interaction between
NOS3 genotype and antioxidant consumption
in the risk of breast (Li et al. 2009b) and prostate
(Lee et al. 2009a) cancers. In contrast, progres-
sion to advanced disease and metastasis are nec-
essarily angiogenesis dependent. Thus, it is
interesting to observe that in several cancers
the genotype is not significantly different
between controls and patients; however, if one
focuses on early progression, metastasis, and/
or disease-free survival following treatment
there is a correlation with genotype.

Finally, there is also evidence that NOS3
polymorphisms can influence response to and
side effects from cancer therapy. In ALL the
amino acid polymorphism can affect a patient’s
IQ following cranial radiation (Krajinovic et al.
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2005). Similarly, in the breast cancer setting, a
reduced incidence of radiation-induced telan-
giectasias was noted in women with lower-activ-
ity NOS3 genotypes (Kuptsova et al. 2008). In
NSCLC a decreased risk of pneumonitis was
noted in carriers of the low-activity E298D allele
(Hildebrandt et al. 2010); however, that effect is
almost certainly not attributable to differences
in angiogenesis, but rather to inflammatory dif-
ferences. Similarly the decreased rectal cancer
survival observed in carriers of the E298D allele
following radiotherapy (Funke et al. 2009) are
likely a result of decreased low reactive oxygen
production rather than any angiogenic effects.

Integrins

Several integrins are expressed on endothelial
cells, including avb3, which is upregulated in
the angiogenic endothelium. During angio-
genesis, this complex interacts directly with
VEGFR2 and PDGFRb and cooperates with
VEGFR2 to stimulate endothelial cell migra-
tion. An early study showed that the b3 integrin
L33P polymorphism increased the risk of mela-
noma as well as ovarian and breast cancers
(Bojesen et al. 2003). In the case of breast cancer,
this risk appears to be particularly strong for
younger women (Wang-Gohrke and Chang-
Claude 2004) and extends to the risk of metasta-
sis (Ayala et al. 2003; Langsenlehner et al. 2006).
Polymorphisms in av integrin have been
implicated in susceptibility to hepatitis B virus
induced hepatocellular carcinoma (Lee et al.
2009b) and regional spread in gastric cancer
(Scartozzi et al. 2010). Other integrins (e.g.,
avb5, a5b1) are also expressed on endothelial
cell and involved in angiogenesis, but studies
have not identified polymorphisms in these
genes that regulate angiogenesis or angiogene-
sis-dependent disease.

IL-8/CXCR2

IL-8 is a VEGF-independent stimulator of
angiogenesis which acts through the receptors
CXCR1 and CXCR2, with the latter being the
endothelial receptor (Li et al. 2003). The Il-8
-251T . A polymorphism leads to increased

IL-8 production (Hull et al. 2000) and increases
plasma IL-8 levels (Lee et al. 2005).

There have now been over 50 studies con-
ducted to assess the relationship between the
IL-8 2251A allele and cancer. A meta-analysis
of these studies found that the A allele increases
the risk of nasopharyngeal carcinoma and that
it increased the risk of a group of “other” less
studied cancers (Gao et al. 2010). Importantly,
when studies with population-based controls
were compared with those with hospital-based
controls it was found that hospital-based
controls indicated an increased risk of cancer,
whereas population-based controls indicated a
decreased risk of cancer from the A allele (Gao
et al. 2010). This result suggests that overall
health status may be affected by an individual’s
IL-8 allele and, thus, the immune functions of
IL-8 may confound the ability to detect differ-
ences in cancer resulting from angiogenic differ-
ences. In this context, the effect of the A allele on
tumor recurrence may be instructive. In stage III
colon cancer recurrence is predicted by the high
expressing A allele (Lurje et al. 2008), as is recur-
rence in rectal cancer (Gordon et al. 2006). This
allele also predicts incidence, recurrence, and
overall survival in gastric adenocarcinoma
(Lurje et al. 2010a) and increased risk of and
aggressiveness in breast cancer (Snoussi et al.
2010). Interestingly, this polymorphism also
represents a pharmacogenomic marker in anti-
angiogenic therapy. It is associated with lower
response to bevicuzimab and metronomic
cyclophosphamide in ovarian cancer as is the
CXCR2 þ785C . T polymorphism (Schulth-
eis et al. 2008). At the distinct CXCR2
þ1208C . T polymorphism, the TT genotype
is associated with both incidence and aggres-
siveness in breast cancer (Snoussi et al. 2010).

