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Abstract

The role of dopamine neurons in value-guided behavior has been described in computationally
explicit terms. These developments have motivated new model-based probes of reward processing
in healthy humans, and in recent years these same models have also been used to design and
understand neural responses during simple social exchange. These latter applications have opened
up the possibility of identifying new endophenotypes characteristic of biological substrates
underlying psychiatric disease. In this report, we review model-based approaches to functional
magnetic resonance imaging in healthy individuals and the application of these paradigms to
psychiatric disorders. We show early results from the application of model-based human
interaction at three disparate levels: 1) interaction with a single human, 2) interaction within small
groups, and 3) interaction with signals generated by large groups. In each case, we show how
reward-prediction circuitry is engaged by abstract elements of each paradigm with blood oxygen
level- dependent imaging as a read-out; and, in the last case (i.e., signals generated by large
groups) we report on direct electrochemical dopamine measurements during decision making in
humans. Lastly, we discuss how computational approaches can be used to objectively assess and
quantify elements of complex and hidden social decision-making processes.

Keywords
Decision making; dopamine; fMRI; neuroeconomics; reinforcement learning; social cognition

Every aspect of the survival of an organism requires intact decision-making machinery.
Human choices include those regarding basic needs (e.g., survival, security, and
reproduction); however, human environments also require complex and abstract decisions
unique to our species. Human decision-making is particularly guided by our ability to learn
from experience and generate predictions about future events. Reinforcement learning
algorithms (1) have been used to explain physiological data at the level of single neurons
during relatively simple Pavlovian learning tasks (2,3). More recently, these models of
value-guided learning have framed functional magnetic resonance imaging (fMRI)
experiments in human decision-making in game theoretic paradigms (4,5). The burgeoning
field of neuroeconomics (6-9) seeks to use neuroscientific tools (neuroimaging, neural
recordings, etc.) to further develop “economic theory” about human decision-making (10).
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Recent developments suggest that neuroscience and psychiatric medicine might actually
have much to gain as well from this merging of disciplines (8,11,12). Game theory provides
a mathematical framework to investigate social interaction in humans with quantitatively
controlled behavioral spaces and notions of optimal play. Comparing game play (economic
games) in individuals diagnosed by DSM-IV standards with that in healthy control subjects
is providing insight into the neurobiological responses associated with objectively
quantifiable game behavior (12-16). These early steps suggest a newly developing paradigm
in psychiatric medicine where computer-assisted objective measurements and analysis might
augment the art of psychiatric diagnosis and treatment (12). We propose that the
introduction of computer-assisted game play and objective neuroimaging signatures (yet to
be established) might lead to the development of a new class of diagnostic variables for the
diagnosis of psychiatric illness. Such biomarkers might include measurements of expressed
behavior, parameters derived from models of learning and game play, or illness-specific
brain responses. For example, King-Casas et al. (14) used a simple two-person exchange to
show that subjects with Borderline Personality Disorder demonstrated a distinct neural
correlate in anterior insula during game play that might be used as just such a biomarker. In
general, this work is in its very early days and will require large-scale data collection and
validation in healthy populations; however, the possibilities of augmenting traditional views
of mental disease remain provocative.

Herein, we will first give a brief description of the theoretical framework for a particularly
successful reinforcement learning algorithm, the temporal difference (TD) learning model,
and then describe recent developments in applying this framework to valuation problems in
decision-making during three levels of social exchange: 1) interaction between two humans
(Figure 1), 2) interaction within a small group of humans (Figure 2), and 3) interaction with
signals derived from large populations of humans (Figure 3). Each of these levels of social
interaction challenges decision-making machinery in interesting and novel ways, each of
which might be used to identify quantifiable endophenotypes in patients with psychiatric
disorders.

Reinforcement Learning, Dopamine, and a “Common Neural Currency” for
“Basic” and “Social” Rewards

In general, reinforcement learning algorithms make assumptions that are well-matched to
the behavior of biological organisms (1). In these models, abstract agents are assumed to
possess goals and the ability to represent decision spaces (i.e., options). These spaces might
be conceived as a network of states that the agent traverses according to some policy.
Importantly, it is assumed that the agent maintains representations of values associated with
each state in the decision space and these values are updated after each decision. Learning
takes place as the agent makes choices, receives immediate rewards, and observes the
resulting change in value associated with the various available states. The exploration of the
decision space and observation (or estimation) of values associated with the various states in
the space can occur in actuality or through simulation. Importantly, all aspects of the
problem as described have representations in mathematical forms. The updating signal in
this framework is the reinforcement signal, which guides learning on the basis of observed
changes. For a more comprehensive review on the application of these models see (1,17,18).

