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Abstract: The P2X7 receptor is an ATP-gated non-selective cation-permeable ionotropic receptor selectively ex-
pressed in neurons and glia in the brain. Activation of the P2X7 receptor has been found to modulate neuronal ex-
citability in the hippocampus and it has also been linked to microglia activation and neuroinflammatory responses. 
Accordingly, interest developed on the P2X7 receptor in disorders of the nervous system, including epilepsy. Studies 
show that expression of the P2X7 receptor is elevated in damaged regions of the brain after prolonged seizures 
(status epilepticus) in both neurons and glia. P2X7 receptor expression is also increased in the hippocampus in 
experimental epilepsy. Recent data show that mice lacking the P2X7 receptor display altered susceptibility to status 
epilepticus and that drugs targeting the P2X7 receptor have potent anticonvulsant effects. Together, this suggests 
that P2X7 receptor ligands may be useful adjunctive treatments for refractory status epilepticus or perhaps phar-
macoresistant epilepsy. This review summarizes the evidence of P2X7 receptor involvement in the pathophysiology 
of epilepsy and the potential of drugs targeting this receptor for seizure control.
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Introduction

In addition to being the cell’s major energy cur-
rency, adenosine 5’-triphosphate (ATP) also 
serves a critical function in cell-to-cell commu-
nication. ATP was first proposed as a neu-
rotransmitter in the seminal work by Burnstock 
et al. in experiments that showed ATP acted as 
neurotransmitter in non-cholinergic inhibitory 
nerves in the guinea-pig taenia coli [1]. The 
purinergic signalling system is now understood 
to have an early evolutionary basis and is a 
widespread route for cell-to-cell communica-
tion. Indeed, ATP is recognized to trigger a wide 
array of physiological effects in several differ-
ent tissues, including the central nervous sys-
tem (CNS), where it can act as a potent signal-
ling molecule.

ATP release from cells of the nervous system

ATP is recognized as a co-transmitter in most 
nerves of the peripheral and central nervous 

system and has been shown to be released 
from neurons and astrocytes to act as either 
sole transmitter or as co-transmitter [2]. Indeed, 
ATP is probably present in almost every synap-
tic and secretory vesicle either co-stored with 
other classical neurotransmitters such as 
γ-aminobutyric acid (GABA) or glutamate, or in 
ATP-only vesicles [3]. ATP is stored in secretory 
and synaptic vesicles and released into the 
extracellular space by exocytosis or from dam-
aged and dying cells [3]. ATP uptake into vesi-
cles involves a chloride-dependent vesicular 
nucleotide transporter that is highly expressed 
in the brain [4].

Several potential mechanisms have been pro-
posed to contribute to the release of ATP includ-
ing its co-secretion in a calcium-dependant 
manner from synaptic vesicles containing neu-
rotransmitters such as acetylcholine, noradren-
aline, serotonin, GABA or glutamate [5]. ATP has 
been shown to be released in response to neu-
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ronal activity [6-8], stimulation of adenylate 
cyclase [9] and by direct activation of ATP-gated 
receptors by ATP itself [10]. Additional mecha-
nisms have been proposed for ATP release 
including ATP-binding cassette transporters 
[11], connexin or pannexin hemichannels [12], 
plasmalemal voltage-dependent anion chan-
nels [13], mitochondrial porins [14] and stretch 
activated channels [5]. ATP release is not only a 
normal process in basal cellular activity but ATP 
can be induced by pathological changes, lead-
ing to a sharp increase in ATP concentrations in 
the extracellular environment. Extracellular ATP 
concentrations have been reported to increase 
after ischemia [15], spinal cord injury [16], stab 
wounds [17], and after high frequency neuronal 
activation during seizures [18-20]. After 
release, ATP and other nucleotides are rapidly 
degraded by ectonucleotidases into breakdown 
products adenosine 5’-diphosphate (ADP), ade-
nosine 5’-monophosphate and adenosine. 
Several enzyme families are involved in this 
process including ecto-nucleoside triphosphate 
diphosphohydrolases, ectonucleotide pyro-
phosphatase, alkaline phosphatases, ecto-5′-
nucleotidase and ecto-nucleoside diphosphoki-
nase [21].

