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Abstract

Corticopetal acetylcholine (ACh) is released transiently from the nucleus basalis of Meynert (NBM) into the cortical layers and
is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3
pyramidal neurons (PYRs) via muscarinic presynaptic effects on inhibitory synapses. Together with other possible
presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses
associated with top-down attention. However, the system-level consequences and cognitive relevance of such
disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of
connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for
the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to
quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down
attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor
landscape (Q-landscape, present under low-ACh, non-attentional conditions) and the attractor landscape (A-landscape,
present under high-ACh, top-down attentional conditions). We present a conceptual computational model based on
experimental knowledge of the structure of PYRs and interneurons (INs) in cortical layers 1 and 2/3 and discuss the possible
physiological implications of our results.
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Introduction

The perception of external sensory stimuli is an important

aspect of cognition, and it has long been a target of neuroscientific

research. Perception of external visual stimuli arises from

interactions between two streams of signals in the early visual

cortex, i.e., the bottom-up spike signals via layer 4 from the

thalamus core circuit and the top-down spike signals carrying

attention, expectation, and/or contexts onto layers 1 and 6 (see

Figure 1).

However, the brain also performs internal processes such as

mental imagery or voluntary recall of a scene in episodic memory

(see, e.g., [1–3]). These instances of visual processing do not involve

external stimuli. How does the stream of top-down signals arriving

at cortical layer 1 organize dynamical activity to temporarily

reconstruct internal representations? This problem brings up a

fundamental question about top-down neural processing: what is

the nature of the top-down signals that are projected in cortical

layer 1?

The cortex exhibits spontaneous activity even in the absence of

external stimuli. Possible roles of such spontaneous activity have

long been a controversial issue (see, e.g., [4–8]). Ongoing and

evoked activity in the primary and secondary visual cortices V1

(area 17) and V2 (area 18) of anesthetized cats has been studied by

optical imaging, local field potentials and single cell recordings [9–

13]. In particular, Kenet et al. [12] observed intriguing spontane-

ous activity in V2 of anesthetized cats with both eyes closed [12].

In fact, the activity of the visual cortex with both eyes closed, that

is, in the absence of external stimuli, was neither quiet nor

random. Instead, it exhibited dynamics that transitively switched

between different internal states after a few hundreds of

milliseconds. The activity patterns observed under these conditions

resembled the orientation selectivity patterns of the visual cortex

that are embedded through learning. These results have modified

our understanding of cortical dynamics by suggesting that cortical

circuits have a number of preexisting and intrinsic internal states.

These states are thought to represent stimulus features, and the

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e53854



cortex fluctuates between such intrinsic states in the absence of

conscious attention and external inputs (see also [13,14]).

The mathematical nature of intrinsic internal states such as an

orientation selectivity remains controversial. If viewed from the

standpoint of conventional static theory, an internal state could be

interpreted as a stable equilibrium. That is, the internal state may

be viewed as an attractor to which the state of a neural system

converges. However, experimental evidence indicates that the

system only stays in these states temporarily [12]. After a few

hundreds of milliseconds, the system transits to a different internal

state. The continuous transitions indicate that internal states are

not stable in the classical sense of dynamical systems theory.

Therefore, such dynamics could be viewed as an expression of

quasi-attractors, a concept in contemporary dynamical systems

theory. Roughly, a quasi-attractor is an attractor in that there are

positive-measure orbits approaching and temporarily persisting in

state space. However, a quasi-attractor may simultaneously possess

repelling orbits from itself. The Milnor attractor is a mathemat-

ically rigorously defined example of a quasi-attractor, and may

thus provide a mechanism for allowing transitions to and from a

quasi-attractor (for a detailed definition of the Milnor attractor,

see, e.g., [15]). It should be noted that the concept of quasi-

attractors may include a wider class of non-classical attractors than

the Milnor attractor. However, quasi-attractors have not yet been

formalized mathematically in detail. Therefore, in this paper, we

use the term quasi-attractor to include possible but unknown

classes of non-classical attractors, where classical attractors are

usually stable equilibrium points, stable limit cycles, stable quasi-

periodic attractors, and low-dimensional chaotic attractors. Quasi-

attractors can also be found in the field of chaotic associative

memory in neural networks [16–25], in which patterns stored in

the network become quasi-attractors and the network exhibits

transitive dynamics between stored patterns.

What is the neural mechanism underlying the transitive

dynamics observed in the visual cortex? More importantly, what

are the possible roles of such dynamics in cognitive functions? We

have previously presented a working hypothesis focused on these

questions [26–28]. With top-down attention, whether overt or

covert [29], or even in mental imagery [1–3], we postulate that

two concurrent flows are projected onto the cortex. The first one is

a projection of ACh and gamma-aminobutyric acid (GABA) onto

all six layers ascending from the nucleus basalis of Meynert

(NBM). This transmission is triggered by Glu spikes from the

medial prefrontal cortex (mPFC) to the NBM [30]. Moreover, in

light of the attention-to-memory (internal representation) hypoth-

esis [31–33], we hypothesize that ACh is also released transiently

by internal attention and/or expectation. This hypothesis consti-

tutes a cornerstone of the scenario described in our quasi-attractor

hypothesis.

Behavioral and immunotoxin studies indicate that ACh is

involved in top-down attention. A blockage of ACh from NBM,

either as a consequence of disease or drug application, causes a

severe loss of selective attention, sustained attention, and divided

attention, along with a shift in attention. The death of cholinergic

cells in NBM is known to be associated with the Dementia with

Lewy bodies (DLB), the most salient symptoms of which are

recurrent complex visual hallucinations (RCVHs) [34]. The

second attentional signal is Glu spike volleys projecting onto layer

Figure 1. Schematic diagram of cortical layers in the early visual cortex (V1/V2). The bottom-up spike signals via layer 4 from the thalamus
core circuit and the top-down spike signals onto layer 1 (and layer 6) interact in the perception of external sensory stimuli in the early cortex (V1/V2).
Moreover, acetylcholine (ACh) is transiently released from the nucleus basalis of Meynert to all the layers associated with top-down attention. In
layers 2/3, pyramidal neurons (PYRs) that project their apical distal dendrites to layer 1, interneurons (INs), and PVz fast spiking neurons exist.
Moreover, it is also known that ACh to layer 1 depolarizes calretinin positive (CRz) INs in layer 1 through nicotinic receptors. However, we do not
consider the latter effect in our model for simplicity.
doi:10.1371/journal.pone.0053854.g001
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1 from higher cortical areas and the thalamic matrix circuit (see

Figure 1). These two concurrent flows (referred to here as

attentional flows) are the main components of the top-down

mechanism described in the present manuscript. It has been

reported that cholinergic afferents have specific synaptic connec-

tions with postsynaptic targets, rather than releasing ACh non-

specifically [35]. However, the specificity of the corticopetal ACh

projections on the cortex remains controversial.

Here, we use the term ongoing state to refer to a cortical

dynamical state in which the cortex has no external stimuli and no

or minimal top-down attentional flows except intrinsic noise. In

the experiment by Kenet et al., this situation was realized by

anesthetization and closing the eyes [12]. Our basic proposal is

that in the non-attentional ongoing state, the cortex exhibits

transitive dynamics among locally existing quasi-attractor states if

no external stimuli are applied. We also hypothesize that these

transitive dynamics are maintained so long as the ACh concen-

tration remains at a baseline level. In the present manuscript, we

aim to understand how top-down signals onto cortical layer 1

organize dynamical activity to reconstruct temporarily internal

representations.

Here, we first introduce our quasi-attractor hypothesis. Then we

define a single-unit network, which is a building block of a

multiunit network for associative memory. By using a multiunit

network composed of multiple unit networks with a built-in

memory pattern, we show that our quasi-attractor hypothesis is

feasible. Lastly, we confirm that our results are consistent with

other proposals on the roles of ACh [36,37].

Results

Quasi-attractor Hypothesis
We summarize our scenario as a quasi-attractor hypothesis (see

also [26–28]).

