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Abstract
Understanding the relationship between the adiabatic free energy profiles of chemical reactions
and the underlining diabatic states is central to the description of chemical reactivity. The diabatic
states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a
major role in physical organic chemistry and related fields. However, the theoretical justification
for some of the implicit LFER assumptions has not been fully established by quantum mechanical
studies. This study follows our earlier works1,2 and uses the ab initio frozen density functional
theory (FDFT) method3 to evaluate both the diabatic and adiabatic free energy surfaces and to
determine the corresponding off-diagonal coupling matrix elements for a series of SN2 reactions.
It is found that the off-diagonal coupling matrix elements are almost the same regardless of the
nucleophile and the leaving group but change upon changing the central group. Furthermore, it is
also found that the off diagonal elements are basically the same in gas phase and in solution, even
when the solvent is explicitly included in the ab initio calculations. Furthermore, our study
establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a
first principle support to the origin of LFER. These findings further support the basic
approximation of the EVB treatment.
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I. Introduction
Linear free energy relationships (LFERs) that correlate rate constants with equilibrium
constants represent on some level a unifying theory of organic reactivity. Such rate-
equilibrium relationships were formulated quite early (e.g., see 4–6) and have found major
use in analyzing various chemical reactions (e.g., 7–9). Although these concepts originate
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from studies in organic chemistry, they are now also widely used in applications of
important empirical descriptors in biological systems10.

Arguably the most rigorous derivation of LFER comes from the generalization of Marcus’s
theory11,12 of electron transfer (ET) treatment to adiabatic cases10. This was formulated by
the modified Marcus-relationship10,13–17 (see also section II). The validity of this
relationship has been examined empirically in several works (e.g., 15,18) and used
extensively in studies of chemical reactions in solutions and proteins using the empirical
valence bond approach (EVB)19 in its fully microscopic version15 to obtain the adiabatic
free-energy functionals. The traditional use of bond order-bond length relationship7,20 to
describe adiabatic reactions also provided interesting insight, but have been less
straightforward in terms of its relationship to LFER and other physical features.

The realization of the fact that the LFER reflects the relationship between diabatic and
adiabatic states led to several attempts to capture these relationships by ab initio quantum
mechanical treatments (e.g., 1,21–23). There were also attempts to explore LFER in
condensed phase by ab initio studies without relating it to the diabatic states24–26. Our own
main direction in correlating diabatic and adiabatic states on the ab initio level has been
based on constructing the diabatic states by using the frozen DFT approach (FDFT)3 or the
constraint DFT (CDFT)1, and then using the difference between the FDFT and the full
adiabatic DFT to extract the off diagonal coupling terms (see section II).

A CDFT approach that reflects some of the FDFT ideas has also been developed to obtain
restricted charge-localized diabatic states27,28. This method introduces additional constraints
on the solution of the Kohn-Sham equations by also decomposing the density into
subsystems and restraining the total charge of each subsystem. Using this approach can lead
to results that are sensitive to the choice of the external potential (i.e. definition of the
charge) in situations where the distance between the nuclei of the subgroups is small (on the
order of 1–2 covalent bond lengths) 29,30. This method was successfully applied to study
electron transfer reactions31–33.

The issue of the nature of the off-diagonal element has been a central point in studies of
diabatic reactions in ET reactions34 and the quantum mechanical evaluation of such terms
have a long history (see e.g. 35–37), where different approaches have been used including
direct calculations (e.g., 35,38,39) extracting the coupling from the behavior of the adiabatic
states40 and applying the Mulliken-Hush method using the dipole moment of the system,
and methods based on ab initio valence bond theory41, or directly calculating these elements
from the diabatic states obtained by CDFT28,32. Note, however, that the main interest in the
present work is in the dependence of Hrp on the environment and in its role in adiabatic
LFER and not in the traditional issues addressed in the ET literature.

Here we focused on the nature of the Hrp for adiabatic chemical reactions with different
substituent and different environments. This is done in the framework of the generalized
Marcus expression (see 10,14 and section II). We concentrate on the SN2 class of
reactions42, applying the FDFT formulation as was suggested first in Ref. 3 and
implemented in Refs. 1,2, where we provided evidences that Hrp-s are phase independent
using first principle-based calculations without any additional empirical parameters. Here,
we extend the above studies and show that Hrp is very robust and does not change
significantly even when some solvent molecules are included explicitly in the quantum
region and even to some respect with the nature of the substituent. This finding further
supports the basic assumption behind the Empirical Valence Bond (EVB) method10,43 that
these off-diagonal matrix elements are phase-independent. We also use various nucleophiles
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in SN2 reactions and show that the corresponding Hrp are approximately considered
constant.