The “TD learning model” is a particular reinforcement learning algorithm that uses the TD
error as its learning signal:

TD error=reward prediction error=r(S;) +yV (S+1) — V(S1)
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Here, r(S;) is the immediate reward the agent receives when it moves into state “S” at time
“r’. V(S) reflects the long-term value function over states “S” at times “£” and future time
points (i.e., “#1”). The TD error signal is used in a reinforcement learning scenario to
evaluate the action taken by evaluating the obtained state. The evaluation takes into account
the expected reward, the actual reward received, and the new, updated values for all other
states (now and into the future) and the expectations generated. Such a signal can be used to
direct future decisions, given some policy function; for instance, softmax is a commonly
used algorithm that chooses the transition probabilistically but is weighted toward the
maximization of value (1).

Dopamine (DA) neurons in nonhuman primates have been shown to generate firing activity
predicted by the TD learning algorithm (2,3,19). In these experiments, monkeys performed a
simple Pavlovian conditioning task while microelectrodes recorded spike activity in DA
neurons (3). Recent human fMRI experiments have demonstrated that similar “simple”
instrumental (20) and passive conditioning (21) paradigms elicit blood oxygen level—
dependent (BOLD) responses in the dorsal (20) and ventral striatum (21) consistent with TD
learning model predictions and dopaminergic anatomical projections (20-23). These initial
experiments set the groundwork for using fMRI to study human learning and decision-
making with paradigms framed by computational models of valuation and choice behavior.
These models in combination with game theoretic probes of human decision-making have
recently been applied to study reward-processing, motivation, learning, and choice
evaluation in social contexts (24-34).

Reinforcement Learning During Two-Party Social Exchange

King-Casas et al. (14,24,35) used hyperscanning (36) to investigate neurobehavioral
responses elicited in two brains engaged in live social exchange. Participants played a
simple exchange game, the multi-round trust game (Figure 1A). Participants play 10 rounds
of sequential exchange as an “investor” or a “trustee”; the investor is given, for example,
$20 at the start of a round and must decide what fraction (“/” in Figure 1A) of those points
they will “invest” with their partner. This value can range from $0 to the full $20. Both
partners know that the amount that the investor shares will be tripled on the way to the
trustee. Both partners also know that the trustee would then have the opportunity to repay
(7" in Figure 1A) the investor from the total amount that the trustee received in the tripled
investment (in Figure 1A: “/” = a fraction of the tripled investment, “3/”) and end the round.
Multiple rounds of play between the partners allow the observation of learning, reputation
formation, and associated brain responses (24).

The multiround trust game dramatically reduces two-party social exchange. The only
communication between the partners comes in the form of points sent back and forth, which
is communicated to the participants with simple displays on a computer screen (for
examples: Figure 1B). Despite this, interesting social signals such as “benevolent” and
“malevolent” investor behavior can be operationally defined (24). A contrast of brain
responses in the trustee brain over rounds of “better than expected” (i.e., “benevolent”)
versus “worse than expected” (i.e., “malevolent”) responses reveals guidance signals only in
the head of the caudate nucleus (bilateral) (Figure 1C). In the trustee brain, large responses
in this region were observed in early rounds after the revelation of investor gestures that
resulted in future increases in trust by the trustee (i.e., increased reciprocation) (Figure 1D
top row). These responses exhibited a temporal transfer in later rounds of the game (Figure
1D bottom row) that coincided with increased prediction accuracy about what the investor
was going to do next (24), consistent with reputation building and TD prediction error
models. Subsequent studies explored other dimensions of the value of social information,
including social comparison (25), social status (29,30,34), reliability of social information
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(27), and social conformity (32). Each of these tasks implicates the mesolimbic
dopaminergic system in processing social signals in a manner analogous to basic reward,
suggesting a common neural currency (7). The connection between the observed BOLD
responses in these experiments and the dopaminergic system continues to be the
mathematically expressed model for reinforcement learning; however, new experiments
aimed at directly measuring DA release in human brains (see following discussion) (Figure
3B) promises to test the hypothesized role of DA in human decision making directly.