With a low (baseline) ACh level (i.e., in a non-attentional state),

patterns associated with memory exhibit the temporal forms of

quasi-attractors and transition between quasi-attractors during

recall, as indicated by thin red arrows in Figures 2A and 2D. Such

dynamics are based on the following four neural mechanisms.

1. In an attentional state in the presence of a relatively high but

transient ACh levels due to transient projections from the

NBM (see, e.g., [38,39]), memories are formed as attractors, i.e.,

the system is in an attractor landscape (A-landscape). An A-

landscape refers to the spatial structure of basins of attractors in

the state space. Schematic images of attractor states are shown

in Figures 2C and 2F.

2. In non-attentional ongoing states, ACh levels return to baseline

(see, e.g., [40]) causing attractors become quasi-attractors.

Consequently, the attractor landscape becomes a landscape

with quasi-attractors (a Q-landscape) as shown in Figures 2A

and 2D.

3. The arrival of ACh associated with top-down attention

temporarily recovers the A-landscape (see, e.g., [40]). First,

the staying time at each quasi-attractor increases as shown in

Figures 2B and 2E, and then quasi-attractors become attractors

as shown in Figures 2C and 2F.

4. The arrival of increased ACh is also accompanied by top-down

spike volleys projected on layer 1. The synapses of these inputs

contact with the apical distal dendrites of specific pyramidal

neurons (PYRs) in layer 2/3, and enable the orbit (state) to

jump into the relevant attractor. These effects are illustrated by

the thick green arrows in Figure 2.

The theoretical link that connects transient ACh release to the

dynamical event of attractor stabilization lies in the fact that high

ACh decreases the inhibition of PYRs by virtue of presynaptic,

muscarinic disinhibition. As a result, the inhibitory connections to

PYRs are weakened presynaptically. Conversely, when low ACh

increases presynaptic inhibition, the inhibitory connections are

strengthened and the attractors are destabilized. This is a

consequence of a more general principle, which states that

inhibition may destabilize attractors under certain conditions

[16,17,21].

Our hypothesis may help explain why two concurrent signals,

i.e., top-down spike volleys onto layer 1, and corticopetal ACh

released from NBM, are necessary in the process of voluntary

memory recall. At the same time, the distinct nature of these two

flows when viewed from the standpoint of dynamical systems will

become clear. The former is a type of external force that makes the

trajectory of the cortical network jump into the basin of a relevant

attractor (memorized pattern), whereas the latter (ACh projection)

acts as a bifurcation parameter that changes the attractor

landscape.

Our model is based on studies of the ongoing states of V1 and

V2 of cats [9–11], and it is motivated by the experimental results

obtained by Kenet et al. [12]. Our aim is to use a computational

model to discuss a possible neural mechanism underlying the

transitive dynamics together with its possible roles in cognition.

We constructed a model of the superficial cortical layers (layers 1

and 2/3) [41] of the early visual cortex (V1/V2). The model is

conceptual in that it is a simple coupled system consisting of PYRs

and interneurons (INs), presumably parvalbumin-positive (PVz)

fast spiking (FS) neurons. Together, these cell types constitute the

principal neural populations in layer 2/3. Concurrently, our

model might reflect the possible influence of ACh on the nonlinear

dynamics of neurons (such as oscillatory behavior) in layer 2/3 at

least to some extent. We believe that the dynamics generated in

our model may apply to many different neural systems as discussed

in more detail in the Discussion section.

Chaos is random motion that is generated by a deterministic

rule. Chaotic dynamics in neural systems are observed both in

single neurons in vitro such as the squid giant axon [42,43] and the

Onchidium giant neuron [44], and in models of single neurons

[45–47]. Chaotic dynamics were also observed in models of pulse-

coupled neural networks [48–52]. Importantly, modeling studies

have suggested that chaotic dynamics are useful in some neural

computations such as escaping from local minima in optimization

problems and chaotic transitions among memory states in

associative memory models [16–25,53,54].

Our network was composed of phase neuron models (also

known as a theta neurons [55]), which model type-I spiking

neurons [56,57]. In our previous work, we constructed a unit (that

might be regarded as a minicolumn [58]) composed of coupled

excitatory and inhibitory neurons, and we examined the mech-

anisms governing synchronized firing. In the present simulations,

we investigate coupled systems of such units with excitatory and

inhibitory interactions. The advantage of using phase neurons is

that their Fokker-Planck equation [59] can be numerically

analyzed in detail because the phase neuron model is governed

by a one-dimensional differential equation. For instance, in a

simple network with one unit, we found complex bifurcations of

dynamics including chaotic synchronized firing [50] (see below for

details). Moreover, since each individual unit in the network is

internally synchronized when isolated, coupled units can be

mutually synchronized in a periodic manner [60] under some

conditions. In some cases, we also observe that units showing

chaotic dynamics instead of periodic ones are mutually synchro-

Deforming Attractor Landscape via Acetylcholine
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nized after coupling [51]. Further, chaotic associative memory in

multiunit networks has been analyzed [61].

A Network of PYRs and INs (Unit Model)
We constructed a network model composed of NE PYRs and

NI INs, each of which is modeled as a phase neuron connected to

all the other neurons globally. This network might be regarded as

a minicolumn [52,58]; we refer to it as a unit hereafter. Figure 3A

shows a schematic diagram of a unit. Multiple units constitute a

neural network as shown in Figure 3B. One thousand PYRs are

included in each unit. A typical firing pattern of a unit with

NE~1000 and NI~250 is shown in Figures 4A, 4B, and 4C.

Figure 4A shows a raster plot of spikes in which high correlations

exist between the firing times of different neurons. Hereafter, we

refer to such firing with high correlations as synchronized firing.

On the other hand, in another initial condition, asynchronous

firing in which almost all neurons are silent is also observed, as

shown in Figure 4D, even in the unit with the parameter values

identical to those shown in Figure 4A. In other words, two firing

patterns, i.e., synchronized and asynchronous, coexist in the same

network. Such asynchronous firing appears because the neuron

model has a stable equilibrium, and it fires only when sufficiently

large stimulation is applied. Synchronous and asynchronous firing

patterns were the only two patterns observed for the parameters

used in Figure 4.

The instantaneous firing rates rE and rI for the excitatory

ensemble E and the inhibitory ensemble I are respectively defined

as

rX (t):
1

NX w

XNX

i~1

X
l

H(t{t
(i)
l ), ð1Þ

Figure 2. Schematic diagrams of deformation of the attractor landscape induced by release of ACh into cortical layers 2/3, shown in
two ways. (A) and (D) Quasi-attractors observed when the concentration of ACh does not exceed its baseline level. In Figure A, the instability of the
quasi-attractor is represented by the shallow depth of potential in the landscape, and each quasi-attractor is found to be unstable because there exist
repelling orbits from itself. In Figure D, the instability of the quasi-attractor is shown as crossings of trajectories over the boundaries, and each quasi-
attractor is unstable because there are many crossing points. The trajectories of the network state successively transit among quasi-attractors as
indicated by red arrows. By the top-down Glu spike volleys indicated by green arrows, the network state would jump to another quasi-attractor.
However, it would soon transit to other quasi-attractors again. (B) and (E) Quasi-attractors observed when the ACh level is somewhat high. The
probability of transitions becomes low, but each quasi-attractor remains unstable. (C) and (F) Stable attractors observed when the concentration of
ACh is much higher. Transitive dynamics are not observed because quasi-attractors are stabilized and they become attractors. When top-down Glu
spike volleys are injected to cortical layer 1, the trajectories jump to the target pattern (in this example, the attractor of pattern 2) in a short time.
doi:10.1371/journal.pone.0053854.g002
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H(t)~
1, for 0ƒtvw

0, otherwise

�
, ð2Þ

where w~1, t
(i)
l is the lth firing time of the ith neuron in the

ensemble X , and X~E or I . rE and rI for the data in Figure 4A

are shown in Figure 4B. As shown in Figure 4B, the dynamics of

synchronized firing is not periodic. The trajectories in the (rE , rI )

plane of the dynamics in Figure 4B is shown in Figure 4C. The

dynamics of the synchronized firing in Figure 4C appear to have a

complex dynamical structure.