Our present results and those obtained in our previous studies justify the use of the same off-
diagonal matrix elements obtained for a given reaction in solution to a whole class of
reactions with the same LFER in gas phase, in solution or in protein media. They also
provide a fundamental justification to the existence of LFER in related chemical reactions.

II. Theory and Computational Methods
Our strategy of describing adiabatic reaction in condensed phases is based on the EVB
approach and the corresponding modified Marcus formulation. In this approach, which is
described here for simplicity for the two-state case, we represent the system by two diabatic
states that correspond to the reactant and product states. For example, a generic reaction of
the form:

(1)

can be described by the two diabatic wave functions (representing the reactant and product
states, respectively):

(2)

The wave function for the ground state of the entire system can also be written in the
adiabatic representation as

(3)

Although there are different ways of obtaining the diabatic states,44–46 the FDFT method
provides a particularly useful way of producing both the diabatic states and the adiabatic
state. Since the details on the FDFT method can be found elsewhere, we will provide below
only a brief description.

The total energy of an N-electron system is defined within the Kohn-Sham formulation as
follows:

(4)

where Vext(r) is the external potential, Exc[ρ(r)] is a density functional of the exchange-
correlation energy and Ts[ρ(r)] is the Kohn-Sham kinetic energy expressed in terms of the
Kohn-Sham orbitals:

(5)

(6)
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The FDFT/CDFT embedding approach3,21,47 divides the system into subsystems, and
applies Kohn-Sham formulation to each subsystem separately, taking into account the
interaction with the other subsystems. For instance, if we divide the whole system into two
subsystems with NI and NI′ electrons, respectively, then the total energy of the system is
defined as follows:

(7)

(8)

(9)

(10)

(11)

where Ts[ρ] is defined as the orbital-independent kinetic energy functional of the electron
density of the system. Fixing the electron density of region I′ and minimizing the total
energy with respect to the orbitals of region I leads to the following one-electron embedding
equation3:

(12)

where the effective potential Veff, I (r) is defined as follows:

(13)

Here,  is approximated as described in Refs. 3,48, and the Kohn-Sham

potential,  , is given by the following:

(14)

Once ρI(r) is known, a counterpart equation for region I′ could be derived. These two
coupled equations can be solved iteratively in a freeze-and-thaw procedure until
convergence is reached47. In case a part of the system is described classically we use a
QM(FDFT)/MM formulation where the effect of the MM part is incorporated in the FDFT
Hamiltonian as described in Ref. 49.

At this point, it is useful to mention two other approaches related to FDFT/CDFT, which
have been aimed, however, at the description of a system consisting of subsystems, namely
the subsystem formulation of DFT (SDFT)50,51. These approaches provide an alternative to
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the conventional supermolecular Kohn-Sham framework. However, these approaches target
the exact ground-state electronic density of the total collection of subsystems, in contrast to
only targeting the density of subsystem A in a way that minimizes the Hohenberg Kohn
energy functional of the total system using a fixed form of the environment density in the
presence of constraints (see discussion in 52). Here the main conceptual difference is that
the FDFT introduced the key idea of consistent embedding (in analogy to QM/MM), thus
allowing one to focus on the system of interest while representing the environment quantum
mechanically. This type of idea has not emerged from the other alternative approaches.

In order to use the FDFT approach to describe the diabatic states1 of Eq. (2), we divide the
total density in the reactant and product states to (ρA and ρBC−) and (ρAB and ρC),
respectively (see Fig. 1), and use

(15)

where EFDFT is defined in Eq. 7. In each case, we treat both ρI and ρI′ as being embedded in
the rest of the system using a QM/MM procedure. In the present treatment, we used the
constrained DFT (CDFT) approach47,49 with the freeze-and-thaw procedure. The same QM/
MM approach is used for the adiabatic state, where we describe the whole reacting system
by a regular DFT approach and embed this system in the classical MM surroundings. The
energy of the adiabatic system is designated here as Eg.