Reinforcement Signals in Small Group Interactions

Relatively simple two-party exchange games are at the forefront of neuroimaging
experiments investigating disorders that alter typical social exchange (12-16). However
social behavior in many species typically involves small to large groups of individuals. This
is certainly true of humans. BOLD responses in the ventral striatum consistent with
reinforcement learning during small group interaction have recently been demonstrated
(Figure 2, adapted from Kishida et a/. [34]). Here, social status within the group was the
valued commodity, and its magnitude was dynamically manipulated by the performance of
the subjects during the Ranked Group 1Q task (Figure 2). In this task, five subjects were
recruited and introduced to each other by first name and performed a group 1Q test with
feedback in the form of their rank within the group of five (example screen shown in Figure
2A). Responses in the nucleus accumbens showed a parametric response in the nucleus
accumbens to changes in social rank consistent with a reward related response (Figure 2B)
in a random-effects general linear model analysis (/7= 27 subjects, p < .0001, uncorrected).
Further analysis of these responses revealed that the magnitude of the BOLD responses was
correlated with a TD error over expected changes in rank, given the correctness of the last
question (Figure 2C). The hypothesized error signal is derived by assuming the participants
generate an expectation about their change in rank (expected change in rank: £/AR}]), which
is subtracted from their actual experienced change in rank (A R):

TD error signal=AR — E (AR)

The model can be formulated by considering that participants form expectations about their
change in rank, given their ability to answer questions correctly or incorrectly. The response
in the nucleus accumbens (Figure 2C) shows four categorical responses that match
predictions of the TD model and are summarized in Figure 2D.

The use of “model based” approaches in neuroimaging experiments take on at least two
general forms. One approach is to identify patterns of behavioral exchange that are modified
during experience and after feedback and to use a mathematical model to frame the observed
responses. Thus, this more traditional trial-based comparison of responses can be framed by
expectations from model behavior and used to explain the observed responses in a coherent
hypothesis as exemplified in Figures 1 and 2. An additional approach starts where the
former ends and generates an experiment to test specific parameters in a model or to test
different models against expected biological responses (response magnitudes or anatomical
differences in the expression of model parameters). The latter approach derives regressors
from the combination of measured behavior and the computational model(s) being tested.
These regressors are then used to search for correlated neural responses. In the following
text we describe work comparing the role alternative learning signals (TD error and fictive
error) play in value-guided behavior.
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Reinforcement Learning with “Fictive Errors” Guide Investment Behavior

The role of the dopaminergic system in guiding behavior during simple reward harvesting
behavior and more complex social interactions is bridged in an interesting way by Lohrenz
et al. (26) and Kishida et al. (33) (Figure 3). Lohrenz et al. designed a sequential investment
task, which uses historical stock market data and pits subjects against these fluctuating
abstract signals. This task was designed to test computational models of learning and
dopaminergic function and probes choice behavior in the context of a history of successful
and failed gambles. This task takes advantage of the natural statistical structure that emerges
during market-level exchanges.

In the sequential investment task (Figure 3), subjects are given a starting portfolio of $100
and are allowed to invest a fraction of their portfolio in the market (increments of 10%).
Once the subject submits their decision, the market updates and reveals a new section of the
market. The first imaging results from the sequential investment task demonstrated that the
striatum responds to at least two mathematically defined guidance signals. The TD learning
model and a fictive error model were shown to correlate with BOLD responses in
overlapping and non-overlapping tissue in the caudate (Figure 3A, inset, adapted from
Lohrenz et al. [26]). The fictive error derives from a variation of TD reinforcement learning
algorithms, called “Q-learning.” Q-learning assesses more than just the relationship between
states and value; rather, “state-action pairs” and value are assessed. Here a policy function
determines what action, & to take given the current state, s, (at time, “t”) and the expected
value associated with those state-action pairs:

policy (S;) =max Q(St, ar)

The policy taken is determined by finding the maximum of the estimated Q-value function,
O, for the range of state-action pairs (s, ). Q-learning takes advantage of the experiential
learning in a similar manner as TD learning (by including such a term) but also takes into
account other learning signals such as off-policy counter-factual signals (i.e., the fictive
error signal). Here the “fictive error signal” resembles the subjective experience of “what
could have been” but has a formal definition in the machine learning literature. In the
context of Q-learning, the fictive error term speeds up the process of learning by taking into
account the missed reward for all actions not taken (i.e., “fictive” actions, &) from a given
state, sz

fictive critic= Z AQ (s1,ar)

fictive actions,a,

which adds to the update signal provided by experiential learning:

experience criticzé(s,, az)

In the context of the use of the sequential investment task of Lohrenz et al. (Figure 3A), the
fictive error calculation accounts for the market fluctuation (state change: s;— Sx1) and the
size of the bet of the player (action taken: a) and determines the magnitude of what the
earnings could have been had the subject maximized their bet (fictive action: &). This
depiction quantifies the counterfactual signal within this paradigm and can be used to track
brain responses correlated with the predictions of this model. Here the demonstration that
the striatum calculates an additional guidance signal supports the hypothesis that
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computations about value-guided choice are reflected in metabolic demands in the striatum
and are multifaceted. Subsequent work has shown that nicotine addicts (i.e., smokers)
compute the fictive error signal in the same region as the non-addicts, but unlike the non-
addicts, their subsequent decisions are not driven by fluctuations in this counterfactual signal
(26,28).