Proteases and Protease Inhibitors

Several proteases, including matrix metallo-
proteinases (MMPs), their tissue inhibitors
(TIMPs), and members of the plasminogen sys-
tem, are known to be involved in the invasion
and remodeling required for angiogenic vessel
outgrowth. In addition to remodeling matrix,
some proteases and inhibitors have more direct
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activities. For example, the plasminogen frag-
ment angiostatin has antiangiogenic activity
(O’Reilly et al. 1994). Similarly TIMP-3 antago-
nizes VEGF binding to VEGFR2 (Qi et al. 2003)
and inhibits endothelial chemotaxis, collagen
gel invasion, and vessel growth in the CAM
assay (Anand-Apte et al. 1997). Certain loss-
of-function mutations in TIMP-3 result in
Sorsby’s fundus dystrophy, decreasing the anti-
angiogenic properties of Bruch’s membrane and
increasing susceptibility to choroidal neovascu-
larization (Weber et al. 1994). Similarly, sus-
ceptibility to age-related macular degeneration
is affected by polymorphisms in the TIMP3
gene (Chen et al. 2010b). Longer length in an
MMP9 promoter microsatellite is also associ-
ated with susceptibility to wet ARMD (Fiotti
et al. 2005). In men with proliferative diabetic
retinopathy the MMP2 21306C allele is associ-
ated with higher plasma MMP2 levels and with
disease (Beranek et al. 2008) and the similar
2735C . T polymorphism is associated with
psoriasis (Vasku et al. 2002). In these diseases,
it seems likely that gene polymorphism modu-
lates disease susceptibility by modulating the
angiogenic response, although other mecha-
nisms are possible. Polymorphisms in several
of these genes are also associated with cancer;
however, in all of these cases, because substan-
tial tissue remodeling is a hallmark of neoplastic
disease it is difficult to determine whether dis-
ease susceptibility is mediated by increased
angiogenesis, increased tissue remodeling, or
both.

Promising Candidates

Adrenomedullin is a potent vasodilator and a
pro-angiogenic factor (Martinez 2006). An in/
del in the 30 UTR of the adrenomedullin gene
is associated with progression-free survival in
bevicuzimab- and cyclophosphamide-treated
ovarian cancer (Schultheis et al. 2008). Interest-
ingly, this polymorphism is also associated with
hypertension (Ishimitsu et al. 2001), a common
side effect of anti-VEGF therapy.

Full-length galectin-3 is involved in a num-
ber of processes important to tumorgenesis
including anchorage independent growth and

tumor cell proliferation. The protein is also
cleaved by MMPs and the cleaved form is
involved in chemotaxis and angiogenesis. A
P64H polymorphism adjacent to one of the
MMP cleavage sites (between A62 and Y63)
affects cleavage efficiency and angiogenesis
stimulatory activity (Nangia-Makker et al.
2010). The H allele, which results in greater
angiogenesis, is more common in Caucasian
women than in Asian woman and has been
hypothesized to explain a portion of the
increased risk of breast cancer in Caucasian
women (Balan et al. 2008). The H allele also
increases the risk of breast cancer in each popu-
lation independently (Balan et al. 2008).