In formulating the form of the adiabatic energy we are not constrained by any relationship
between the diabatic densities of the reactant and product states, because these are arbitrary
mathematical definitions and the only “real” measurable quantity here is the adiabatic
electron density or adiabatic energy and the εr and εp are used as a tool for the free energy
mapping (see below). As the adiabatic energy is known, we should focus on the most stable
selection of the diabatic states and it is thus beneficial to consider them as formally
orthogonal valence bond states, avoiding the need to introduce the complex overlap effect.
The FDFT approximates such diabatic states by defining two different separations of the
electrons: one partitioning for the reactant diabatic state, and a distinct partitioning of the
product diabatic states. These differing separations correspond to Hamiltonians of the
subsystems with different number of electrons that formally produce orthogonal diabatic
states due to the changing number of electrons involved in the subsystems. Thus (see also
below) we can define in a formally rigorous way a connection between the two
representations by requiring that our two-state diabatic energies will satisfy the effective
secular equation:

(16)

from which we have:

(17)

We use our FDFT to evaluate Hrp, but not to obtain a correct overlap or coupling elements,
rather to address the question whether for reasonably defined εr and εp we would get a
constant Hrp through Eq. (17) with the correct adiabatic surface. One may still ask whether
the ideal diabatic states that correspond to the FDFT are actually orthogonal (as implied by
the operational definition of Eq. (17)) but, first our approach guarantees some approximate
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orthogonality, and second it would not change our conclusion, as the key issue is to prove
that for our chosen diabatic states we obtain constant Hrp through Eq. (17). For those who
are interested in looking for a more mathematical proof we note that recent studies also
showed that the VB overlap integral53 is rather constant at different regions of the surface.
However, our approach is to use the Hrp defined by Eq. (17) and evaluate whether this
arbitrarily defined Hrp is constant or not. We also like to clarify that we (and others) cannot
have an exact mathematical proof for the postulate that the off diagonal element is relatively
constant (regardless of the representation), but rather accumulation of numerical
verifications.

Now our task is to evaluate the free energy that corresponds to the surface Eg. This is done
by the EVB mapping procedure using

(18)

where λm is a mapping parameter, which is gradually changed according to a standard FEP
approach. The ground state free energy surface is then obtained using the umbrella sampling
expression54,55

(19)

where β = 1/kbT (kb is the Boltzmann constant and T is the absolute temperature) and x = εr
− εp = Hrr − Hpp, the reaction coordinate.

This specialized treatment of the microscopic Marcus parabolas and the energy gap
coordinate has been introduced originally by Warshel54 for generating the microscopic
equivalent of the Marcus parabolas (see also Refs. 54,56,57), and has since been used
extensively by many other workers (e.g., 58–61, 31–33,62,63). However, the extension to
the adiabatic case has been somewhat less appreciated. In many cases the diabatic
functionals follow the harmonic approximation, which is what has been assumed in Marcus
macroscopic derivation of the ET theory and what has been established to be an excellent
approximation in our microscopic simulations14,64,65, and in many subsequent simulations.

For adiabatic chemical reactions Hrp is usually large and its effect on the adiabatic surface
cannot be neglected as in ET. In this case we must use the adiabatic free energy barrier to
determine the reaction rates, which is given from Eq. (16) (in the two state case) as:

(20)

This relationship can be extended along a generic reaction coordinate, x, (e.g. using the
EVB/umbrella sampling energy mapping10 with the choice of x = εr − εp) to obtain a
rigorous adiabatic free energy profile, Δḡ(x) (which corresponds to Eg), using the reactant
(Δgr(x)) and product (Δgp(x)) free energy functions that correspond to the εr and εp
surfaces:

(21)
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We can now exploit the fact that the Δgr(x) and Δgp(x) curves can be approximated by
parabolas of equal curvature (an approximate relationship, which was found to be valid by
many microscopic simulations55,66), we can express this approximation by:

(22)

where λ is the so-called “reorganization free energy”, ΔG0 is the reaction free energy, 

and  are the minima of the reactant and product parabolas such that the origin for x is

chosen at . From Eqs. (21) and (22), one obtains the free energy at the crossings of the
parabolas, x‡ the following:

(23)

Similarly, at the reactant state, where  approaches zero as the diabatic state equals to
the adiabatic state, the free energy can be approximated as:

(24)

This gives the Hwang-Åqvist-Warshel (HAW) equation, which is given in the general case
by:

(25)

where ΔG‡ is the activation free energy. The validity of Eq. (25) has been established
through repeated quantitative EVB studies of reactions in solution and in proteins (such as
those of Refs. 55,67). Thus, these equations can be seen as a quantitative correlation
between ΔG‡ and ΔG0 .

