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Abstract
Context—Evidence on the health risks associated with short-term exposure to fine particles
(particulate matter ≤2.5 μm in aerodynamic diameter [PM2.5]) is limited. Results from the new
national monitoring network for PM2.5 make possible systematic research on health risks at
national and regional scales.

Objectives—To estimate risks of cardiovascular and respiratory hospital admissions associated
with short-term exposure to PM2.5 for Medicare enrollees and to explore heterogeneity of the
variation of risks across regions.

Design, Setting, and Participants—A national database comprising daily time-series data
daily for 1999 through 2002 on hospital admission rates (constructed from the Medicare National
Claims History Files) for cardiovascular and respiratory outcomes and injuries, ambient PM2.5
levels, and temperature and dew-point temperature for 204 US urban counties (population >200
000) with 11.5 million Medicare enrollees (aged >65 years) living an average of 5.9 miles from a
PM2.5 monitor.

Main Outcome Measures—Daily counts of county-wide hospital admissions for primary
diagnosis of cerebrovascular, peripheral, and ischemic heart diseases, heart rhythm, heart failure,
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chronic obstructive pulmonary disease, and respiratory infection, and injuries as a control
outcome.

Results—There was a short-term increase in hospital admission rates associated with PM2.5 for
all of the health outcomes except injuries. The largest association was for heart failure, which had
a 1.28% (95% confidence interval, 0.78%–1.78%) increase in risk per 10-μg/m3 increase in same-
day PM2.5. Cardiovascular risks tended to be higher in counties located in the Eastern region of
the United States, which included the Northeast, the Southeast, the Midwest, and the South.

Conclusion—Short-term exposure to PM2.5 increases the risk for hospital admission for
cardiovascular and respiratory diseases.

Numerous epidemiological studies have shown associations of acute and chronic exposures
to airborne particles with risk for adverse effects on morbidity and mortality.1,2 The recent
evidence on adverse effects of particulate air pollution on public health has led to more
stringent standards for levels of particulate matter in outdoor air in the United States and in
other countries. In 1997, the US National Ambient Air Quality Standard for airborne
particulate matter was revised, maintaining the previous indicator of particulate matter of
less than or equal to 10 μm in aerodynamic diameter (PM10) and creating a new indicator
for fine particulate matter of less than or equal to 2.5 μm in aerodynamic diameter (PM2.5).3

Following the implementation of the PM2.5 National Ambient Air Quality Standard, a
nationwide monitoring system of this pollutant was implemented. Data on PM2.5 are now
available for many parts of the United States starting from 1999 through the present.

Although the US Environmental Protection Agency (EPA) added a PM2.5 standard in 1997
based on available evidence that these small particles were particularly damaging, few
epidemiological studies on this size range of particulate matter had been reported at that
time. The EPA heavily weighted the few studies with available PM2.5 data when it
considered the level that should be set for the standard.4 The EPA also considered the
dosimetry of particles in the lung. Particles in the size range of PM2.5 have a much greater
probability of reaching the small airways and the alveoli of the lung than do larger particles.
The availability of the new monitoring network for PM2.5 allows epidemiological analyses
at the national level on the health effects of fine particles.

The national data on PM2.5 concentrations were used to assess associations of short-term
exposure to PM2.5 with risk for hospitalization regionally and by city among Medicare
participants. We followed the model of the National Morbidity, Mortality and Air Pollution
Study, which used PM10 data for time-series analyses.5–8 The Medicare cohort covers nearly
all members of an elderly population considered to be vulnerable to air pollution; the size of
this population allows for assessments of specific cardiac and respiratory diagnostic
categories that have been associated with particulate air pollution.