Measuring DA Release in the Human Brain

The relationship between BOLD responses that track TD error computations and the
underlying physiology is hypothesized to involve fluctuations in the neurotransmitter DA.
The early studies that identified the relationship between the TD error model and DA neuron
activity in the ventral tegmental area and substantia nigra of nonhuman primates (2,3) were
followed by a jump into humans with fMRI and paradigms framed by the same model that
predicted DA neuron activity (21,37-39). The body of literature investigating these signals is
identifying multiple regions in the brain where DA neurons are known to send a high density
of projections (e.g., dorsal and ventral striatum and the orbital frontal cortex). A consistent
pattern is emerging for dorsal and ventral striatal responses observed for active versus
passive learning, respectively (reviewed by Montague et a/. [19]). The striatal responses
reviewed here are consistent with this literature, but the link between the BOLD response
and DA release is currently theoretical and remains an exciting opportunity for investigation.

Recently, a microsensor capable of measuring DA release in freely behaving rodents (40)
was adapted for use in human patients undergoing deep brain stimulating electrode
implantation for the treatment of Parkinson’s disease (Figure 3B) (33). These “first of their
kind” measurements of sub-second DA release in humans were carried out in the caudate
while the patient performed the sequential investment task. With the microsensor placed in
the right hemisphere (Figure 3B left) DA is observed to track the value of the market over
100 decisions made by the patient (p < .000001; regression slope = .91; and /2 = .549, N'=
100 decisions) (33). In the left hemisphere, the DA was observed to track the portfolio of the
investor (Figure 3B right). Additionally, work by Zaghloul et a/. (41) has demonstrated a
consistent picture between models of DA neuron activity in nonhuman primates and
measurement of DA neuron activity in humans. They also recorded from human patients
undergoing deep brain stimulating electrode implantation for Parkinson’s disease and
showed that neural spike activity in the substantia nigra responded to unexpected financial
rewards in a gambling task.

Deep brain stimulation electrodes are beginning to be used in a growing number of
neurological disorders. The microsensor developed by Kishida ef al. (33) has the ability to
reach deep structures in the human brain during these surgical procedures, thus opening the
door to a wide range of possibilities in investigating dopaminergic release in human
cognition. Likewise the sharp electrodes used by Zaghloul ef a/. (41) are capable of
recording electric activity deep in the brain and can be used to validate and discover new
relationships between neural spike activity and human strategies. These technologies paired
with economic probes of decision-making and social interaction promise to provide a new
understanding of mechanisms underlying psychiatric disease.

Alternative Computational Approaches

Reinforcement learning models have proven to be successful in explaining neural and
behavioral data at multiple levels of description. Here we have focused on the role of the
dopaminergic system, due to its suspected role in a number of mental disorders; thus
reinforcement learning models, with TD learning and its relationship with dopaminergic
activity as one particular example from this genre, has offered an exemplary starting point.
However, theoretical developments in many aspects of neurobiology have undergone an
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explosive growth in recent years (42), and so efforts to understand mental disease in
computational terms will gain from similar computational approaches directed at other
levels of organization in the nervous system. Particularly promising developments include
the use of mathematical models depicting other processes required for social exchange.
Recent work has led to the development of models that describe hypothesized computational
processes underlying “mentalization” (43). These models are framed and tested within the
context of economic games, thus taking full advantage of the quantitative, reduced, and
value-guided behavioral environment these games provide. For example, Hampton et a/.
(44) identify brain responses that correlate with separable computations underlying strategic
thinking; they compare three models—a reinforcement learning model, a fictitious play
model, and an influence model—and identify neural correlates to the various signals these
different computations generate. Another model-based approach toward mentalization and
processes underlying the psychological construct known as “theory of mind” are included in
a collection of articles by Yoshida et a/. (16,45,46), where they develop a computational
“game theory of mind” (45), identify neural correlates with the underlying computations
(46), and demonstrate alterations in behavioral parameters in a cohort of participants
diagnosed with autism spectrum disorder (16) with a two-party coordination game. Finally,
the use of models to probe data generated in neuroeconomic tasks is not the only maneuver
available to computational biologists interested in game theoretic probes of healthy and
unhealthy behavior. Koshelev et al. (15) used data generated in the multi-round trust game
where different patient populations were placed in the trustee role and asked whether a
“model-free” computational approach could identify clusters of playing style that could
differentiate the different populations input into the analysis. This approach was able to
discover natural clusters of behaviors expressed by the healthy investors playing different
trustee populations using objective and algorithmic procedures with surprising accuracy and
very interesting “errors.”