The nature of this relationship is illustrated in Fig. 2, where we show how the activation
barrier changes with the reaction free energy. As is apparent from the figure we should
expect a very clear relationship between ΔG‡ and ΔG0. In fact by examining Eq. (25) we
obtain a linear relationship between ΔΔG‡ and ΔΔG0 if the reorganization energy and the
off-diagonal terms are unchanged. The resulting relationship (which is linear for the range
where ΔΔG0 is much smaller than λ) is simply obtained by differentiating the ΔG‡ of Eq.
(25) with respect to ΔG0 can be expressed by:

(26)

where the contribution from the last term of Eq. (25) is neglected. Here, the linear
correlation coefficient depends on the magnitudes of ΔG0 and λ, and it is close to ½ when λ
is much larger than ΔG0. This linear free energy relationship (LFER) or free energy
relationship (FER) as well as its performance in actual studies of chemical and biochemical
problems has been discussed in detail elsewhere10,15,18,55,68,69. It is clear from the HAW
relationship that it is essential to take into account the effect of the coupling Hrp in LFER
studies that involve actual chemical (and not ET) reactions. Here we aimed at obtaining a
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numerical verification of the assumption that λ and Hrp are approximately constants for
reactions that can be classified by a single LFER.

We must emphasize at this point that for adiabatic reactions the effect of Hrp is frequently
significant, and neglecting it leads to an incorrect estimate of the relevant free energies. This
is illustrated in the systematic analysis of hydride transfer reactions by Kong and Warshel18

and in studies of proton transfer reaction (e.g., 70). The activation free energy can then be
converted to the corresponding rate constant using transition state theory (TST) (see e.g.
Ref. 10).

It might also be useful to expand here on the energy gap coordinate. This coordinate
introduced by one of us in 198254 provided probably the most unique way of capturing the
microscopic nature of Marcus macroscopic idea. It is based on looking for the probability of
surface crossing at the hyperspace where x ≡ εr − εp =0 (see 56) and on the probability of
having different values of x. This coordinate appears to capture in a remarkable way the
effect of the solvent polarization and to demonstrate that the solvent follows the linear
response approximation trend and this leads to the apparent quadratic feature of the diabatic
states. The power of using the energy gap coordinate has been widely recognized and used
by many research groups.

Here, our FDFT calculations were done with a modified version of the deMon program
package71. The Becke88 exchange potential, Perdew86 correlation potential, and the
gradient-dependent approximation of Ref. 48 for the nonadditive kinetic energy functional
of Eq. 11 were used in all the calculations with standard 6–31+G(d) basis set. The QM/MM
implementation was done by using a script to interface between the modified deMon and the
MOLARIS package72. The simulation systems for the solvated TS calculations were set up
by immersing the solute in a 18 Å water sphere, centered on the geometric center of the
solute molecules.

We started our calculations by generating gas phase geometries using the Gaussian0373

package with B3LYP74 DFT method and 6–31+G(d) basis set. Subsequently we performed
FDFT and full FDT calculations, using the obtained geometries with the MOLARIS and
deMon packages. The TS geometries were obtained by geometry optimization to a transition
state. The corresponding single-imaginary-frequency motions were visually inspected. The
geometries along the full reaction profiles were obtained by constrained geometry
optimizations using Gaussian03. We used the breaking (R1 in Fig. 3) or the forming (R2 in
Fig. 3) bond distances to constrain the geometries. In a series of geometry optimizations we
used a distance constraint on R1, changing it from 1.75 Å to 3.5 Å in 0.05 Å increments, to
obtain 35 geometries along the reaction profile. Similarly, we also obtained constraint
minimized geometries using R2. In addition to constraining the bond distance, an angle
constraint corresponding to the linear attack at the transition state was also applied in
specific cases to ensure the stability of the molecular species of interest. Both sets of
geometries were then used to calculate the FDFT and DFT energies with the deMon and
MOLARIS programs in the gas phase. That is, we generated at each region of the reaction
coordinate a grid of the one dimensional space defined by the central C – attacking Cl or the
central C – leaving group distances (minimizing the energy with respect to all other
coordinates) and then sorting form the generated diabatic energies the configurations that
correspond to different values of x. The scanning for both the bond breaking and bond
forming distances was set up by starting with a distance constraint of 1.7 Å, and after
obtaining the structure with constrained optimized geometry increasing the constraint for
each consecutive geometry optimization by 0.05 Å resulting in a total of 35 structures. Out
of the 70 structures in total that were obtained only the successfully optimized structures
were used for the FDFT calculations.
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We then obtained solution structures at the solute transition state by running 0.5 ns
molecular dynamics (MD) simulations with fixed solute geometry, where snapshots at 0.1 ns
interval were collected (see results in SI). The fluorine van der Waals parameters in the MD
simulations were set to the standard values of the chlorine to avoid extra parameterization
effort (such an effort was not needed as it would not change our conclusions).