The synchronous firing in Figure 4 can be observed only when

PYRs and INs interact. Therefore, we presume that this dynamics

is similar to the pyramidal-interneuron-network gamma oscillation

(PING) [62]. However, the dominant periodic component in our

model does not necessarily correspond to the time scale of the

gamma frequency because our model is based on an abstract

neuron model.

The averaged dynamics of our network in the limit of

NE ,NI?? can be analyzed using the Fokker-Planck equations

[52] as shown in the Methods section. By this analysis, we can

calculate the theoretical dynamics of rE and rI in the network with

NE ,NI??. The results for the network with parameters shown in

Figures 4A, 4B, and 4C are shown in Figures 4E and 4F. The

structure of synchronous firing shown in Figure 4C is a strange

attractor of chaos in the limit of NE ,NI??, as shown in

Figure 4F. Moreover, the largest Lyapunov exponent is numer-

ically confirmed to be positive [51], which indicates that the

dynamics have a sensitive dependence on initial conditions

peculiar to deterministic chaos. Therefore, we refer to the

synchronous firing shown in Figure 4A as chaotic synchronization.

Note that the Fokker-Planck equations are deterministic partial

differential equations on the probability distribution of the network

in the limit of NE ,NI?? [59]. Therefore, the observed dynamics

are deterministic chaos. Our previous studies indicated that

chaotic synchronized firing is observed over a wide range of

parameters in various models [50,63,64].

We regard such synchronized firing as the basic dynamics of the

unit, and we further examine the dynamics in a network composed

of multiple units. To reduce the computational time, below, we

analyze the network dynamics using the Fokker-Planck equations.

A Network of Multiple Units
Below, we consider a network composed of multiple units that

store patterns. A schematic diagram of this network is shown in

Figure 3B. M units are placed in cortical layers 2/3 of a model for

the early visual cortex (V1/V2). We assume that INs in this

network are PVz FS neurons [65]. PVz FS neurons and PYRs

might be related to the generation of gamma oscillations. Cortical

layers 2/3 also contain PVz multipolar bursting INs that are

related to the generation of h oscillations [65]. However, for

simplicity we do not consider them here.

Generally, ACh decreases the magnitude of IPSCs from INs to

PYRs through muscarinic M2 receptors [66,67]. This effect is

presynaptic, and the activities of INs themselves are not weakened

by ACh. We model this effect by decreasing the strength of the

inhibitory connections from INs to PYRs in layers 2/3. The

GABAergic projection from the NBM is not addressed in our

model. It is known that top-down Glu spike volleys are projected

to layer 1 from the higher cortex and thalamic matrix circuit

[68,69]. These spikes are projected to the distal apical dendrites of

PYRs whose cell bodies may exist in layers 2/3. Therefore, they

are excitatory inputs to PYRs in our network. We model this effect

Figure 3. Schematic diagram of our model. (A) As an elemental model of a small network in layers 2/3 in the early visual cortex, we construct a
unit model that is composed of NE PYRs and NI INs, each of which is modeled as a phase neuron connected to all the other neurons globally. We set
NE~1000 and NI ~250 or we take the limit NE ,NI?? in the analysis of the Fokker-Planck equations (see the Methods section). (B) The multiple
units in cortical layers 2/3. ACh decreases inhibitions to PYRs through the presynaptic, muscarinic disinhibitions, and it stabilizes the quasi-attractors.
The top-downs Glu spike volleys to the apical distal dendrites of PYRs contribute to the selection of attractors. (C) Connections between two units.
Only the connections from the left unit to the right one are shown for simplicity.
doi:10.1371/journal.pone.0053854.g003
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by injecting temporal inputs to specific PYRs in the network, i.e.,

by increasing the value of sE in Eq. (8) temporarily (see the

Methods section). Although some theoretical research has

examined the role of top-down inhibitory inputs [70], we have

not included such inputs in our model.

Our network is realized by connecting multiple units as shown

in Figure 3C. The connection strengths among units are

determined based on previous studies [61]. As shown in

Figure 3C, PYRs receive inter-unit inputs from both PYRs and

INs. Conversely, INs receive inputs only from PYRs. Each

ensemble of PYRs or INs has recurrent connections within the

Figure 4. Results of simulations in a unit. (A), (B), and (C) Chaotic synchronization observed in a unit model with 1000 PYRs and 250 INs. The
values of the parameters are D~0:002, sE~{0:025, sI ~{0:0445, gEE~6, gIE~gEI~2:8, gII~1, ggap~0:1, tE~1, tI~0:5, and kE~kI ~1. (A)
Raster plot of spikes of 100 PYRs and 25 INs (randomly chosen). The firing times of neurons have correlations and we call such firing synchronized. (B)
Temporal changes in instantaneous firing rates rE and rI of the excitatory ensemble E and the inhibitory ensemble I , respectively, calculated from
the firing in Figure A. It is observed that rE and rI fluctuate, and it is found that this fluctuation is caused by chaotic dynamics and not by a stochastic
one. (C) Trajectory in the (rE , rI ) plane obtained from the data in Figure B. It is observed that the trajectory has some complex structure. (D)
Asynchronous firing observed in this unit. Raster plot of spikes of 100 PYRs and 25 INs (randomly chosen). The number of firing is very few because
the firing rates are low. (E) and (F) Chaotic synchronization in a unit with an infinite number of neurons obtained by analysis with Fokker-Planck
equations, which corresponds to the results in Figures B and C obtained in a unit with a finite number of neurons. (E) Temporal changes in the
instantaneous firing rates rE and rI . The results are similar to those in Figure B. (F) Trajectory in the (rE , rI ) plane. A fine structure of a chaotic attractor
is visible.
doi:10.1371/journal.pone.0053854.g004
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same ensemble. We define the connection strengths TEi and TIi of

the input to the PYRs and INs in the ith unit [61] as

TEi~(gEE{gsub
EE )IEi{(gEI{gsub

EI )IIi

z
XM
j~1

hEE
ij IEjz

XM
j~1

hEI
ij IIj ,

ð3Þ

TIi~(gIE{gsub
IE )IEi{gII IIiz

XM
j~1

hIE
ij IEj , ð4Þ

where IEi and IIi are the sums of postsynaptic currents of the ith

unit defined by Eq. (10) in the Methods section. The inter-unit

connections hEE
ij , hEI

ij , and hIE
ij and the constants gsub

EE , gsub
EI , and

gsub
IE are defined based on the modified Hebbian rule as shown in

the Methods section. With this configuration of connections, we

store p patterns in our network.

Although the number of units can be chosen arbitrarily in

principle, we fix the number of units and the number of patterns as

M~16 and p~3, respectively, in order to perform a clear

analysis. Three patterns gm
i (m~1,2,3) are defined as

g1
i ~

1, if iƒM=2,

0, otherwise,

�
ð5Þ

g2
i ~

1, if M=4viƒ3M=4,

0, otherwise,

�
ð6Þ

g3
i ~

1, if i mod 2~1,

0, otherwise:

�
ð7Þ

An Ongoing State of the Network (Transitive Dynamics
Among Quasi-attractors)

The typical dynamics observed in a network of 16 units is shown

in Figure 5A. rEi is the instantaneous firing rate of the ith

excitatory ensemble. The transitive dynamics among three

memorized patterns are observed, and these dynamics are chaotic

[61]. We call such dynamics the ongoing state of this network.

Moreover, we refer to the unstable memory patterns as quasi-

attractors. Note that the data in Figure 5A is obtained by

numerically integrating the deterministic Fokker-Planck equations.

Therefore, the transitive dynamics observed in Figure 5A are not

caused by noise but are deterministic.