Future Directions

The notion of a “common currency” for valuation in the human brain across decision spaces
that include basic needs (food and water), proxies for later reward (points and monetary
cues), and more abstract social signals (reputation and status) is held together by a relatively
simple thread, mathematical depictions of reinforcement learning theories. Valuation models
from the machine learning literature (1) and initially explored in animal models in simple
learning and choice paradigms (2,3,40) have begun to provide quantitative insight about
signals in human brains during choice behavior in social contexts. Framing experimental
paradigms in mathematical theory can provide access to parameters and new concepts that
are not directly available to our conscious psyche. The fruits of these maneuvers are
beginning to express themselves as new insight into longstanding issues in psychiatric
populations. The ability to track mathematically defined and objectively estimable
parameters in games might provide a new set of quantitative phenotypes and insight into the
biology of choice behavior. These developments in neuroeconomics are already showing
promise for the development of new models of psychiatric disease (12). At least one major
issue that characterizes psychiatric disorders is the observed aberrant social behavior and the
inability to adjust these behaviors after various forms of positive and negative feedback from
the environment. The mathematical models that capture important learning signals that have
been used identify responses in neural structures consistent with a core valuation network.
However, this network does not exist in isolation, and those extending this early work into
psychiatric populations must keep this in mind. Hypothetical differences in patient
populations might be discovered in the core valuation machinery, but it is also very likely
that information processing at other stages might be affected as well. For example, neural
tissue engaged during the representation of game states (i.e., perceptual machinery) or neural
tissue engaged during the execution of an action “post”-evaluation might show alterations.
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Further developing mathematical models for other elements of the game process (mental
representations and inferences) will be needed to fully understand and tease apart the
decision-making process and how it can be altered in mental disorders.

Whether these initial steps in computational and neuroeconomic approaches to understand
the biology underlying mental disorders will lead to improvements in diagnosis and
treatment remains to be seen, but the insight gained into the biology of valuation and
decision-making thus far is promising and suggests a picture that is much simpler than
previously thought (e.g., a core valuation system vs. multiple specialized systems).
Identifying the specific neural processes and behavioral characteristics that characterize and
differentiate psychiatric conditions in the economic game environment will require much
more work and a community of researchers and clinicians dedicated to understanding the
underlying biology. Computational approaches are poised to handle formally explicit
hypotheses about the behaviors expressed in these games and the computations that are
likely executed during the decision making process. These computations might be
discovered to match some of our intuitions, but we should be prepared to be open to the
possibility that there might be underlying computations carried out that are removed from
our conscious psychological experience. Framing these problems in mathematically explicit
terms provides a language to develop new theories that are not limited by the restricted
space of words we use to express our conscious experiences. Social behavior is immensely
interesting, which might be driven in part by its sometimes overwhelming complexity.
Neuroeconomic combined with computational approaches are providing a new window to
observe, simplify, and experiment on important aspects underlying the biology of choice
during social exchange; these developments possesses the potential to develop a new
paradigm of diagnosing and treating psychiatric disease.

Acknowledgments

This work was funded by the Wellcome Trust Principal Research Fellowship (PRM); The Kane Family Foundation
(PRM); and the National Institutes of Health, R01-NS045790 (PRM), R01-DA11723 (PRM).

References

1. Sutton, RS.; Barto, AG. Reinforcement Learning: An Introduction. Cambridge: Cambridge
University Press; 1998.

2. Montague PR, Dayan P, Sejnowski TJ. A framework for mesencephalic dopamine systems based on
predictive Hebbian learning. J Neurosci. 1996; 16:1936. [PubMed: 8774460]

3. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;
275:1593. [PubMed: 9054347]

4. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior. Princeton: Princeton
University Press; 1947.