Proteinase-activated receptor 1 (PAR-1) has
been shown to regulate the differential release
of pro- and anti-angiogenic factors from
platelets (Ma et al. 2005; Italiano et al. 2008).
A promoter in/del at position 2506 in the
gene is associated with outcome in gastric can-
cer patients (Lurje et al. 2010a) and with tumor
recurrence in esophageal carcinoma (Lurje et al.
2010b).

GENOME-WIDE ASSOCIATION STUDIES
IN HUMANS

In principle, genome-wide association studies
for polymorphisms affecting conditions such
as cancer or cardiovascular disease might dis-
cover angiogenesis response alleles. There are
at least two potential examples of this. First,
there have been repeated reports of genome-
wide association between cancer and SNPs
near the fibroblast growth factor receptor 2
gene (FGFR2) (Easton et al. 2007; Hunter
et al. 2007; Thomas et al. 2009; Gaudet et al.
2010; Turnbull et al. 2010; Li et al. 2011), with
the risk allele increasing the expression of the
gene (Meyer et al. 2008). Overlap between array
CGH-determined CNV suggests that several
bFGF QTLs may be regulated by copy-number
variation alleles (Cho et al. 2006). This protein
is the receptor for several fibroblast growth fac-
tors, including FGF2, a powerful angiogenesis
stimulator (Shing et al. 1984; Klagsbrun and
Shing 1985). A similar case is that of the phos-
pholipase PLCE1, an intracellular regulator of
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growth factor signaling in both endothelial and
other cell types, including cancer cells. An
amino acid substitution in this gene is associ-
ated with esophageal squamous cell carcinoma
in Chinese subjects (Wang et al. 2010a). The
relevance of both of these findings to angiogen-
esis is questionable because both proteins are
also mitogens and can confer survival signals.
Nevertheless, it is interesting that polymorphisms
in these genes, rather than others with similar
characteristics, are observed to increase the
risk of cancer. Thus, one might hypothesize
that both the mitogenic and angiogenic activ-
ities of these proteins are involved in conferring
susceptibility to cancer. Indeed, it is possible
that some of the genes and regions currently
identified as cancer risk alleles have as-yet
undiscovered roles in angiogenesis.

A simpler case involves the HTRA1 gene in
age-related macular degeneration (ARMD).
HTRA1 is a serine protease expressed in the ret-
inal pigment epithelium. It has been shown to
selectively cleave eight RPE proteins. These
include several ECM proteins that might regu-
late angiogenesis, such as fibromodulin, clus-
terin, ADAM9, and vitronectin (An et al.
2010). Promoter polymorphisms in HTRA1
have been associated specifically with wet
ARMD (Dewan et al. 2006) suggesting that
increased expression of this gene results in
increased susceptibility to angiogenesis in the
retina. However, the polymorphisms involved
are part of a haplotype that also results in loss
of function in the ARMS2 (LOC387715) gene,
and this loss appears also to be required for
ARMD susceptibility (Yang et al. 2010).

The absence of obvious angiogenesis-
related gene associations in GWASs of diseases
that are clearly angiogenesis dependent might
be explained in a number of ways. First, there
remains a substantial amount of “dark matter”
in genetics. That is, loci identified by current
GWASs and family studies explain only a small
fraction of observed heritability (Manolio
et al. 2009). It may be that angiogenesis re-
sponse alleles substantially lie in the “dark
matter.” In this context it should be noted that
the design of current GWASs has resulted in
enrichment for genes active very early in tumor