METHODS
This analysis is based on daily counts of hospital admissions for 1999–2002 obtained from
billing claims of Medicare enrollees. Because the Medicare data analyzed for this study did
not involve individual identifiers, consent was not specifically obtained. This study was
reviewed and exempted by the institutional review board at Johns Hopkins Bloomberg
School of Public Health. Each billing claim contains the date of service, treatment, disease
(International Classification of Diseases, Ninth Revision9 [ICD-9] codes), age, sex, self-
reported race, and place of residence (ZIP code and county). The daily counts of each health
event within each county were obtained by summing the number of hospital admissions for
each of the diseases considered a primary diagnosis. To calculate hospitalization rates, we

Dominici et al. Page 2

JAMA. Author manuscript; available in PMC 2013 January 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



constructed a time series of the numbers of individuals at risk in each county for each day
(defined as the number of individuals enrolled in Medicare on a given day).

Eight outcomes were considered based on the ICD-9 codes for 5 cardiovascular outcomes
(heart failure [428], heart rhythm disturbances [426–427], cerebrovascular events [430–
438], is-chemic heart disease [410–414, 429], peripheral vascular disease [440–448]), 2
respiratory outcomes (chronic obstructive pulmonary disease [COPD; 490–492], respiratory
tract infections [464–466, 480–487]), and hospitalizations caused by injuries and other
external causes (800–849). The county-wide daily hospitalization rates for each outcome for
1999–2002 appear in Table 1.

The study population includes 11.5 million Medicare enrollees residing an average of 5.9
miles from a PM2.5 monitor. The analysis was restricted to the 204 US counties with
populations larger than 200 000. Of these 204 counties, 90 had daily PM2.5 data across the
study period and the remaining counties had PM2.5 data collected once every 3 days for at
least 1 full year. The locations of the 204 counties appear in Figure 1. The counties were
clustered into 7 geographic regions by applying the K-means clustering algorithm to
longitude and latitude for the counties.10,11

The PM2.5 and ozone data were obtained from the EPA’s Aerometric Information Retrieval
Service (now referred to as the Air Quality System database). Temperature and dew-point
temperature data were gathered from the National Climatic Data Center on the Earth-Info
CD database.12 To protect against consequences of outliers, we used a 10% trimmed mean
to average across monitors after correcting for yearly averages for each monitor.

County names and location, air pollution data, weather data, county-specific estimates of
health risk, and software developed to construct county-specific time-series data are
available online (http://www.biostat.jhsph.edu/MCAPS). Billing claims of Medicare
enrollees are not publicly available. Calculations were implemented using R statistical
software version 2.2.0.13

We applied Bayesian 2-stage hierarchical models14–16 to estimate county-specific, region-
specific, and national average associations between day-to-day variation of PM2.5 (at lags 0,
1, and 2 days) and day-to-day variation in the county-level hospital admission rates,
accounting for weather, seasonality, and long-term trends. A lag of 0 days corresponds to the
association between PM2.5 concentration on a given day and the risk of hospitalization on
the same day. We also applied distributed lag models17–20 to the 90 counties with daily
PM2.5 data available to estimate the relative rate (RR) of hospitalization associated with
cumulative exposure over the current day and the 2 previous days. Significance is assessed
by the posterior probability that the RR is larger than zero. Values greater than .95 are
considered significant.

In the first stage, single lag and distributed lag overdispersed Poisson regression models21,22

were used for estimating county-specific RRs of hospital admissions associated with
ambient levels of PM2.5. These county-specific models include as explanatory variables: (1)
the logarithm of the daily number of individuals at risk; (2) indicator variables for the day of
the week to allow for different baseline hospital admission rates for each day; (3) smooth
functions of calendar time (natural cubic splines) with 8 degrees of freedom per year to
adjust for seasonality and for other time-varying influences on admissions (eg, influenza
epidemics and longer-term trends due to changes in medical practice patterns); and (4)
smooth functions of temperature (6 degrees of freedom) and dew-point temperature (3
degrees of freedom) on the same day and of the 3 previous days’ temperature and dew-point
temperature to control for the potential confounding effect of weather.
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For the smooth functions of calendar time, we chose 8 degrees of freedom per year so that
little information at the time scales of longer than 2 months would be retained in estimating
the risks. For temperature, we chose 6 degrees of freedom so that the model has sufficient
flexibility to take account of potential nonlinearity in the relationship of temperature with
hospitalization.23