The FDFT and DFT energies were also obtained independently for the gas phase reaction
profiles (see results in SI) using the ADF program75. We used the LDA exchange potential
for the diabatic and adiabatic DFT calculations with DZ basis set76. The nonadditive kinetic
exchange potential for the diabatic calculations was described by the Thomas-Fermi
model50,77, and the freeze-and-thaw implementation47 was used to iteratively relax the
densities of the two regions.

III. Results and Discussion
III.1 Calculated Trend

The present work considered as a benchmark SN2 reactions with various nucleophiles, X:

(27)

Defining diabatic reactant (r) and product (p) states, respectively, as:

(28)

The same system have been considered in our previous study1 (see also Ref. 2) that focused
on the effect of the environment. That work examined the exchange reaction where X is Cl−

and obtained the results presented in Fig. 4 using the FEP/US procedure of Eq. 19. These
results established that Hrp is almost solvent independent.

Here we turn our attention to effects, which are associated with tighter coupling than that of
the solvent environment. That is, we focus here on the effect of the substituent and a nearby
solvent molecule. The corresponding sets of calculations were done in a less rigorous way in
terms of free energy dependence emphasizing just first order QM effects. These calculations
used constrained-minimized geometries to calculate the full Marcus parabolas along the
energy gap reaction coordinate together with the ground-state adiabatic DFT energies. We
constrained the bond breaking or bond forming atomic distances and minimized the
geometries of the reaction profiles for the reactions Cl− + CH3X → ClCH3 + X−, with X
groups of Cl−, F−, CH3COO−, CH2ClCOO−, CHCl2COO−, CCl3COO−, HCOO−, OCl−, and
the neutral NH3. The constrained and optimized structures of the SN2 reaction systems, at
various leaving group or attacking group distances, were then used to obtain both the
diabatic and the adiabatic energies, which were plotted along the energy-gap coordinate (e.g.
Fig. 5). The energy gap was calculated as the energy difference between the two diabatic
states for each structure, where the FDFT calculations provided the εr and εp diabatic
energies, from which the x ≡ εr − εp value of the reaction coordinate was calculated. The
ground state adiabatic energies (Eg) of the same structures were obtained by standard DFT
method using the same level of theory as for the FDFT calculations. From the above three ab
initio calculations we determined the Hrp values as defined in Eq (17).

The adiabatic barrier of the Cl− self-exchange reaction is known to be about 9 kcal/mol
underestimated with the use of the BP method in the gas phase78. Taking this into
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consideration, our free energy estimates from previous work1 agreed well with the
experimental result in solution79,80. In the current calculations we have evaluated the gas
phase energy profiles (Fig. 5), and the adiabatic energy barrier only differed from our earlier
the free energy calculations (Fig. 4) by about 0.5 kcal/mol, whereas the diabatic energies
differed by about 1 kcal/mol. Therefore, taking into consideration the gas phase optimized
structures rather than performing the full free energy calculations provides satisfactory
accuracy for the barrier height. Additional calculations were performed by using different
diabatic energy functional. Here we used the ADF program package and performed FDFT
calculations using LDA exchange potential and Thomas-Fermi approximation as described
in the previous section. We obtained different Hrp values compared with the ones obtained
using DeMon, however the Hrp values were all very close to about 33 kcal/mol for the
calculated LFER reactions (see Supplementary Materials for results). We note here that both
higher and lower FDFT energies can be obtained as compared with the full DFT energies
that will result in different coupling values. However, a constant shift of both diabatic states
would leave the parabolic fit parameters unchanged and, therefore, the reorganization
energies are insensitive to such effects. By analyzing the parabolic fits of the diabatic states,
we estimated the reorganization energy (see SI) as λ(ΔG0) ≈ 122, which is very close to the
values obtained using DeMon (Fig. 6).