initiation, which thus confer susceptibility to
both pre-cancerous (and pre-angiogenic)
lesions and frank cancer (Varghese and Easton
2010). As outlined above, candidate gene stud-
ies have often found that angiogenesis gene
polymorphisms exhibit stronger effects on
tumor progression or metastasis than in tumor
incidence. Thus, as GWASs move toward
more refined comparisons, it is likely that
angiogenesis genes will appear in greater num-
bers. Indeed, because cancer susceptibility
results from the interplay of a large number of
different processes, one means of identifying
risk alleles is to use intermediate phenotypes
that are affected by a smaller number of proc-
esses, thus limiting the diluting effect of other
processes (e.g., apoptosis susceptibility). Sec-
ond, the involvement in a wide variety of proc-
esses critical to life may limit the extent to which
variation in angiogenesis-regulating genes is
evolutionarily permitted. This, in turn, will
limit the relative risk attributable to any given
allele, and thus the detectability of that allele.
Finally, current GWASs rely heavily on a tag
SNP approach. Although current knowledge
necessitates such an approach, it is likely to be
less effective than a function SNP approach. It
is thus to be anticipated that, as GWAS techni-
ques are refined, angiogenesis-regulating genes
will appear with greater frequency in the results
of such studies.

LOCI IDENTIFIED IN ANIMAL STUDIES

Several experiments in rodents, designed to
map tumor-related traits, have identified loci
that affect angiogenic response (Table 2). For
example, in the estrogen-induced pituitary
tumor model, a locus on rat chromosome 5,
Edpm5, affects tumor mass and vascularity
and is associated with the switch to the angio-
genic phenotype (Pandey et al. 2004). Similarly,
decreased proliferative capacity and altered la-
tency associated with altered angiogenesis have
been observed in MMTV-PyMT mice with spe-
cific genotypes at any of three loci: Mmtg1,
Mmtg2, and Mmtg3 (Le Voyer et al. 2001). In
addition to altering growth or latency character-
istics, differences in angiogenic responsiveness
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Table 2. Rodent angiogenic response QTLs

QTL Location Effect of paternal allele Cross Reference

Edpm5 Rat Chr 5M Resistance to estrogen-
induced pituitary
tumor angiogenesis

Fisher 344 x Brown Norway Pandey et al. 2004

Skts9 Chr 16P Skin tumor resistance NIH/Ola x M. spretus Nagase et al. 1999
Mmtg1 Chr 4P Increased tumor burden I/LnJ x