5. Camerer, C. Behavioral Game Theory: Experiments in Strategic Interaction. New York: Russell
Sage Foundation; 2003.

6. Glimcher PW. Making choices: The neurophysiology of visual-saccadic decision making. Trends
Neurosci. 2001; 24:654-659. [PubMed: 11672810]

7. Montague PR, Berns GS. Neural economics and the biological substrates of valuation. Neuron.
2002; 36:265-284. [PubMed: 12383781]

8. Glimcher PW, Rustichini A. Neuroeconomics: The consilience of brain and decision. Science. 2004;
306:447. [PubMed: 15486291]

9. Camerer CF, Fehr E. When does “economic man” dominate social behavior? Science. 2006; 311:47.
[PubMed: 16400140]

10. Camerer CF. Neuroeconomics: Opening the gray box. Neuron. 2008; 60:416-419. [PubMed:
18995815]

Biol Psychiatry. Author manuscript; available in PMC 2013 July 15.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Kishida and Montague

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Page 9

. Loewenstein G, Rick S, Cohen JD. Neuroeconomics. Annu Rev Psychol. 2008; 59:647-672.
[PubMed: 17883335]

Kishida KT, King-Casas B, Montague PR. Neuroeconomic approaches to mental disorders.
Neuron. 2010; 67:543-554. [PubMed: 20797532]

Chiu PH, Kayali MA, Kishida KT, Tomlin D, Klinger LG, Klinger MR, et al. Self responses along
cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron. 2008;
57:463-473. [PubMed: 18255038]

King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR. The rupture and
repair of cooperation in borderline personality disorder. Science. 2008; 321:806. [PubMed:
18687957]

Koshelev M, Lohrenz T, Vannucci M, Montague PR. Biosensor approach to psychopathology
classification. PLoS Computational Biology. 2010; 6:e1000966. [PubMed: 20975934]

Yoshida W, Dziobek I, Kliemann D, Heekeren HR, Friston KJ, Dolan RJ. Cooperation and
heterogeneity of the autistic mind. J Neurosci. 2010; 30:8815. [PubMed: 20592203]

Daw, ND. thesis. Carnegie Mellon University; 2003. Reinforcement learning models of the
dopamine system and their behavioral implications.

Montague PR, King-Casas B, Cohen JD. Imaging valuation models in human choice. Annu Rev
Neurosci. 2006; 29:417-448. [PubMed: 16776592]

Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control.
Nature. 2004; 431:760—767. [PubMed: 15483596]

Pagnoni G, Zink CF, Montague PR, Berns GS. Activity in human ventral striatum locked to errors
of reward prediction. Nat Neurosci. 2002; 5:97-98. [PubMed: 11802175]

McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive learning task
activate human striatum. Neuron. 2003; 38:339-346. [PubMed: 12718866]

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and
reward-related learning in the human brain. Neuron. 2003; 38:329-337. [PubMed: 12718865]

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, et al. Temporal
difference models describe higher-order learning in humans. Nature. 2004; 429:664-667.
[PubMed: 15190354]

King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, Montague PR. Getting to know you:
Reputation and trust in a two-person economic exchange. Science. 2005; 308:78-83. [PubMed:
15802598]

Fliesshbach K, Weber B, Trautner P, Dohmen T, Sunde U, Elger CE, et al. Social comparison
affects reward-related brain activity in the human ventral striatum. Science. 2007; 318:1305.
[PubMed: 18033886]

Lohrenz T, McCabe K, Camerer CF, Montague PR. Neural signature of fictive learning signals in a
sequential investment task. Proc Natl Acad Sci U S A. 2007; 104:9493-9498. [PubMed:
17519340]

Behrens TE, Hunt LT, Woolrich MW, Rushworth MF. Associative learning of social value.
Nature. 2008; 456:245. [PubMed: 19005555]

Chiu PH, Lohrenz TM, Montague PR. Smokers’ brains compute, but ignore, a fictive error signal
in a sequential investment task. Nat Neurosci. 2008; 11:514-520. [PubMed: 18311134]

Izuma K, Saito DN, Sadato N. Processing of social and monetary rewards in the human striatum.
Neuron. 2008; 58:284-294. [PubMed: 18439412]

Zink CF, Tong Y, Chen Q, Bassett DS, Stein JL, Meyer-Lindenberg A. Know your place: Neural
processing of social hierarchy in humans. Neuron. 2008; 58:273-283. [PubMed: 18439411]

Behrens TE, Hunt LT, Rushworth MF. The computation of social behavior. Science. 2009;
324:1160. [PubMed: 19478175]

Klucharev V, Hyt6nen K, Rijpkema M, Smidts A, Fernandez G. Reinforcement learning signal
predicts social conformity. Neuron. 2009; 61:140-151. [PubMed: 19146819]

Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Séaez I, Phillips PEM, et al. Sub-second
dopamine detection in human striatum. PloS One. 2011; 6:€23291. [PubMed: 21829726]

Biol Psychiatry. Author manuscript; available in PMC 2013 July 15.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Kishida and Montague

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

Page 10

Kishida KT, Yang D, Quartz K, Quartz S, Montague PR. Implicit signals in small group settings
and their impact on the expression of cognitive capacity and associated brain responses. Philos
Trans R Soc Lond B Biol Sci. 2012; 367:704—716. [PubMed: 22271786]

Tomlin D, Kayali MA, King-Casas B, Anen C, Camerer CF, Quartz SR, et al. Agent-specific
responses in the cingulate cortex during economic exchanges. Science. 2006; 312:1047-1050.
[PubMed: 16709783]

Montague PR, Berns GS, Cohen JD, McClure SM, Pagnoni G, Dhamala M, et al. Hyperscanning:
Simultaneous fMRI during linked social interactions. Neuroimage. 2002; 16:1159-1164.
[PubMed: 12202103]

Pagnoni G, Zink CF, Montague PR, Berns GS. Activity in human ventral striatum locked to errors
of reward prediction. Nat Neurosci. 2002; 5:97-98. [PubMed: 11802175]

Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors
underpin reward-seeking behaviour in humans. Nature. 2006; 442:1042-1045. [PubMed:
16929307]

D’Ardenne K, McClure SM, Nystrom LE, Cohen JD. BOLD responses reflecting dopaminergic
signals in the human ventral tegmental area. Science. 2008; 319:1264-1267. [PubMed: 18309087]
Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, et al. Chronic microsensors for
longitudinal, subsecond dopamine detection in behaving animals. Nat Methods. 2010; 7:126-129.
[PubMed: 20037591]

Zaghloul KA, Blanco JA, Weidemann CT, McGill K, Jaggi JL, Baltuch GH, et al. Human
substantia nigra neurons encode unexpected financial rewards. Science. 2009; 323:1496-1499.
[PubMed: 19286561]

Abbott L. Theoretical neuroscience rising. Neuron. 2008; 60:489-495. [PubMed: 18995824]

Frith CD. Interacting minds—a biological basis. Science. 1999; 286:1692-1695. [PubMed:
10576727]

Hampton AN, Bossaerts P, O’Doherty JP. Neural correlates of mentalizing-related computations
during strategic interactions in humans. Proc Natl Acad Sci U S A. 2008; 105:6741-6746.
[PubMed: 18427116]

Yoshida W, Dolan RJ, Friston KJ. Game theory of mind. PLoS Comput Biol. 2008; 4:¢1000254.
[PubMed: 19112488]

Yoshida W, Seymour B, Friston KJ, Dolan RJ. Neural mechanisms of belief inference during
cooperative games. J Neurosci. 2010; 30:10744. [PubMed: 20702705]

Biol Psychiatry. Author manuscript; available in PMC 2013 July 15.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1X3]-){Jewtarems

Kishida and Montague

A $20

3]
W — N

Page 11

investor Q= 2P ~——0) trust
Investor of exchange rustee
r
B Kept Gave
investment repayment
C trustee brain response to investor signals:
benevolent investor behavior > malevolent investor behavior
D increases or decreases temporal transfer of
in future trust by trustee ‘intention to trust’ signal
*
submit reveal submit reveal *
0.3 4
0.2
024 Early
0 01 1 rounds
' (3-4)
-0.2
0 s —
*
* 03 - 14 second
0.2 time shift
02 . = Late
0 ! rounds
01 | (T-8)
-0.2 I
4 . o
8 0 10 time (sec) -8 0 10 time (sec)

Figure 1. Reputation formation during two-per son trust game

(A, B) Two-person multiround trust game. Pairs of subjects are hyperscanned (36) while
playing 10 rounds of exchange. The total points earned during each round are tallied up at

the end of the 10 rounds of exchange, and subjects are paid according to the total points
earned. (C) Blood oxygen level-dependent correlates in the brains of the trustees to the

reciprocity of the investors. Statistical parametric map showing only one region, the head of

the caudate nucleus (bilateral), with responses greater for “benevolent” gestures relative to
“malevolent” gestures (n7= 125 gestures). (D) Neural correlates of reputation building.