This modeling approach was developed for the National Morbidity, Mortality and Air
Pollution Study analyses22,24 and applied to national databases for estimating short-term
effects of PM10 and ozone on mortality.5,12 Statistical properties of this modeling approach
and alternative modeling specifications for confounding adjustment are reported
elsewhere.7,25

In the second stage, to produce a national average estimate of the short-term association
between PM2.5 and hospital admissions, we used Bayesian hierarchical models14–16,26 to
combine RRs across counties accounting for within-county statistical error and for between-
county variability of the “true” RRs (also called heterogeneity). To produce regional
estimates, we used the same 2-stage hierarchical model described above but separately
within each of the 7 regions.

To explore effect modification of air pollution risks by location-specific characteristics, we
fitted a weighted linear regression model with the dependent variable as the location-specific
RR estimate and the independent variable as the location-specific characteristic. The
observations were weighted inversely to the statistical variance of the location-specific
estimate.

The county and regional averages of PM2.5 concentration, ozone concentration, and
temperature for 2000 through 2002 were calculated as potential modifiers. A regional
average was calculated by using all of the county-specific concentrations within the region.

Finally, the annual reduction in hospital admissions (H) attributable to a 10-μg/m3 reduction
in the daily PM2.5 level for the 204 counties by cause-specific admissions were calculated. H
is defined as

where β is the national RR estimate for a 1-μg/m3 increase in PM2.5, Δx is 10-μg/m3, and N
is the number of hospital admissions across the 204 counties for 2002.

The sensitivity of key findings was examined with respect to the lag of exposure; degrees of
freedom in the smooth functions of time; and degrees of freedom in the smooth functions of
temperature and dew-point temperature.

RESULTS
More than 2 years of PM2.5 data were available for most of the 204 counties. The average of
the county mean annual values for 1999–2002 was 13.4 μg/m3 (interquartile range [IQR],
11.3–15.2 μg/m3). There was substantial homogeneity of fine particulate matter
concentrations across geographic areas. The median of pairwise correlations among PM2.5
monitors within the same county for 2000 was 0.91 (IQR, 0.81–0.95).

The point estimates and 95% posterior intervals (PIs) for the percentage increase in daily
admission rates per 10-μg/m3 increase in PM2.5 concentration (national average RRs) for
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single lags of 0, 1, and 2 days and the distributed lag models for lags 0 through 2 for all
disease outcomes (total) appear in Figure 2. The single lag model estimates the effect of
exposure on 1 day only, lagged by 0, 1, or 2 days, while the total estimate from the
distributed lag model summarizes the effect of 3 days of exposure (lag 0, 1, and 2 days). We
found evidence of positive associations between day-to-day variation in PM2.5 concentration
and hospital admissions for all outcomes, except injuries, for at least 1 exposure lag. The
largest effect was found at lag 0 for all of the cardiovascular outcomes except ischemic heart
disease, for which the largest effect was at lag 2. For respiratory outcomes, the largest
effects occurred at lags 0 and 1 for COPD and at lag 2 for respiratory tract infections.
Distributed lag estimates were statistically significant for heart failure. Compared with the
single lag estimates, the wider 95% PIs for the distributed lag estimates reflect the restriction
of the analysis to 90 of the 204 counties with daily data. The results for the single lag models
were also stratified by age group at the lag with the greatest effect (Table 1). The national
average RR estimates were larger for the oldest group for some outcomes including
ischemic heart disease, heart rhythm disturbances, heart failure, and COPD.

Several analyses were conducted as internal checks. Analyses for lag −1 were run to predict
today’s outcome by using the next day’s pollution and for hospitalizations caused by injuries
and other external causes. Positive associations were not found for injuries or for other
external causes, which was expected. When lag −1 PM2.5 was used as the exposure
indicator, positive associations also were not found. The main results were robust to the
number of degrees of freedom used to adjust for temporal confounding, to the adjustment for
weather, and to adjust for the prior distributions used for the analysis.