Obtaining an accurate parabolic fit to our data from minimizations nevertheless limits the
accuracy of the determined reorganization energies. We observed that X = Cl− and NH3
seem to be outliers in Fig 6., and these large deviations of the reorganization energies from
the mean subsequently also result in deviations in the LFER for the same substituents in Fig.
8. This may be due to several reasons. There could be a different extent of the self-
interaction error that is particularly substantial for Cl−. To fully address this problem, and to
quantitatively evaluate the reorganization energies also in solution, more accurate free
energy simulations are required using also different functionals, which is outside of the
scope of our current work. Given that in our results the Hrp is essentially unchanged with
different leaving groups regardless of the self-interaction error, investigating the
reorganization energy could potentially lead to new strategies for eliminating the self-
interaction error in a non-system-specific way.

Our calculations used the following nucleophiles (the X in Eq. (27)): Cl−, Cl−·H2O, CN−,
CCl3COO−, CH2ClCOO−, CH3COO−, CHCl2COO−, F−, HCOO−, OCl−, and the neutral
NH3. We also considered a single water molecule added to the QM region for X=Cl−. The
transition state was optimized together with the water molecule with the obtained geometry
as shown in Fig. 1 and in the inset of Fig. 7. The water molecule was assigned to the diabatic
states according to the partitions 1, 2, or 3 of Fig. 1.

In the solution phase MD calculations, we used the gas phase optimized transition state
structures for most of the systems. We used the structures that correspond to the solution
phase transition states, when the gas phase structures did not yield an energy gap value in
solution that was in the transition state region (|εr − εp|) < 22 kcal/mol). In these cases,
geometries close to the transition states were chosen from the structures along the gas phase
reaction profiles by visual inspection, except for [CN··CH2F··Cl]−, where such structure was
not available due to the failed constrained minimizations. This type of treatment with fixed
solute geometry is simpler than the more fundamental free energy calculations explored in
Fig. 4, where the focus was on the difference between the effective Hrp in different
environments and also at different regions of the reaction coordinate. Nevertheless, in the
current work we aimed to discuss the Hrp only in the TS, to justify the assumptions implied
in the derivation of the LFERs.
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Our calculations are demonstrated in Fig. 5 for X=Cl− and then summarized in Tables 1–2,
Figs. 6–8, where we provide results for 10 different nucleophiles in the gas phase and in
solution. The average values in the gas phase and in solution are very close to each other:
16.9 kcal/mol and 16.3 kcal/mol for the gas phase and with solvent molecules, respectively,
with a small standard deviation (1.1 kcal/mol in both gas phase and in solution). These
results demonstrate numerically that the off-diagonal matrix elements are nearly constant for
SN2 reactions belonging to the same LFER, regardless of the reaction media.

Using the numerically obtained average reorganization energy and the mean value of Hrp at
the transition state, we obtained from Eq. (25) a nearly linear FER that matches the actual
data (Tables 1 and 2) well (Fig. 8). This numerically verifies the theoretical derivation that
LFERs can be obtained from the linear regime of the quadratic function that is given in Eq.
(25). Interestingly, several recent calculations reported data where a quadratic fit would
better describe the FERs rather than a linear relationship81,82. These could largely be
associated with a distinctively changing underlying reaction mechanism.

We also addressed the effects of changing the central group in the SN2 reaction and changed
CH3 to CH2F considering now X− + CH2FCl → XCH2F + Cl−. The calculated values of Hrp
for the following X groups: Cl−, OCl−, CN−, HCOO−, CH3COO−, CH2ClCOO−,
CHCl2COO− are given in Table 2 and Fig. 7. As seen from the figure, the Hrp values were
nearly identical for the second set of reactions regardless of the media and the nucleophile,
but distinct from the first set of reactions. The average Hrp value in gas phase was 11.8 kcal/
mol with a standard deviation of 1.8 kcal/mol, and 11.4 kcal/mol in solution with a standard
deviation of 1.1 kcal/mol.

III.2 The nature of the off diagonal elements
Our results suggest that the Hrp values depend mainly on the nature of the central
(transferred) group. That is, the off-diagonal elements were close to constant for different
nucleophiles, but differed by about 35% between the transfer groups CH3

+ and CH2F+.