Stabilization of Quasi-attractors by Release of ACh to
Cortical Layers 2/3

As stated above, the release of ACh onto cortical layers 2/3

decreases the magnitude of IPSCs from the PVz FS neurons to

PYRs through muscarinic M2 receptors. To incorporate this

effect, we decrease the strength of inhibition from INs to PYRs (see

Figures 3A and 3C). We decrease all gEI and hEI in M~16 units

because we assume that ACh diffuses in layers 2/3 and decreases

the inhibition of PYRs through the aforementioned presynaptic,

muscarinic mechanism. Here, we replace gEI and hEI with REI gEI

and REI hEI with 0vREIƒ1, respectively, and we call REI the

cholinergic reduction of inhibition.

The ongoing dynamics in this network, shown in Figure 5A, are

realized when REI~1:00. The dynamics in the network with

REI~0:97 and 0:95, which correspond to situations in which ACh

is released to layer 2/3, are shown in Figures 5B and 5C,

respectively. The staying time at each quasi-attractor increases

when gEI and hEI are reduced (REI~0:97). When REI~0:95, all

of the quasi-attractors are stabilized. We confirmed that the

stabilized attractors themselves are chaotic attractors rather than

equilibrium or periodic attractors by numerically calculating the

Lyapunov spectra [61] (see fine fluctuations of the instantaneous

firing rates rEi). The dependence of the averaged staying time STT
at a quasi-attractor on REI is shown in Figure 5D. It is observed

that STT diverges at REI~R�EI:0:953, and each quasi-attractor

is stabilized for REIvR�EI .

Selection of Quasi-attractors by Top-down Glu Spike
Volleys to Cortical Layer 1

Next, we examine the effect of Glu spike volleys projected to

cortical layer 1. To incorporate this effect, we changed the value of

the parameter sE of PYRs in some units. We replace sE of the ith
unit with sEzSi, where Si represents the effect of Glu spike

volleys. Assuming that the effect of the Glu spike volleys is

localized, we set Si~0:015 only for i~9,10 and we set Si~0 for

the other units. Moreover, this input is synaptic, and therefore, the

effective time of Si was set to be smaller than that of ACh.

As stated above, the top-down Glu spike volleys to cortical layer

1 do not deform the attractor landscape but make the trajectory

jump to a quasi-attractor specified by the input in the phase space.

Cortically projecting ACh is transiently released from NBM in an

instant of attention [30,40,71], even attention to internal

representations [31–33]. Note that this is one of the central

hypotheses in this paper. According to this hypothesis, we also

inject ACh and stabilize the quasi-attractor at the time when the

top-down Glu spike volleys reach layer 1.

Figure 6 shows the observed dynamics in our model. The top-

down Glu spike volleys are projected only to the 9th and 10th units

for 12500ƒtƒ13500, and REI reduces for t§12500 because of

the release of ACh.

When we do not add ACh (REI~1:00) as shown in Figure 6A,

the network temporarily retrieves the pattern in which the 9th and

10th units are active, i.e., pattern 2 at t~12500. However, for

REI~1:00, pattern 2 is a quasi-attractor, as shown in Figures 2A

and 2D, and therefore, the retrieved pattern in the network soon

switches to pattern 1 at around t~15000. On the other hand, as

shown in Figure 6B, the trajectory with REI~0:97 also moves to

pattern 2 but the staying time increases because of the effect of

ACh. This result corresponds to the case shown in Figures 2B and

2E. Finally, as shown in Figure 6C, in the network with

REI~0:95, each quasi-attractor is stabilized to be an attractor,

and this case corresponds to Figures 2C and 2F. Therefore, once

the trajectory moves to pattern 2, it does not move to other

patterns in this case.

In physiological situations, the effect of ACh would gradually

decay, and therefore, the complete stabilization of the quasi-

attractor as shown in Figure 6C would not occur. To confirm this

effect, we perform a simulation in which the concentration of ACh

starts decreasing at t~15500 according to an exponential

function, as shown in Figure 7A. Figure 7B shows that target

pattern 2 is successfully retrieved persists for some time.

In summary, the top-down Glu spike volleys to cortical layer 1

make the trajectory jump to any specified pattern. However, these

signals do not change the attractor landscape itself, i.e., the stability
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of each quasi-attractor. The stabilization of each quasi-attractor is

realized by the release of ACh to cortical layers 2/3.

Discussion

Deformation of the Attractor Landscape and Jump of
Trajectories among Attractors

We observed that the ongoing state exhibits transitive dynamics

between several quasi-attractors. These trajectories result from

spontaneous evolution of the network state, and move from one

quasi-attractor to another in the quasi-attractor landscape. Such

dynamics are indicated by red arrows in Figure 2. The

stabilization of quasi-attractors by the release of ACh causes a

deformation of the landscape. It is emphasized that if the network

is viewed as a dynamical system, the ACh concentration plays the

role of a bifurcation parameter and not that of an external force

applied to the system. The relatively slow, even transient

functioning of ACh operates as a slowly changing bifurcation

parameter (see Figure 2). By contrast, Glu spike volleys onto

cortical layer 1 are an external force originating from higher

cortical regions. Glu spike volleys cause the trajectory jump into

the basin of an attractor, as indicated by the green arrows in

Figure 2. These two processes may have different time constants.

Even if the release of ACh is localized and phasic, its effects on

cortical neurons persist for some time. In fact, the decrease of

IPSC continues for at least several minutes after activation of

muscarinic receptors by muscarine or oxotremorine in vitro

[66,67]. On the other hand, the duration of the Glu spike volleys

to cortical layer 1 would be much shorter.

When ACh, but no top-down Glu was released, the question

arises as to which attractor the state would converge to. If the state

were inside the basin of a (quasi-)attractor, say A, at the instant

when ACh is released, the state would remain inside the basin of A

(in almost all cases) even after the ACh release (see Figures 2A and

2C). This means that the attractor to which the trajectory

converges would be determined by chance. In order to make the

trajectory surely converge to the target attractor (that is, during

voluntary recall and reconstruction of a certain internal state), the

brain requires a mechanism to make the trajectory jump into the

corresponding (quasi-)attractor by some external forces (see green

arrows in Figure 2). This external force can be provided (at least in

part) by the top-down Glu spike volleys to cortical layer 1.

Together, these two processes provide a simple mechanism for

temporal reactivation of internal states in the brain.

Our network models activity in layers 2/3 of the early visual

cortex (V1/V2). Although some properties (such as the size of

receptive fields) vary across cortical areas, the basic structure that

determines the cortical dynamics, such as the intra- and inter-

cortical anatomical connectivity, neuronal configuration, and

responsiveness to cholinergic release of constituent neurons,

appears homologous throughout the primary and secondary visual

areas V1, V2, and V4. This homology suggests that the Q-

Figure 5. Effect of ACh in the network. (A) An ongoing state of the
network of 16 units. The instantaneous firing rates of excitatory
ensembles in 16 units are shown. Transitive dynamics among quasi-
attractors are observed for REI~1:00, where REI is the cholinergic
reduction of inhibition that reduces the strengths of inhibitory
connections as REI gEI and REI hEI with 0vREI ƒ1. These dynamics

correspond to the schematic diagram in Figures 2A and 2D. (B) When
REI~0:97, the staying time at each quasi-attractor increases. This
corresponds to Figures 2B and 2E. (C) When REI ~0:95, all the quasi-
attractors are stabilized. Therefore, transitions between memories do
not take place. This corresponds to Figures 2C and 2F. (D) Dependence
of averaged staying time STT at a quasi-attractor on REI . The state with
REI~1 is the ongoing state and, for REIv1, the strengths of inhibitory
connections are decreased by the cholinergic reduction of inhibition.
When the quasi-attractors exist, STT takes finite values. STT diverges at
REI~R�EI:0:953, and each quasi-attractor is stabilized to become an
attractor for REI vR�EI .
doi:10.1371/journal.pone.0053854.g005
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landscape may also be observed in a higher cortex such as V4 with

baseline levels of ACh. One consequence of our theory is the

phenomenon of large trial-to-trial variability during ongoing

activity, i.e., in the absence of attention and external sensory

stimuli. This variability could be considerably large, and the

fluctuations of unit activity are correlated with each other among

neurons separated by large distances (6–10 mm) [9]. This could

reflect transitions of the network state among different quasi-

attractors. Moreover, it is suggested that in the absence of

attention (due, e.g., to anesthetization), similar large trial-to-trial

variability should be observed for evoked activity under the

presence of external sensory stimuli, as reported by Arieli et al.