The point estimates and 95% PIs of the heterogeneity parameter, defined as the between-
county SD of the “true” county-specific rates in relation to their mean, appear in Table 1.
For example, the estimate of the heterogeneity parameter for COPD is 1.61. This value
indicates that with a national average RR of 0.91% per 10-μg/m3 increase in PM2.5, 95% of
the “true” county-specific RRs are within the interval of 0.91 to 1.96×1.61=−2.24% and
0.91×1.96×1.61=4.06%. To determine the strength of evidence supporting the null
hypothesis of no heterogeneity, we calculated the posterior probability that the heterogeneity
parameter is smaller than .05 (the Bayesian analogue of a P value) and this was found to be
close to 0 for all outcomes.

To determine whether there was significant variation of risks across the 7 geographic
regions, the RR for each outcome was estimated separately within the regions, which
excluded Honolulu, Hawaii, and Anchorage, Alaska. The point estimates and 95% PIs of the
regional RRs for each outcome at the lag with the greatest estimated RR appear in Figure 3
and Table 1. For the 2 groups of outcomes (cardiovascular and respiratory), the estimated
RRs have distinct regional patterns. For cardiovascular diseases, all estimates in the
Midwestern, Northeastern, and Southern regions were positive, while estimates in the other
regions were close to 0. Compared with cardiovascular diseases, there was greater
consistency between the regions for respiratory diseases. However, there were larger effects
in the Central, Southeastern, Southern, and Western regions than in the other regions.

Regional differences were investigated by dividing the United States into an Eastern region
(Northeast, Southeast, Midwest, and South) and a Western region (West, Central, and
Northwest). The average effect estimates and 95% PIs of the RRs for each outcome and for
the lags with the greatest estimated national average effects appear in Figure 4. There were
168 counties included in the Eastern region and 34 counties included in the Western region.
Using analysis of variance, the differences in risk of hospitalization between the 2 regions
were statistically significant for outcomes except for heart failure and COPD. All RR
estimates for cardiovascular outcomes were positive in the US Eastern region but not in the
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US Western region. The RR estimates for respiratory tract infections were larger in the
Western region than in the Eastern region.

Effect modification of short-term effects of PM2.5 on hospital admission rates was
investigated by using both county and regional averages of PM2.5 concentrations,
temperature, and ozone. Both county and regional average temperature positively modified
the association between PM2.5 and hospital admission rates for the 2 respiratory outcomes.
For example, comparing 2 regions that differ by 1°C, there would be an estimated 18
additional hospital admissions per 10 000 individuals for COPD and 9 additional hospital
admissions per 10 000 individuals for respiratory tract infections per 10-μg/m3 increase in
PM2.5 in the warmer region. We did not find evidence of the effect modification by average
concentrations of either PM2.5 or ozone.

The yearly hospital admissions attributable to a 10-μg/m3 reduction in the daily PM2.5 also
were calculated (Table 2). For example, a 10-μg/m3 reduction in PM2.5 would reduce the
number of hospitalizations for heart failure by 3156 for the 204 urban counties in 2002.

COMMENT
The Medicare National Claims History Files were used in this study to estimate the short-
term effects of PM2.5 on cause-specific hospitalization rates. Data obtained from national
databases on health were combined with data on air pollution and weather.5,27 This is a
replicable approach that can be applied periodically for air pollutants or other environmental
factors as a component of a national health surveillance system to track adverse health
effects. This approach also has the strength of analyzing the national data uniformly,
avoiding the potential for publication bias that occurs when data from only 1 or several
counties are analyzed and positive findings are selectively reported.27

In interpreting the findings, consideration needs to be given to the inherent limitations of the
data analyzed and to the possibility that even the complex statistical models used are not
adequate to eliminate all bias. Medicare data are collected for administrative purposes and
diagnoses are known to be subject to some degree of misclassification28–30 and to vary
geographically.31,32 The resulting misclassification and geographic variability would
introduce a bias in daily time-series analyses only if patterns of diagnosis and coding were
associated with level of PM2.5. We used only primary diagnosis, an approach that should
reduce misclassification of outcomes. To investigate whether geographic differences in
diagnosis rates could modify the risks, a second-stage analysis was performed using county-
specific hospital admission rates (number of admissions per 100 000 individuals) as an
independent variable and county-specific RR estimates as a dependent variable. This
analysis did not find such evidence of effect modification by underlying diagnosis rates.
While we relied on monitors cited for regulatory purposes, the average distance from the
centroid of a ZIP code to the monitor was only 5.9 miles and PM2.5 levels tend to be
uniform across such distances.