In agreement with our earlier study1, the gas phase results and those with solvent are very
similar (Table 3). Here we also observe the same media-independence of Hrp with a solvent
water molecule explicitly included in the QM region.

The finding of the remarkable stability of the off-diagonal element, obtained with formally
orthogonal diabatic states, has a major significance in terms of the validity of LFER in
general and the assumptions of the EVB in particular. Obtaining constant off-diagonal
coupling means that if the diabatic states are approximately parabolic we have a well-
defined and predictable LFER. It also means that the EVB idea of using the same off-
diagonal element in different environments is valid even when we have different
substituents.

The ability to evaluate Hrp by the CDFT is particularly useful in view of the capacity of this
method to provide numerical coupling in different environments and different conditions.
This feature can also be used in studies of electron transfer reaction where Hrp is much
smaller. This may be very useful in exploring medium effect on electronic coupling, in
particular if the environment is represented by the FDFT embedding approach.

It is useful to point out that other research groups27,83–85 also explored some of the ideas
based on our CDFT and FDFT methods (reviewed in detail in Refs. 52,86,87). In this
respect it is useful to clarify that despite the interest raised (e.g. 29,88–91) by the elegant
work of Wu and Van Voorhis92, the main innovation of this work seems to be the emphasis
on fixing the diabatic densities by using Lagrange multipliers, rather than by our physically
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based idea. Here, it should be remembered that diabatic states neither are nor should be
unique. Rather, they are simply a useful mathematical representation in order to solve the
physics of the real adiabatic system. The key issue is to force the diabatic states to reproduce
the physics of the reactant and products, and, at least in the case of the crucial charge
transfer reactions, our approach is far more effective than the (otherwise seemingly rigorous)
use of Lagrange multipliers. That is, the CDFT approach follows the EVB philosophy, and
considers the wave functions as being orthogonalized wave functions, and, of course, the
corresponding Hij is completely different from the one used by Ref. 92, with both providing
correct physics if one uses the corresponding diabatic states (see Ref. 93).

IV. Concluding remarks
This work explored the nature of Hrp in adiabatic reactions and the validity of LFER in
describing chemical reactions. Our study starts by reviewing the HAW relationship that
provided the basis for LFER in adiabatic reaction. After being proved by earlier studies that
the free energy functionals are approximately quadratic in solution, we can obtain rigorous
LFER if Hrp is medium-independent and substituent-independent, and the reorganization
energies are substituent independent. Our previous study1 used the FDFT approach to
establish that Hrp is nearly solvent independent and thus to provide overwhelming
justification of the main ad hoc assumption behind the EVB. However, it remains to be
proved that Hrp is insensitive to substituents and this has been the focus of the computations
reported here. More specifically, we used here the FDFT approach to evaluate Hrp for a full
series of SN2 reactions. It was found that these off diagonal elements are constant to a very
good approximation, independent of the various nucleophiles used in the SN2 reactions. This
finding was further verified by calculating the Hrp values for a second set of SN2 reactions
that also exhibit LFERs. Here the middle transferred group was changed from a methyl
group to a fluoro-methyl group. Despite the relatively small change between the two sets of
reactions, our results showed a consistent, nearly 35% decrease in the Hrp values for the
second set of reactions, providing a statistically significantly different mean value for the
Hrp, as compared with the first set. We have seen no statistically significant difference,
however, between the gas phase and the solution reactions, even if some of the solvent was
explicitly included in the ab initio description.

Although this work focused on the off diagonal matrix elements, it also shed some light on
the intramolecular contribution to the reorganization energy (the so called “inner
sphere“ reorganization energy). This was done by calculating the approximate gas phase
Marcus parabolas for the SN2 reactions using the FDFT approach. In this respect, it must be
mentioned that in contrast to the treatment of Eq. (19) that led to Fig. 4 we explored the gas
phase reorganization energies in a very approximate way but, nevertheless, the conclusions
about the reorganization energy were consistent as also suggested by the fact that very
different diabatic energy functions provided very similar values (see Fig. 6 and SI).

Our approach of using the FDFT also provides a powerful way of evaluating the effective
off-diagonal element in charge transfer reactions in different environments1. This ability is
of a generally fundamental and practical interest1,28,94. Here it is useful to note that in
contrast to possible implications of Ref. 27, there is no problem with the use of Eq. (17) to
obtain or examine the EVB off-diagonal elements. These off-diagonal elements are
rigorously defined by Eq. (16) and do not have to be equal to the coupling terms between the
nonorthogonal diabatic wave functions that are used in studies of the rates of the electron
transfer processes.