[10]. One study suggests that attention may reduce this variability

in V4 [72]. Moreover, in the IT cortex in which visual objects are

thought to be stored, there is a top-down pathway from the

prefrontal cortex [73,74], and dynamics similar to our model

might be observed experimentally (see also [75]).

Switching between transitive dynamics in the ongoing state and

immobile dynamics in the attentional states was also observed in a

network of neurons with active dendrites by Kurashige and

Câteau [76]. In their model, the transitive dynamics were

stochastic and the immobile dynamics were obtained by transient

global inhibition. On the other hand, in our model, the transitive

dynamics were deterministic and chaotic, the attractive dynamics

were obtained by ACh, and the dendrites were passive. To

incorporate the effects of active dendrites [76] into our model,

further theoretical and experimental research would be required.

Controversy about Cellular Effects of ACh
Although arguments about the cellular effects of ACh are

inconclusive [77] and occasionally controversial, we have

performed our simulations based on recent physiological data

concerning cortical superficial layers. Although cholinergic cellular

effects may give distinct results [77] depending on whether the

application is transient (i.e., phasic) or persistent (i.e., tonic), we

have adopted transient ACh data whenever possible. As already

described, in layers 2/3, both the PYR cells and the PVz FS INs,

which constitute the majority of neuron types in these layers, are

essentially nonresponsive to ACh release postsynaptically [77].

However, the PVz FS INs exhibit sensitive responses to ACh

release presynaptically [66,67]. We analyzed the dynamical

systems consequences of these known synaptic modulations. In

our model, the synaptic modulation caused by ACh is modeled by

the decrease in the strengths of connections from INs to PYRs, and

it decreases to approximately 95% of its original value. However,

previous in vitro studies revealed that IPSCs decrease to approx-

imately one-third to one-half the baseline level [66,67]. In the

following paragraphs, we will explain this discrepancy.

First, we show that the range of synaptic modulations that

enables our dynamics is wider than that shown in our results.

Recent experimental data report that excitatory synaptic trans-

missions are also modulated by ACh [36,78–83]. In particular, Gil

et al. found that in in vitro experiments on this subject, depression of

PYR to PYR connectivity occurs presynaptically under tonic

(bath) applications of muscarine [78]. Therefore, we analyze the

effect of the modulation of synaptic transmission between

excitatory neurons. Here, we replace the strengths of excitatory

synapses gEE and hEE as REEgEE and REEhEE with REEw0,

respectively, and we call REE as the cholinergic modulation of

excitation. By changing REE and REI simultaneously, we

numerically obtained the boundary at which quasi-attractors

change to attractors, as shown in Figure 8. Note that the ongoing

state with quasi-attractors is realized when REE~REI~1. From

Figure 8, the effect of change in the ACh level in Figure 7 is

Figure 6. The effect of top-down Glu spike volleys to the apical
distal dendrites as well as the release of ACh in cortical layer 1.
The top-down Glu spike volleys are projected only to the 9th and 10th
units for 12500ƒtƒ13500. Note that both the 9th and 10th units,
indicated by two arrows in each figure, are active only in pattern 2.
Moreover, REI decreases for t§12500 associated with the release of
ACh. (A) In the ongoing state with REI~1:00, after the injection of top-
down Glu spike volleys at t~12500, the network temporarily retrieves
pattern 2. However, the retrieved pattern in the network soon transits
to pattern 1 at around t~15000 because pattern 2 is a quasi-attractor.
(B) For REI~0:97, the trajectory also moves to pattern 2 but the staying
time increases because of the effect of ACh. (C) In the network with
REI~0:95, each quasi-attractor is stabilized to be an attractor.
Therefore, once the trajectory transits to pattern 2, it does not move
to other patterns.
doi:10.1371/journal.pone.0053854.g006
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understood as follows. At the baseline ACh level, the cholinergic

modulations are at (REE ,REI )~(1,1). When ACh is released,

(REE ,REI ) moves to (1,0:95), and then, it slowly relaxes to (1,1). As

shown in Figure 8, the quasi-attractors are stabilized to be attractors

even when the excitatory synapses are slightly depressed (REEv1),

if REI decreases sufficiently. For example, when ACh modulates

both inhibition and excitation, e.g., (1,1)?(0:98,0:93)?(1,1),
dynamics similar to those shown in Figure 7 would be observed.

This result suggests that if at least a balance of the two opposing

currents is effectively maintained, the entire scenario in the quasi-

attractor hypothesis appears to robustly hold as well. Moreover, it is

also found that our hypothesis holds when strength of inhibitory

synapses is larger than 65% of its original value. When the

modulations REE and REI are set to be smaller, the amplitude of

oscillation of rEX shown in Figure 5 becomes smaller, and transitive

dynamics disappear.

This range of synaptic modulation is still narrower than that of

physiological data (1/3 or 1/2). However, in the experimental

setting [66,67], the muscarinic receptors are activated by some

amount of muscarine via puff application (as compared with bath

application). As such, the activated receptors are spatially localized

to a relatively small range around the puff applicator. By contrast,

in our network, the strengths of all the inhibitory connections are

weakened uniformly, which may better represent diffusive bath

application of muscarine. A second factor that may separate our

results from physiological data is that the baseline and maximal

concentrations of muscarine in the in vivo cortex remain unknown.

Given these factors, direct comparison between experiments and

models remains difficult, and performing simulations with more

realistic cortical neurons remains an important goal of future

studies. In fact, in layers 2/3, it is known that multipolar bursting

neurons also exist in addition to the fast spiking INs used in our

model. These cells are reported to be related to the generation of h
oscillations [65], although their effect has not yet fully been

examined. Moreover, it is known that ACh to layer 1 depolarizes

calretinin positive (CRz) INs in layer 1 (see Figure 1) through

nicotinic receptors [84], the role of which is also still under

investigation.

Possibility of Testable Predictions by the Model
Here we present testable predictions derived from our results.

The results in this study can be summarized by the following two

statements. First, one of the roles of cortical ACh is switching

landscapes in the state (phase) space between the Q-landscape and

the A-landscape. Second, the role of attractor selection is carried

out by (at least in part) Glu spike volleys projected on layer 1. In

the experiments with ongoing activity (i.e., without Glu spike

volleys and external stimulus), large trial-to-trial variability is

observed in neural activity patterns, and such patterns have large

correlations in space and time [9–11]. It is also known that such

large variability is reduced under the influence of attention [72]. In

our terminology, this variability and its reduction might be related

to the Q-landscape of the system and its deformation into the A-

landscape, respectively. In such a view, changes of the ACh level

through manipulation of the cholinergic system [71] (i.e., by

decreasing REI in Figure 5D) and the staying time in a quasi-

attractor would have a relationship as shown in Figure 5D.

Moreover, the decrease of REI as well as REE would be caused by

presynaptic effects through muscarinic receptors [66,67]. There-

fore, this change of staying time in a quasi-attractor would also be

observed by using agonist or antagonist of the muscarinic

receptors in layers 2/3.

Figure 7. The dynamics when ACh is gradually decreased according to an exponential function. In order to simulate more
physiologically plausible situations, we evaluated the network dynamics when ACh is decreased according to an exponential function. The top-down
Glu spike volleys are injected to the 9th and 10th units for 12500ƒtƒ13500. ACh is also injected at t~12500. It is observed that pattern 2 is
successfully retrieved while ACh is effective. Therefore, our scenario would hold as well even if the injection of ACh is temporary.
doi:10.1371/journal.pone.0053854.g007
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To test the above predictions, manipulation of ACh would be

required, and it is a future problem as well as a limitation of the

present work.