Purinergic receptors

Separate membrane receptors for adenosine 
and ATP were identified in 1978 and called P1 

and P2 receptors, respectively [2]. The P2 
receptor family was further subdivided into P2X 
and P2Y receptors based on mechanism of 
action, pharmacology and molecular cloning 
[22]. Purinergic receptor subtypes are widely 
distributed throughout the CNS, expressed in 
neurons and glia including astrocytes, oligo-
dendrocytes and microglia, as demonstrated 
by in situ hybridization, real-time PCR studies 
and immunohistochemistry [23]. Currently, 
there are four subtypes of the P1 receptor, 7 
subtypes of the ionotropic P2X receptor (P2X1-7) 
and 8 subtypes of the metabotropic P2Y recep-
tors (P2Y1,2,4,6,11,12,13,14) recognized [23].

The P2Y receptors are G protein-coupled and 
respond to ATP and UTP (uracil 5’-triphosphate). 
P2Y receptors share the seven-transmem-
brane-domain topology of G-protein coupled 
receptors and based on phylogenetic similari-
ties are subdivided into two further subfami-
lies. P2Y1,2,4,6,11 use mainly Gq/G11 to activate the 
phospholipase C/inositol triphosphate endo-
plasmic reticulum Ca2+-release pathway, and 
the P2Y12,13,14 receptors couple to Gi/O inhibiting 
adenylyl cyclase and modulating ion channels 
[3]. P2Y receptors are largely involved in slower-
acting presynaptic functions, as well as mediat-
ing long-term (trophic) signaling in cell prolifera-
tion, differentiation and death during 
development and regeneration [2].

Figure 1. P2X7 receptor expression in hippocampal neurons and microglia. A. Representative photomicrograph 
showing a field view of the adult mouse hippocampus from a P2X7 receptor reporter mouse which expresses en-
hanced green fluorescent protein (EGFP) immediately downstream of the P2rx7 promoter. Sections were stained 
with primary antibodies against GFP. Note, GFP-positive cells are mainly localized within the dentate gyrus (DG). B. 
Higher magnification view of GFP-positive granule neurons of the dentate gyrus. C. Higher magnification view of GFP-
positive cells with morphological features of microglia. Scale bar; 250 µm in A, and 50 µm in B and C.
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P2X receptors are trimeric ligand-gated ion 
channels which respond to ATP and are involved 
in fast synaptic transmission and synaptic plas-
ticity. P2X receptors allow the rapid and non-
selective passage of cations (Na+, K+, Ca2+) 
across the cell membrane, resulting in depolar-
izing responses [3]. The P2X7 receptor is also 
Ca2+ permeable, meaning its activation leads to 
an increase in the intracellular calcium concen-
tration [22]. The P2X receptor subtypes consist 
of intracellular C and N termini and two trans-
membrane domains and are composed of 
homomeric or heteromeric assemblies of three 
or six subunits. All isoforms identified to date 
are expressed in the CNS and mainly assemble 
as heteromeric channels [24]. P2X receptors 
have been described to be localized in neurons 
both pre- and postsynaptically and in glial cells.