The FDFT/CDFT can be used in exploring additional fundamental studies of molecular
interactions. For example, one challenging issue is the nature of the environmental effects on
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long-range electron transfer. Here, for example, one can include the environment with the
FDFT treatment and examine issues that are notoriously difficult to address, such as a partial
charge transfer to the environment.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Possible choices of assigning a QM water molecule to the partitions of the diabatic states
illustrated for the Cl− + CH3Cl system. The water molecule can be either assigned to group
A, B or C when defining the reactant and product diabatic states, resulting in the above
depicted three possibilities: 1, 2, and 3. The first column shows the reactant state
decompositions with ΨA ΨB–C, and the second column corresponds to the product state
partitioning, ΨA–B ΨC. The three choices for the partitioning of the water molecule are 1:
including the water molecule in the same partition with group A, 2: including the water
molecule in the same partition with the central group B, or 3: including the water molecule
in the same partition with group C. The negatively charged partition is indicated by colored
background and the displayed charge value (e).
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Figure 2.
A schematic description of the relationship between the free-energy difference between the
reactant and product states (ΔG0), and the activation free energy (Δg‡). This figure
illustrates how shifting εp by ΔΔG0 (which changes εp to εp′ and ΔG0 to ΔG0 + ΔΔG0)
changes Δg‡ by a proportional amount.

Rosta and Warshel Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2013 March 29.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 3.
Showing the diabatic energies as a function of a standard (distance based) reaction
coordinate for the CCl3COO−+CH3Cl reaction. The R1=C-Cl distance was used to obtain
the optimized geometries along the reaction pathway.
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Figure 4.
Diabatic and adiabatic FDFT free energy profiles for the reaction Cl− + CH3Cl → ClCH3 +
Cl− in the gas phase (open symbols) and in solution (filled symbols). The reaction
coordinate is defined as the free energy difference between the diabatic surfaces. The
reactant diabatic free energies are shown with circles (gas phase red, solution pink), the
product state diabatic free energies are shown with triangles (blue (gas), light blue
(solution)). The full lines represent the corresponding parabolic fits (see also table 3). The
adiabatic free energies are shown with symbols (x (gas), square (solution)), the fitted
polynomial lines are given to guide the eye. The actual results were obtained in Ref. 1.
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Figure 5.
The adiabatic energy (Eg, black) profiles as a function of the energy gap reaction coordinate.
The quadratic fit is shown for the reactants (εr red) and for the products (εr, blue) for the gas
phase Cl− + CH3Cl → ClCH3 + Cl− reaction.
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Figure 6.
The reorganization energy (λ) for the gas phase XCH3 + Cl− → X− + CH3Cl SN2 reactions
as a function of the reaction energy (in this case we look at the energy rather than the free
energy). The X groups are specified by arrows for each data point.
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Figure 7.
Off-diagonal coupling constants (Hrp) obtained for the transition state geometries in the gas
phase (red and black) and in solution (blue and yellow). The results are shown for two series
of SN2 reactions defining two LFERs: X−+ CH3Cl → XCH3 + Cl− and X−+ CH2FCl →
XCH2 + Cl− with the X groups as specified on the x-axis and in the text.
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Figure 8.
Adiabatic gas phase energy barriers for the XCH3 + Cl− → X− + CH3Cl SN2 reactions as a
function of the reaction energy. Please note that the free energies here are approximated with
results from energy minimizations. The results shown are based on Table 1 and Table 2. The
black curve corresponds to the parabola obtained from Eq. (25), assuming constant
reorganization energy of 116.6 kcal/mol, and assuming negligible coupling in the reactant or
product states, and a constant off-diagonal coupling matrix element of 16.9 kcal/mol.
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Table 3

Parameters calculated from the quadratic fit A(εr − εp)2 + B(εr − εp) + C to the diabatic states for our earlier

free energy simulations of the ClCH3 + Cl− → Cl− + CH3Cl SN2 reaction in the gas phase and in solution1.
Hrp values reported here represent the maximum numerical value of the coupling obtained along the reaction
coordinate, and in practice this corresponds to the transition state with Δε= 0.

λ Hrp

Gas 87.9 16.0

Solution 111.6 15.3
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