Future Problems
In Figure 8, we found that our hypothesis still holds true even

when ACh also modulates excitatory synaptic transmission.

Viewed from a dynamical systems standpoint, what would be

the implications of these effects? An intuitive argument based on

attractor network theory in the classical neural network [85,86]

would be that if both excitatory and inhibitory connections in

recurrent networks are all proportionally weakened, the result is

that the global energy level reduces accordingly and the depth of

basins becomes shallower. Meanwhile, the global structure of the

landscape is expected to be qualitatively conserved. This would

mean that regardless of whether attractors or quasi-attractors are

involved, attentional ACh would decrease both REI and REE

functions to make the wall between the basins lower. In turn, this

change would make it easier for the top-down spike volley onto

layer 1 to force the network state to jump into an assigned

attractor basin. This might influence the perception of external

signals because the network appears to be more responsive to

external inputs under attention. In this regard, Hasselmo et al. [36]

argued that based on the phenomenon of the depression of PYR to

PYR connectivity together with presynaptic nicotinic facilitation of

the thalamo-cortical (TC) circuitry in layer 4 [78], attentional ACh

works to ‘‘switch between the TC and intracortical (IC)

circuitries,’’ in which high ACh levels set circuit dynamics for

attention and encoding, and low ACh levels set dynamics for

consolidation. Yu and Dayan [37] discussed a similar switching

mechanism with their theoretical model. Thus, our computational

results are consistent with these previous intriguing arguments

[36,37], although the logical construction may not be identical.

ACh has also been implicated in other functions, including the

control of learning rate during reinforcement learning [87].

Investigating the relationship between other such roles of ACh and

the dynamics exhibited by our model represents an important

question for future research. It is also an important problem to

incorporate learning process of forming attractors under the

existence of ACh.

Motivated by the experimental study by Kenet et al. [12], we

examined the situation in which there is no external visual input

through layer 4. How does the corticopetal ACh relate to the

attentional modulation of stimuli in a situation in which external

visual stimuli exist? This may be more understandable within the

context of the theory of biased competition [88–90] for object

perception in natural scenes. At any given time, a visual scene

includes a number of objects that compete with each other to be

internally represented. Both bottom-up and top-down inputs work

as biases to select some internal representations, but with distinct

contexts. Bottom-up signals via V1/V2 ? V4 ? IT continually

hit the orbit as external forces to virtual states in a Q-landscape,

together with the top-down bias of Glu spike volleys during top-

down attention. This gives ACh a chance to stabilize the landscape

to an A-landscape. Without ACh release of top-down attention,

such virtual states are unstable and not consciously perceived.

In the context of attractor dynamics [85,86], attractors are often

unstabilized and the dynamics become chaotic either by incorpo-

rating inhibitory neurons [16,21] or by introducing refractory

effects or self-recurrent inhibitory connections [17,23,24,91] to the

conventional neuron models like the analog neuron models widely

used in back-propagation neural networks [92]. In our model, the

stabilization of a quasi-attractor is realized when the inhibition is

weakened by the release of ACh to layers 2/3, which is consistent

with previous reports. It is our future problem to examine whether

the quasi-attractor hypothesis proposed in this paper can provide a

dynamical viewpoint for understanding nonlinear dynamics in

different areas of the brain under various conditions.

Methods

Definition of the model
As a model of the network in layers 2/3, we define a unit of a

network composed of NE PYRs and NI INs modeled by phase

neurons defined as

tEh
:
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Figure 8. A numerically obtained boundary where quasi-
attractors change to attractors as a function of cholinergic
modulations REE and REI. Quasi-attractors can be stabilized to
attractors even when the excitatory synapses are also affected by ACh
(REE=1). Note that the ongoing state with quasi-attractors is realized
when REE~REI~1. This result suggests that if at least a balance of the
two opposing currents is effectively maintained, the entire scenario in
the quasi-attractor hypothesis appears to hold as well.
doi:10.1371/journal.pone.0053854.g008

Deforming Attractor Landscape via Acetylcholine

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e53854



which have been used previously [52]. The connections are global,

and there are connections with postsynaptic currents of exponen-

tial forms among all neurons and diffusive connections among

inhibitory neurons. These two types of connections model

chemical synapses and electrical synapses with gap junctions,

respectively. t
(j)
k is the kth firing time of the jth neuron in the

ensemble X (X~E or I ), which is defined as the time at which h(j)
X

exceeds p. This neuron model is called the theta neuron [55], and

it is also considered as a general model of a type-I spiking neuron

model [56,57]. j
(i)
X (t) is a noise term.

The Fokker-Planck Equations
To analyze the dynamics of a unit of a network, we use the

Fokker-Planck equations, which are represented as
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for the normalized number densities of excitatory and inhibitory

neurons, in which
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in the limit of NE ,NI?? [52]. The probability flux for each

assembly is defined as
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In the limit of NX??, IX (t) in Eq. (10) follows a differential

equation written as
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where rX (t):rX (p,t) is the probability flux at hX ~p.

By integrating the Fokker-Planck equations (13) and (14) and

the differential equation (25) simultaneously, the dynamics of the

network that is governed by Eqs. (8) and (9) can be analyzed.

Connections among Units
The inter-unit connection strengths hEE

ij , hEI
ij , and hIE

ij are

defined based on the modified Hebbian rule as follows:

hEE
ij ~

hEEKij , if Kijw0,

0, otherwise ,

�
ð26Þ

hEI
ij ~

0, if Kijw0,

hEI Kij , otherwise ,

�
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(gm
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where gm
i [f0,1g are stored patterns with firing rate a~0:5, and

hEE , hEI , and hIE are positive parameters. In the conventional

associative memory model, b is set identical to a in Eq. (29);

however, we use b as a regulating parameter because our model

has some differences from the conventional one, such as the

inhibition realized by inhibitory ensembles. When Kijw0, there

are two types of inter-unit connections, i.e., E?E and E?I , and

such connections tend to induce inter-unit synchronization. On

the other hand, when Kijv0, the connections I?E and E?I

exist, and such connections tend to break the inter-unit

synchronization.

Three additional parameters of regulation, gsub
EE , gsub

EI , and gsub
IE ,

are respectively defined as gsub
EE~chEE , gsub

EI ~chEI , and gsub
IE ~chIE

using a new parameter c that is common to all units, and they are

introduced to our model in order to keep the chaotic dynamics

observed in a one-unit system with gEE , gIE , and gEI (see Figure 4).

Without them, the chaotic dynamics are broken, and periodic

dynamics or asynchronous firing would be observed. The roles of

gsub
EE , gsub

EI , and gsub
IE are understood as follows. Let us consider a

situation in which only a single pattern is stored in the network,

and we assume that Ma units that store the binary digit ‘‘1’’ in this

pattern synchronize with each other. That is, they satisfy rEi~rEj

and rIi~rIj , where g1
i ~g1

j ~1. The strengths of inputs injected to
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such excitatory and inhibitory ensembles are calculated to be

gEEz(1{b)hEE and gIEz(1{b)hIE , respectively, by Eqs. (26),

(28), and (29). Thus, by subtracting (1{b)hEE and (1{b)hIE from

gEE and gIE , respectively, the dynamics of a one-unit system with

gEE and gIE would also exist in Ma units in this network, and they

tend to synchronize, i.e., rEi~rEj and rIi~rIj , where g1
i ~g1

j ~1

[51]. Similarly, the strength of the input injected to the excitatory

ensembles that store ‘‘00 from the inhibitory ensembles is

{(gEIzbhEI ). Thus, we extract bhEI from gEI . With such

configurations, the chaotic dynamics observed in a one-unit system

with gEE , gIE , and gEI would exist in the synchronized network.

The above discussion holds when the number of stored patterns is

one. However, in the present network of M units, two or more

patterns are actually stored in the network. Therefore, all Ma units

that store the binary digit ‘‘1’’ do not perfectly synchronize with

each other. Thus, b and 1{b are replaced by an arbitrary

constant c, and chEE , chIE , and chEI with cv1 are subtracted

from the connection strengths gEE , gIE , and gEI , respectively.