The modeling approach used in this study enabled extensive exploration of the sensitivity of
the findings. At the first stage of the hierarchical model, we specified the same number of
degrees of freedom in the smooth functions of time and temperature used to control for
confounding for all the locations. This approach does not necessarily lead to a similar degree
of control for confounding across counties, but it does give similar flexibility to the smooth
functions, allowing their shape to vary across counties. An alternative is to allow a different
number of degrees of freedom across counties, an approach used in multisite time-series
studies in Europe.33–36 Recently we have compared these 2 modeling strategies and found
that national estimates of PM10 risks were robust to the choice of method.19 We also have
explored the sensitivity of the estimated RRs to different degrees of adjustment for weather
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and seasonality and found the results to be robust. Statistical challenges inherent to the
adjustment for temporal confounding have been explored elsewhere.19,25,37

Overall, we found evidence of an association between recently measured PM2.5
concentrations and daily hospitalizations on a national scale. Our findings complement
substantial evidence on particulate matter and hospitalization for respiratory or
cardiovascular causes using exposure measures other than PM2.5 and the more limited
evidence using PM2.5 specifically. While mechanisms underlying the adverse effects of
particulate matter on the respiratory and cardiac systems remain a focus of research, the
leading hypotheses emphasize inflammatory responses in the lung and release of cytokines
with local and systemic consequences.1,38–40 In the lung, particulate matter may promote
inflammation and thereby exacerbate underlying lung disease and reduce the efficacy of
lung-defense mechanisms. Cardiovascular effects may reflect neurogenic and inflammatory
processes.40 Experimental studies of atherosclerosis using genetically susceptible mice also
suggest that particulate matter may accelerate the development of atherosclerosis41; parallel
human findings also were found.42

Although many time-series studies have used PM10 as an exposure indicator, only a few
studies have specifically assessed associations of PM2.5 with hospitalization or other
morbidity measures.43 Lippmann et al44 and Ito et al45 used Medicare admission data for
Detroit, Mich, for 1992–1994, along with size-fractionated particle concentration data from
a nearby monitoring station in Windsor, Ontario. As reported by Ito et al,45 updated analyses
of these data showed positive associations of PM2.5 for hospitalization for pneumonia,
COPD, ischemic heart disease, and heart failure. In comparison with the present study, the
reported risk estimates were several-fold higher. Moolgavkar46,47 used data for Los Angeles
County, California, for 1987–1995 and found that PM2.5 was significantly associated with
risk for hospital admission for cardiovascular disease in persons aged 65 years or older.
Sheppard et al48,49 reported a positive association of PM2.5 with risk for hospital admission
for asthma in Seattle, Wash, for 1987–2004, but elderly persons were excluded. Finally,
Burnett et al50 assessed risk for hospitalization for cardiorespiratory diseases in relation to
particulate air pollution over 3 summers in Toronto, Ontario. Positive associations were
found in univariate models that were attenuated with consideration of gaseous pollutants in
bivariate models.

There is much more literature on PM10 and risk for hospitalization, which generally shows
positive associations.2,51 In most urban locations across the United States, PM2.5 accounts
for at least half of the PM10 mass, and a scaling factor of 0.55 has been used to convert
PM10 concentrations to PM2.5. With this assumption, our quantitative findings for PM2.5 are
quite similar to those for both PM10 and for PM2.5 as recently summarized by the EPA.43

The comparability of the PM10 and PM2.5 estimates suggests that the effect of PM10 on
hospital admissions largely reflects its PM2.5 component.