P2X7 receptor

Initially thought to be exclusively expressed in 
immunocompetent cells, the P2X7 receptor is 
now understood to be expressed throughout 
the brain in neurons as well as in glial cells [24]. 
The P2X7 receptor was first isolated from the 
rat superior cervical ganglia and medial haben-
ula [25]. The gene codes for a 595 amino acid 
protein that has 35–40% homology with the 
other six members of the P2X receptor family. 
The P2X7 receptor is structurally very similar to 
the other members of the P2X subfamily, com-
prising two transmembrane domains, a large 
extracellular loop containing 10 similarly 
spaced cysteines and glycosylation sites within 
the ATP binding site, and intracellular amino 
and carboxyl termini, except with a much longer 
carboxy terminal domain [25]. Genes encoding 
the human [26], mouse [27] and Xenopus lae-
vis [28] P2X7 receptor have also been identi-
fied. Recently, splice variants of the human 
P2X7 receptor with a deleted cytoplasmic tail 
have been characterized [29]. P2X7 receptors 
mainly function as trimers in a homomeric form 
[30], although a more recent study proposes 
the formation of P2X7/P2X4 heteromers [31].

P2X7 receptors have a relatively low affinity for 
ATP, which is above 100 μM, compared to other 
P2X receptor subunits which are activated by 
ATP in the low micromolar range. P2X7 recep-
tors belong to the slowly desensitizing type, 
showing little or no desensitization during sev-
eral seconds of application. The P2X7 receptor 
gates a non-selective inward cation current 

which is similar to inward currents caused by 
the activation of other P2X receptor subunits. 
Sustained activation of the P2X7 receptor by 
ATP has also been reported to promote the for-
mation of a reversible plasma membrane pore 
permeable to hydrophilic solutes up to 800 Da, 
which has been suggested to be involved in the 
cytotoxic effects of P2X7 receptor activation 
[24, 25]. However, this latter property of the 
P2X7 receptor continues to be a matter of 
some debate in the field.

A variety of signalling pathways are modulated 
following P2X7 receptor activation. This 
includes activation of caspase-1 [32] and 
induction of the cytokines interleukuin-1β [33-
35] and TNFα [32]. Also, activation of kinases 
such as c-Jun N-terminal kinases 1 and 2, 
extracellular signal-regulated kinases (ERC1/2) 
and p38 MAPK [36], inhibition of glycogen syn-
thase kinase-3 [37] and the activation of tran-
scription factors such as CREB, nuclear factor 
кB and the activator protein 1 [36]. P2X7 recep-
tor stimulation also directly activates microglia 
and promotes their proliferation [38].

There has been significant interest in the role of 
the P2X7 receptor in disorders of the CNS and 
the P2X7 receptor has been proposed as a 
potential drug target in acute and chronic dis-
eases of the nervous system, including spinal 
cord injury [39], neuropathic pain [24, 40], isch-
emia [41, 42], traumatic brain injury [43], 
Alzheimer’s disease [44], Huntington’s disease 
[45], and depression [36].

Localization of the P2X7 receptor in brain

Although the P2X7 receptor was first cloned 
from the rat brain [25], P2X7 receptor expres-
sion was originally suggested to be predomi-
nantly on antigen-presenting immune cells and 
epithelia. This was consistent with data show-
ing the P2X7 receptor was able to regulate vari-
ous aspects of immunocompetent cells such 
as the expression and secretion of inflamma-
tory mediators including IL-1β, IL-2, IL-4, IL-6, 
IL-8 and TNFα [32, 46], and the formation of 
multinuclear giant cells [47] or mycobacterium 
killing [48]. Early studies on P2X7 receptor 
expression in the CNS reported the P2X7 recep-
tor was present on astrocytes [49] and microg-
lia [46]. In situ hybridization studies also sup-
ported P2X7 receptor in brain macrophages 
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rather than neurons [50]. Other work in mice 
also argued against significant expression of 
the receptor in the brain [51]. However, techni-
cal advances in detecting the P2X7 receptor 
transcript and protein with high sensitivity and 
specificity by independent groups now support 
the presence of P2X7 receptor mRNA and pro-
tein in neurons as well as glia and in various 
regions of the CNS, including cortex and stria-
tum [45, 52], brainstem [53], nucleus accum-
bens [54], cerebellum [55], and hippocampus 
[52, 56-59]. Evidence of functional P2X7 recep-
tors in various CNS cell types has been convinc-
ingly demonstrated, including in oligodendro-
cytes [60] and neurons [56, 58, 61, 62]. The 
P2X7 receptor expression is also found to be 
enriched in the axonal growth cone, the precur-
sor structure of the pre-synapse, controlling 
dynamic axonal growth, suggesting important 
roles in brain development [58]. The P2X7 
receptor appears to maintain a presynaptic 
presence in the adult hippocampus, where it is 
found on the glutamatergic terminals of mossy 
fibers [52, 63].