FVB/N-TgN(MMTV-PyVT)634Mu1
Le Voyer et al. 2001

Mmtg2 Chr 4M Increased tumor burden I/LnJ x
FVB/N-TgN(MMTV-PyVT)634Mu1

Le Voyer et al. 2001

Mmtg3 Chr 7P Decreased tumor burden I/LnJ x
FVB/N-TgN(MMTV-PyVT)634Mu1

Le Voyer et al. 2001

Tgfbkm2 Chr 1D Normal yolk sac
angiogenesis

C57BL/6 Tgfb1þ/2 x
129S2/Sv Tgfb1þ/2

Tang et al. 2003

Tgfbm1 Chr 5P Normal yolk sac
Angiogenesis

C57BL/6 Tgfb1þ/2 x
NIH/OlaHsd Tgfb1þ/2

Tang et al. 2005

Tgfbm3 Chr 12P Normal yolk sac
angiogenesis

C57BL/6 Tgfb1þ/2 x
NIH/OlaHsd Tgfb1þ/2

Tang et al. 2005

AngVq1 Chr 10M Increased VEGF-induced
angiogenesis

C57BL/6J x DBA/2J Rogers et al. 2003,
a

AngVq2 Chr 2P Decreased
VEGF-induced
angiogenesis

C57BL/6J x DBA/2J,
C57BL/6J x A/J

Rogers et al. 2003,
a

AngVq3 Chr 10P Decreased
VEGF-induced
angiogenesis

C57BL/6J x DBA/2J,
C57BL/6J x A/J

Rogers et al. 2003,
a

AngVq4 Chr 7M Decreased
VEGF-induced
angiogenesis

C57BL/6J x A/J a

AngVq5 Chr Y Decreased
VEGF-induced
angiogenesis

C57BL/6J x A/J,
C57BL/6J x SJL

a

AngFq1 Chr 4P Increased bFGF-induced
angiogenesis

C57BL/6J x DBA/2J Rogers et al. 2004

AngFq2 Chr 13P Decreased bFGF-induced
angiogenesis

C57BL/6J x DBA/2J Rogers et al. 2004

AngFq3 Chr 15M Increased bFGF-induced
angiogenesis

C57BL/6J x DBA/2J Rogers et al. 2004

AngFq4 Chr 18D Increased bFGF-induced
angiogenesis

C57BL/6J x DBA/2J,
C57BL/6J x 129P3/J

Rogers et al. 2004

AngFq5 Chr 7P Decreased bFGF-induced
angiogenesis

C57BL/6J x SJL/J b

AngFq6 Chr 12P Increased bFGF-induced
angiogenesis

C57BL/6J x 129P3/J,
C57BL/6J x 129P1/ReJ

b

AngFq7 Chr 14M Decreased bFGF-induced
angiogenesis

C57BL/6J x 129P3/J b

AngFq8 Chr Y Decreased bFGF-induced
angiogenesis

C57BL/6J x A/J,
C57BL/6J x SJL

b

Quantitative trait loci (QTLs) for differences in angiogenic responsiveness along with their peak chromosomal location (P,

proximal third; M, middle third; D, distal third), effect of the paternal (strain listed second) allele, and cross(es) in which the

trait segregates.
aMS Rogers, AE Birsner, and RJ D’Amato, unpubl.
bMS Rogers, V Boyartchuk, AE Birsner, et al., unpubl.
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may alter tumor shape or eccentricity. This may
result when in a given region of a growing tumor
the fraction of angiogenic tumor cells drops
below the threshold necessary to maintain
angiogenesis (Udagawa et al. 2002). When this
occurs, the tumor ceases to grow locally, result-
ing in alteration of tumor shape. Thus, several
lung tumor shape-determining loci (Ltsd)
may also be angiogenesis-response loci (Tripo-
dis and Demant 2003).

We have used the mouse corneal micro-
pocket assay (Rogers et al. 2007) to identify sev-
eral quantitative trait loci (QTLs) that control
response to bFGF and/or VEGF. Importantly,
these studies contrast with knockout studies
because the variation underlying the trait has
survived the rigors of inbreeding and the breed-
ing requirements of colony maintenance. As a
result, it is likely to more closely model com-
mon human polymorphisms that are responsi-
ble for the bulk of human disease than would
other approaches. We have found results of the
corneal micropocket assay to be stable with
regard to animal age and cage environment,
with two studies showing that genetic differen-
ces explain more than 20 times the variance that
is explained by environmental factors (Rogers
et al. 2003, 2004).

We have used the BXD (C57BL/6J x DBA/
2J) recombinant inbred strain cross to identify
bFGF response loci. As a result, we identified
loci on chromosome 4, 13, 15, and 18 which
we named AngFq1-AngFq4 for angiogenesis in
response to bFGF (Rogers et al. 2004). Each of
these loci has been confirmed with a congenic
animal from the genome-tagged mouse set
(Iakoubova et al. 2001). In addition, earlier
mapping studies using F2 crosses between
129P3/J, 129P1ReJ, or SJL/J and C57BL/6J
identified four QTLs, one each on chromo-
somes 7, 12, 14, and Y (AngFq5-AngFq8). In
the case of AngFq5, congenic animal generation
combined with haplotype mapping identified
the pink-eyed dilution mutation as a candidate
that might explain the phenotype. This candi-
date was confirmed using the distinct pJ allele
in the same gene. Thus, unexpectedly, pink-
eyed dilution was identified as a gene that affects
angiogenic responsiveness.