The values of the parameters used in one unit are set close to

those used in Figure 4, i.e., D~0:0025, sE~{0:019, sI~{0:04,

gEE~6, gIE~gEI~2:8, gII~1, ggap~0:1, tE~1, tI~0:5, and

kE~kI~1. The values of D, sE , and sI differ from the original

ones in order to keep the chaotic dynamics in one unit unbroken.

The values of inter-unit parameters are hEE~1:75, hEI~0:1,

hIE~1:55, c~0:75, and b~0:55.

Calculations of Overlap and Staying Time at a Quasi-
attractor

Here, we provide a method for calculating the overlap mm

between a set of instantaneous firing rates rEi of excitatory

ensembles and the stored pattern gm
i with 1ƒiƒM. Because rEi is

an oscillating quantity, the overlap of the usual definition is also

oscillating even when the correct pattern is retrieved. To obtain an

overlap that maintains an almost constant value when the correct

pattern is retrieved, we define a local peak-value function PEi(t).
First, we define the peak time t� that gives a peak of rEi(t), and we

define the three peak times t�1, t�2, and t�3 that are close to the

current time t, satisfying t�3vt�2vt�1vt. Then, we define PEi(t) as

PEi(t)~ max
k~1,2,3

rEi(t
�
k), ð30Þ

to keep the peak value for some time. Further, we transform

PEi(t) to a function OEi(t) with a range of [0,1] as follows:

OEi~

1, if PEi(t)wh2,

(PEi(t){h1)=(h2{h1), if h1ƒPEi(t)ƒh2,

0, if PEi(t)vh1:

8><
>: ð31Þ

By using OEi(t), the overlap mm between the state of units and the

stored pattern gm
i is defined as

mm~
1

Ma(1{a)

XM
i~1

(gm
i {a)(OEi{a), ð32Þ

~
1

Ma(1{a)

XM
i~1

(gm
i {a)OEi: ð33Þ

When the system stays near a quasi-attractor, the overlap of the

corresponding pattern becomes close to 1. The staying time of a

pattern (a quasi-attractor) is defined as the time duration during

which the relationship mi
w0:6 is satisfied.
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structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A

104: 347–352.

7. Sakata S, Harris KD (2009) Laminar structure of spontaneous and sensory-

evoked population activity in auditory cortex. Neuron 64: 404–418.

8. Harris KD, Thiele A (2011) Cortical state and attention. Nat Rev Neurosci 12:

509–523.

9. Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal

patterns of ongoing activity revealed by real-time optical imaging coupled with

single-unit recording in the cat visual cortex. J Neurophysiol 73: 2072–2093.

10. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity:

Explanation of the large variability in evoked cortical responses. Science 273:

1868–1871.

11. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity

of single cortical neurons and the underlying functional architecture. Science

286: 1943–46.

12. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously

emerging cortical representations of visual attributes. Nature 425: 954–956.

13. Ringach DL (2003) States of mind. Nature 425: 912–913.

14. Treisman AM, Gelade G (1980) A feature-integration theory of attention.

Cognitive Psychol 12: 97–136.

15. Milnor J (1985) On the concept of attractor. Commun Math Phys 99: 177–195.

16. Tsuda I, Koerner E, Shimizu H (1987) Memory dynamics in asynchronous

neural networks. Prog Theor Phys 78: 51–71.

17. Aihara K (1990) Chaotic neural networks. In: Kawakami H editor. Advanced

Series in Dynamical Systems 8, World Scientific. 143–161.

18. Inoue M, Nagayoshi A (1991) A chaos neuro-computer. Phys Lett A 158: 373–
376.

19. Tsuda I (1991) Chaotic itinerancy as a dynamical basis of Hermeneutics of brain
and mind. World Futures 32: 167–185.

20. Nara S, Davis P (1992) Chaotic wandering and search in a cycle-memory neural

network. Prog Theor Phys 88: 845–855.

21. Tsuda I (1992) Dynamic link of memory – Chaotic memory map in

nonequilibrium neural networks. Neural Networks 5: 313–326.

22. Nara S, Davis P, Kawachi M, Totsuji H (1995) Chaotic memory dynamics in a

recurrent neural networks with cyclic memories embedded by pseudo-inverse
method. Int J Bifurcat Chaos 5: 1205–1212.

23. Adachi M, Aihara K (1997) Associative dynamics in a chaotic neural network.

Neural Networks 10: 83–98.

24. Kuroiwa J, Masutani N, Nara S, Aihara K (2004) Sensitive response of a chaotic

wandering state to memory fragment inputs in a chaotic neural network model.
Int J Bifurcat and Chaos 14: 1413–1421.

25. Uchiyama S, Fujisaka H (2004) Chaotic itinerancy in the oscillator neural
network without Lyapunov functions. Chaos 14: 699–706.

26. Fujii H, Aihara K, Tsuda I (2008) Corticopetal acetylcholine: Possible scenarios
on the role for dynamic organization of quasi-attractors. Lect Notes Comput Sc

4984: 170–178.

27. Fujii H, Aihara K, Tsuda I (2008) Corticopetal acetylcholine: A role in

attentional state transitions and the genesis of quasi-attractors during perception.

Deforming Attractor Landscape via Acetylcholine

PLOS ONE | www.plosone.org 13 January 2013 | Volume 8 | Issue 1 | e53854



In: Wang R, Gu F, Shen E. editors. Advances in Cognitive Neurodynamics,

Springer. 249–253.

28. Fujii H, Aihara K, Tsuda I (2011) Top-down mechanism of perception: A
scenario on the role for layer 1 and 2/3 projections viewed from dynamical

systems theory. In: Wang R, Gu F. editors. Advances in Cognitive

Neurodynamics (II), Springer. 79–84.

29. Thompson KG, Biscoe KL, Sato TR (2005) Neuronal basis of covert spatial
attention in the frontal eye field. J Neurosci 25: 9479–9487.

30. Golmayo L, Nunez A, Zaborsky L (2003) Electrophysiological evidence for the

existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulat-
ing sensory responses in visual and somatosensory rat cortical areas.

Neuroscience 119: 597–609.

31. Wagner AD, Shannon BJ, Kahn I, Buckner RL (2005) Parietal lobe
contributions to episodic memory retrieval. Trends Cogn Sci 9: 445–453.

32. Cabeza R, Ciaramelli E, Olson I, Moscovitch M (2008) The parietal cortex and

episodic memory: An attentional account. Nat Rev Neurosci 9: 613–625.

33. Ciaramelli E, Grady CL, Moscovitch M (2008) Top-down and bottom-up

attention to memory: A hypothesis (AtoM) on the role of the posterior parietal
cortex in memory retrieval. Neuropsychologia 46: 1828–1851.

34. Perry EK, Perry RH (1995) Acetylcholine and hallucinations: Disease-related

compared to drug-induced alterations in human consciousness. Brain Cognition
28: 240–258.

35. Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva AS, et al.

(2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral
cortex: Synaptic pattern and age-related atrophy. Neuroscience 105: 277–285.

36. Hasselmo ME, McGaughy J (2004) High acetylcholine sets circuit dynamics for

attention and encoding; Low acetylcholine sets dynamics for consolidation.

Brain Res 145: 207–231.

37. Yu AJ, Dayan P (2002) Acetylcholine in cortical inference. Neural Networks 15:
719–730.

38. Hess G, Donoghue JP (1999) Facilitation of long-term potentiation in layer II/

III horizontal connections of rat motor cortex following layer I stimulation:
Route of effect and cholinergic contributions. Exp Brain Res 127: 279–290.

39. Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace

for cortical receptive field plasticity. Nature 450: 425–429.

40. Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine
release controls cue detection on multiple timescales. Neuron 56: 141–154.

41. Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical

inhibitory interneurons and pyramidal neurons. Nat Neurosci 3: 701–707.