The sources of particles contributing to the observed risks need to be identified so that
control strategies can be targeted efficiently. Because the source mix for PM2.5 varies across
locations, we explored spatial variation of the effect of PM2.5 on risk for hospitalization.
Strong evidence for spatial heterogeneity in the effect of PM2.5 on risk for hospitalization
was found. The pattern and degree of heterogeneity tended to vary by outcome measure.
Because the magnitude of the effects contrasted greatly in the comparisons between the 7
regions, counties were grouped into an Eastern region and a Western region. There are
known differences in the composition of particles at this geographic scale, including a
greater sulfate component in the East and a greater nitrate component in the West.2 There
are also well-characterized differences in the mix of sources across these broad areas that
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may be relevant, including power generation and the smokestack industry in the East and a
larger contribution from transportation sources in parts of the West.

With clear and continuing indication that inhaled particles affect public health adversely, the
emphasis of research should shift toward the difficult issue of identifying those
characteristics of particles that determine their toxicity.1 The EPA’s Speciation Trends
Network, which is now providing extensive data on characteristics of PM2.5 at selected sites,
offers a needed resource for this research.52

Under the Clean Air Act,53 the EPA is required to set a particulate matter National Ambient
Air Quality Standard that protects public health with an “adequate margin of safety.” Our
findings indicate an ongoing threat to the health of the elderly population from airborne
particles and provide a rationale for setting a PM2.5 National Ambient Air Quality Standard
that is as protective of their health as possible. Our national approach offers a method for
continuing to search for the characteristics of particles that determine their toxicity.53
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Figure 1.
US Counties With Populations Larger Than 200 000 Included in Analysis
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Figure 2. Percentage Change in Hospitalization Rate by Cause per 10-μg/m3 Increase in PM2.5
on Average Across 204 US Counties
Point estimates and 95% posterior intervals of the percentage change in admission rates per
10 μg/m3 (national average relative rates) for single lag (0,1, and 2 days) and distributed lag
models for 0 to 2 days (total) for all outcomes. PM2.5 indicates particulate matter of less than
or equal to 2.5 μm in aerodynamic diameter.
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Figure 3. Percentage Change in Hospitalization Rate by Region and Cause per 10-μg/m3

Increase in PM2.5 Within Each Region
Point estimates and 95% posterior intervals of the percentage change in admission rates per
10 μg/m3 (regional relative rates). PM2.5 indicates particulate matter of less than or equal to
2.5 μm in aerodynamic diameter; COPD, chronic obstructive pulmonary disease.
*Honolulu, Hawaii, and Anchorage, Alaska, were excluded.
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Figure 4. Percentage Change in Hospitalization Rate by Cause per 10-μg/m3 Increase in PM2.5
for the US Eastern and Western Regions for all Outcomes
Point estimates and 95% posterior intervals of the percentage change in admission rates per
10 μg/m3. PM2.5 indicates particulate matter of less than or equal to 2.5 μm in aerodynamic
diameter; COPD, chronic obstructive pulmonary disease.
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Table 2

Annual Reduction in Admissions Attributable to a 10-μg/m3 Reduction in the Daily PM2.5 Level for the 204
Counties in 2002

Cause-Specific Hospital Admissions Annual No. of Admissions Annual Reduction in Admissions (95% PI)*

Cerebrovascular disease 226 641 1836 (680 to 2992)

Peripheral vascular disease 70 061 602 (−42 to 1254)

Ischemic heart disease 346 082 1523 (69 to 2976)

Heart rhythm 169 627 967 (−17 to 1951)

Heart failure 246 598 3156 (1923 to 4389)

COPD 108 812 990 (196 to 1785)

Respiratory tract infection 226 620 2085 (929 to 3241)

Abbreviations: COPD, chronic obstructive pulmonary disease; PI, posterior interval; PM2.5, particulate matter of less than or equal to 2.5 μm in

aerodynamic diameter.

*
Per 10-μg/m3 reduction in PM2.5.
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