In the case of VEGF, mapping using the
BXD strain set resulted in the identification of
two QTLs, AngVq1 in the middle of chromo-
some 10 and AngVq2 in the proximal portion
of chromosome 2, each of which has been
confirmed with a GTM mouse (Rogers et al.
2003; Rogers and D’Amato 2006). Importantly,
a comparison of angiogenic response to bFGF
and VEGF in the BXD strain set demonstrated
substantial correlation. This may be a result
of the observation that a substantial fraction
of bFGF response can be inhibited by a VEGF
inhibitor, indicating that a portion of the
bFGF response is mediated by VEGF. Subse-
quent work with the AXB and BXA strain
sets as well as with chromosome substitution
strains (Hill et al. 2006) has resulted in the
identification of a second QTL on chromosome
10 (AngVq3) as well as QTLs on chromosomes
7 (AngVq4) and Y (AngVq5). Subsequent map-
ping work has identified the albino mutation in
tyrosinase as responsible for AngVq4 (MS Rog-
ers, AE Birsner, and RJ D’Amato, unpubl.).
Thus, in at least two cases, coat color loci can
affect angiogenic response, indicating an over-
lap in the two pathways.

In addition to corneal angiogenesis, we have
also extended this work to identify QTLs that
control the neovascular area in a laser-induced
mouse model of age-related macular degenera-
tion (Nakai et al. 2009). In this case, because ret-
inal pigmentation affects the amount of laser
energy deposited, pigmentation-related alleles
had to be controlled for. This mapping con-
firmed AngVq1 and AngFq2. It also resulted in
the identification of two new QTLs, AngCNVq1
and AngCNVq2 on chromosomes 2 and 19,
respectively.

In addition to angiogenesis response QTLs,
other QTLs affect the vasculature in inbred
mice. For example, the extent and remodeling
of collateral arteries are genetically controlled
traits that can affect the outcome of ischemic
injury (Wang et al. 2010b). Intestinal lymphatic
vasculature can be affected by a QTL on chro-
mosome 3 that includes the VCAM1 gene
(Jurisic et al. 2010), and both basal and induced
corneal lymphatics differ among mouse
strains (Nakao et al. 2010). These traits appear,
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however, to be both mechanistically and genet-
ically distinct from angiogenic responsiveness.

CONCLUSIONS

The study of the role of genetic variation in
the angiogenic response is currently in its
infancy. Nevertheless, it is now clear that poly-
morphisms in angiogenesis-regulating genes
can affect a large number of phenotypes, in-
cluding a wide variety related to disease pro-
cesses in man. In none of these cases does an
absence of association necessarily imply that
the gene/protein in question is not involved in
disease. Rather, it may simply mean that func-
tional polymorphisms in the gene have not
been identified or do not exist at sufficient fre-
quency in the study populations. Importantly,
odds ratios for disease susceptibility in angio-
genesis-regulating genes tend to be low, with
meta-analysis typically demonstrating odds
ratios in the 1.1–1.3 range. This is likely to be
a result of purifying selection. Nevertheless,
the large number of angiogenesis-regulating
genes currently identified means that, even
assuming no epistatic interaction among poly-
morphisms, the overall risk due to angiogene-
sis-regulating polymorphisms could be quite
high. Epistatic interactions among members of
interacting pathways may substantially increase
risk. Indeed, the few studies that have looked
at multiple angiogenesis-regulating polymor-
phisms have found odds ratios associated with
three risk alleles to be in the six to seven range
for susceptibility (a range that would be expected
to have required approximately 15 risk alleles
without epistatic interactions) and 20 for tumor
aggressiveness (Gerger et al. 2007; Sfar et al.
2009). Given the pervasive epistasis found in other
studies of complex traits (Shao et al. 2008), it is
likely that the sum of angiogenic response alleles
plays a major role in angiogenesis-dependent dis-
ease. Combined with the numberof angiogenesis-
regulated diseases and traits, it is not surprising
that polymorphisms in just one angiogenesis reg-
ulator are associated with human lifespan (Del Bo
et al. 2008), and it is likely that the sum of angio-
genesis-regulating variation plays a major role in
determining the length and quality of life.
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