42. Matsumoto G, Aihara K, Ichikawa M, Tasaki A (1984) Periodic and
nonperiodic responses of membrane potentials in squid giant axons during

sinusoidal current stimulation. J Theor Neurobiol 3: 1–14.

43. Aihara K, Numajiri T, Matsumoto G, Kotani M (1986) Structures of attractors

in periodically forced neural oscillators. Phys Lett A 116: 313–317.

44. Hayashi H, Ishizuka S, Ohta M, Hirakawa K (1982) Chaotic behavior in the
onchidium giant neuron under sinusoidal stimulation. Phys Lett 88A: 435–438.

45. Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic responses

of a periodically forced Hodgkin-Huxley oscillator. J Theor Biol 109: 249–269.

46. Feudel U, Neiman A, Pei X, Wojtenek W, Braun H, et al. (2000) Homoclinic
bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos

10: 231–239.

47. Varona P, Torres JJ, Huerta R, Abarbanel HDI, Rabinovich MI (2001)
Regularization mechanisms of spiking-bursting neurons. Neural Netw 14: 865–

875.

48. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with

balanced excitatory and inhibitory activity. Science 274: 1724–1726.

49. Tsuda I, Fujii H, Tadokoro S, Yasuoka T, Yamaguti Y (2004) Chaotic
itinerancy as a mechanism of irregular changes between synchronization and

desynchronization in a neural network. J Integr Neurosci 17: 159–182.

50. Kanamaru T, Sekine M (2005) Synchronized firings in the networks of class 1
excitable neurons with excitatory and inhibitory connections and their

dependences on the forms of interactions. Neural Comput 17: 1315–1338.

51. Kanamaru T (2006) Blowout bifurcation and on-off intermittency in pulse
neural networks with multiple modules. Int J Bifurcat Chaos 16: 3309–3321.

52. Kanamaru T, Aihara K (2008) Stochastic synchrony of chaos in a pulse coupled

neural network with both chemical and electrical synapses among inhibitory

neurons. Neural Comput 20: 1951–1972.

53. Chen L, Aihara K (1995) Chaotic simulated annealing by a neural network
model with transient chaos. Neural Netw 8: 915–930.

54. Tokuda I, Aihara K, Nagashima T (1997) Global bifurcation structure of chaotic

neural networks and its application to traveling salesman problems. Neural Netw
10: 1673–1690.

55. Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony.

Neural Comput 8: 979–1001.

56. Izhikevich EM (1999) Class 1 neural excitability, conventional synapses, weakly
connected networks, and mathematical foundations of pulse-coupled models.

IEEE T Neural Networ 10: 499–507.

57. Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurcat

Chaos 10: 1171–1266.

58. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:
701–722.

59. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Berlin:

Springer.

60. Kanamaru T (2006) Analysis of synchronization between two modules of pulse

neural networks with excitatory and inhibitory connections. Neural Comput 18:
1111–1131.

61. Kanamaru T (2007) Chaotic pattern transitions in pulse neural networks. Neural

Networks 20: 781–790.
62. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000)

Inhibition-based rhythms: Experimental and mathematical observations on
network dynamics. Int J Psychophysiol 38: 315–336.

63. Kanamaru T, Sekine M (2003) Analysis of globally connected active rotators

with excitatory and inhibitory connections using the Fokker-Planck equation.
Phys Rev E 67: 031916.

64. Kanamaru T, Sekine M (2004) An analysis of globally connected active rotators
with excitatory and inhibitory connections having different time constants using

the nonlinear Fokker-Planck equations. IEEE Trans Neural Netw 15: 1009–1017.
65. Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, et al. (2003) A novel

network of multipolar bursting interneurons generates theta frequency

oscillations in neocortex. Neuron 38: 805–817.
66. Salgado H, Bellay T, Nichols JA, Bose M, Martinolich L, et al. (2007)

Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel
modulation through activation of PI2K/Ca2+-independent and PLC/Ca2+-

dependent PKC. J Neurophysiol 98: 952–965.

67. Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical
integration onto neocortical excitatory cells are regulated by neuromodulators.

Neuron 58: 911–924.
68. Mumford D (1992) On the computational architecture of the neocortex II The

role of cortico-cortical loops. Biol Cybern 66: 241–251.
69. Rodriguez A, Whitson J, Granger R (2004) Derivation and analysis of basic

computational operations of thalamocortical circuits. J Cogn Neurosci 16: 856–877.

70. Wang XJ, Tegnér J, Constantinidis C, Goldman-Rakic PS (2004) Division of
labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of

working memory. Proc Natl Acad Sci USA 101: 1368–1373.
71. Metherate R, Cox CL, Ashe JH (1992) Cellular bases of neocortical activation:

Modulation of neural oscillations by the nucleus basalis and endogenous

acetylcholine. J Neurosci 12: 4701–4711.
72. Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates

intrinsic activity fluctuations in macaque area V4. Neuron 63: 879–888.
73. Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections

betweenprefrontal and anterior temporal cortices in the Rhesus monkey is
related to cortical structure and function. Cereb Cortex 10: 851–865.

74. Barbas H (1995) Anatomic basis of cognitive-emotional interactions in the

primate prefrontal cortex. Neurosci Biobehav Rev 19: 499–510.
75. Daelli V, Treves A (2010) Neural attractor dynamics in object recognition. Exp

Brain Res 203: 241–248
76. Kurashige H, Câteau H (2011) Dendritic slow dynamics enables localized

cortical activity to switch between mobile and inmobile modes with noisy

background input. PLoS One 6: e24007.
77. Gulledge AT, Park SB, Kawaguchi Y, Stuart GJ (2007) Heterogeneity of phasic

cholinergic signaling in neocortical neurons. J Neurophysiol 97: 2215–2229.
78. Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical

synapses by activity and neuromodulators. Neuron 19: 679–686.
79. Kuczewski N, Aztiria E, Gautam D, Wess J, Domenici L (2005) Acetylcholine

modulates cortical synaptic transmission via different muscarinic receptors, as

studied with receptor knockout mice. J Physiol 566: 907–919.
80. Kimura F, Fukuda M, Tsumoto T (1999) Acetylcholine suppresses the spread of

excitation in the visual cortex revealed by optical recording: Possible differential
effect depending on the source of input. Eur J Neurosci 11: 3597–3609.

81. Hsieh CY, Cruikshank SJ, Metherate R (2000) Differential modulation of

auditory thalamocortical and intracortical synaptic transmission by cholinergic
agonist. Brain Research 880: 51–64.

82. Buño W, Cabezas C, Fernández de Sevilla D (2006) Presynaptic muscarinic
control of glutamatergic synaptic transmission. J Mol Neurosci 30: 161–163.

83. Levy RB, Reyes AD, Aoki C (2006) Nicotinic and muscarinic reduction of

unitary excitatory postsynaptic potentials in sensory cortex: Dual intracellular
recording in vitro. J Neurophysiol 95: 2155–2166.

84. Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, et al. (2002) Two
types of nicotinic receptors mediate an excitation of neocortical layer I

interneurons. J Neurophysiol 88: 1318–1327.
85. Hopfield JJ (1982) Neural networks and physical systems with emergent

collective computational properties. Proc Nat Acad Sci U S A 79: 2554–2558.

86. Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those of two-sate neurons. Proc Nat Acad Sci U S A 81: 3088–

3092.
87. Doya K (2002) Metalearning and neuromodulation. Neural Netw 15: 495–506.

88. Kastner S, Ungerleider LG (2001) The neural basis of biased competition in

human visual cortex. Neuropsychologia 39: 1263–1276.
89. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention.

Annu Rev Neurosci 18: 193–222.
90. Vecera SP (2000) Toward a biased competition account of object-based

segregation and attention. Brain and Mind 1: 353–384.
91. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 6/

7: 333–340.

92. Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel
Distributed Processing: Explorations in the Microstructure of Cognition.

Volume 1: Foundations. Cambridge, MA: MIT Press.

Deforming Attractor Landscape via Acetylcholine

PLOS ONE | www.plosone.org 14 January 2013 | Volume 8 | Issue 1 | e53854