Region of interest blood oxygen level-dependent time series response in trustee brains from

voxels defined in panel C. Responses in trustee brains around “investment” revelation
(“reveal”) were separated on the basis of the next decision of the trustees (black: future
increase in trust; red: future decrease in trust). Top row shows response in early rounds,
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bottom row shows responses in late rounds. A temporal transfer in the peak hemodynamic
response (bar plots on right for time points highlighted with arrows in time series on left)
after revelation of the decision of the investor is observed in late rounds where the peak
response is predictive of positive investor gestures. This temporal shift is consistent with the
formation of expectations in the brain of the trustee about the future behavior of the investor.
Adapted, with permission, from King-Casas et al. (24).
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Figure 2. Expectation error signalsin the ventral striatum to changesin social rank in a small

group

(A) Depiction of 5-person Ranked Group IQ task. Five subjects are recruited per group
experiment. Subjects answer questions and are given feedback in the form of a ranking
within the group of five. Two of the five subjects in each group are randomly selected to

have their brains scanned with functional magnetic resonance imaging during this portion of
the experiment. (B) Nucleus accumbens parametrically responds to positive changes in rank:
a random-effects general linear model analysis for responses that correlated with changes in
rank identified only the bilateral nucleus accumbens for positive changes in rank (random
effects, n= 27, p<.0001, uncorrected). (C) Blood oxygen level dependent (BOLD)
responses in nucleus accumbens to changes in rank after incorrect (left) or correct (right)
responses to test questions. Horizontal-axis: time (seconds); vertical-axis: BOLD response
expressed as the percentage change from baseline after the revelation of one’s own rank
(vertical grey bar); red traces: BOLD responses (mean £ SEM) in the nucleus accumbens
associated with rank increases (positive AR); blue traces: BOLD responses (mean + SEM)
in the nucleus accumbens associated with rank decreases (negative AR). Although subjects
did not have explicit feedback about whether they answered the last question correctly or
incorrectly, the responses observed in the nucleus accumbens are consistent with an
expectation error over the effect of answering trials correctly and the effect it should have on
one’s rank. *Significantly different at corresponding time points between red and blue traces
(p < .05, two-sample ttest). (D) Summary of prediction error interpretation of BOLD
responses in nucleus accumbens after rank revelations. A 2 x 2 table summarizing BOLD
responses in panel C after a prediction error interpretation. When subjects answer
incorrectly or correctly (columns), the prediction error depends on the change in rank of the
subject (AR, rows). A positive change in rank (top row) elicits a positive BOLD response in
the nucleus accumbens, which is approximately twice as large in peak amplitude when the
subject answered the question wrong (left column) compared with when the subject
answered the question correctly (right column). By contrast, a negative change in rank
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resulted in no change in BOLD response when subjects answered incorrectly (left column)

but saw a negative dip when preceded by a correctly answered question (right column).
Adapted, with permission, from Kishida et a/. (34).
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Figure 3. Guidance signalsin response to market fluctuationsrevealed in the dorsal striatum
with functional magnetic resonance imaging and in situ sub-second measur ements of dopamine
(DA)

(A) Sequential investment task and blood oxygen level- dependent (BOLD) imaging of
learning signals in humans. For each decision in the game, the subject is presented three
pieces of information: 1) market trace (red), 2) portfolio value (bottom left, “139” in this
example), and 3) the most recent fractional change in portfolio value (bottom right,
“-23.92%" in this example). Inset, bottom right: Statistical parametric T-maps of two
learning signals computed during the sequential investment task: fictive error signal (left)
and the TD regressor (right). Call-out shows fictive error only, TD and fictive overlapping,
and TD error only responsive voxels at three levels of significance. Panel adapted, with
permission, from Lohrenz et al. (26). (B) Sub-second DA release in the caudate during the
sequential investment task. Fast-scan cyclic voltammetry on a carbon fiber microsensor
adapted for use in a human brain was used to measure cyclic voltammograms once every
100 msec in the human striatum. Insets: Middle, top: T1 weighted magnetic resonance
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image showing predicted electrode placement; middle, bottom: 3-dimensional rendering of
the head of a patient with trajectory of carbon-fiber microsensor shown; left inset: three
representative markets (magenta trace: normalized market value, /=20 investment
decisions) and DA measurement (black trace: normalized DA response in human caudate
[right hemisphere]); right inset: representative market (magenta trace: normalized market
value, V=20 investment decisions), corresponding portfolio value (green trace: normalized
portfolio value given /=20 investment decisions), and DA measurement (black trace:
normalized DA response in human caudate [left hemisphere]). Scale bars for all insets:
normalized units (vertical bar = 1 SD: market, portfolio or DA, respectively) and time
(horizontal bar = 25 sec). Panel adapted, with permission, from Kishida et a/. (33).
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