In the human brain, seven different splice vari-
ants of the P2X7 receptor have been confirmed 
[29]. P2X7 receptor-deficient mice have been 
generated, although a functional splice variant 
of the P2X7 receptor has been reported to 
escape gene inactivation [64]. Consistent with 
this, P2X7 receptor knock-out mice have been 

reported to show some P2X7-like receptor 
responses [65]. As an alternative resource for 
studying P2X7 receptor expression which 
avoids the use of P2X7 receptor-deficient mice 
and concerns about the specificity of P2X7 
receptor antibodies, there is a transgenic 
mouse generated with the egfp (enhanced 
green fluorescence protein) gene upstream of 
the ATG start codon of the p2rx7 gene [66]. 
Analysis of the brain of these mice confirms 
expression of the P2X7 receptor in glial cells, 
oligodendrocytes and neurons in brain areas 
previously identified with immunological tech-
niques (see Figure 1).

Effects of P2X7 receptors on neuronal excit-
ability

In the rat hippocampus, P2X7 receptors are 
reported to be expressed presynaptically on 
mossy fiber terminals [67]. There are two main 
types of these axon terminals, which arise from 
dentate granule neurons. The large synaptic 
boutons terminate on CA3 neurons whereas 
the thin, filopodial-like terminals synapse on 
GABAergic (inhibitory) interneurons [68]. The 
consequences of mossy fiber stimulation dif-
fers markedly depending on which fibers are 
stimulated and the frequency of stimulation, 
producing a range of effects from synaptic facil-
itation to synaptic depression [68]. Armstrong 
and colleagues investigated the effects of 

Figure 2. P2X7 receptor antagonists reduce release of interleukin-1β and seizure-damage after status epilepticus 
in mice. A. Graph showing interleukin-1β (IL-1β) levels measured by ELISA in hippocampal extracts 24 h after status 
epilepticus (SE). The induction of IL-1β was strongly reduced in seizure mice injected with P2X7 receptor antagonist 
BBG (1 pmol) 15 min after triggering SE. B. Photomicrographs from the CA3 subfield of the hippocampus 24 h after 
SE in mice, stained for damaged neurons using Fluoro-Jade B (black dots are damaged neurons). Injection 15 min 
after SE of the P2X7 receptor antagonist A-438079 (A43) strongly reduced damage. Bar, 150 µM. Data in A, B are 
adapted and reproduced with permission from Engel et al. FASEB J. [62].
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P2X7 receptor activation on the mossy fiber-
CA3 pathway. They stimulated dentate granule 
cells in hippocampal slices from immature rats 
(10-30 days), and recorded field potentials 
from area CA3. They found that evoked field 
potentials were strongly reduced by application 
of the P2X7 receptor agonist Bz-ATP, suggest-
ing P2X7 receptor activation produces synaptic 
depression in the hippocampus [67]. The effect 
could be blocked by a P2X7 receptor selective 

antagonist but not by PPADS, a non-selective 
blocker of other P2X receptors [67]. The mech-
anism by which the reduction occurred was not 
explored. Since activation of P2X7 receptors 
gates depolarizing sodium and calcium entry 
this could either facilitate transmitter release 
or, if prolonged, perhaps lead to inactivation of 
those same channels leading to reduced trans-
mitter release from mossy terminals. The over-
all effect of reduced transmitter release from 

Figure 3. P2X7 receptor and status epilepticus. A. Representative EEG spectrograms showing frequency and am-
plitude data during kainate-induced status epilepticus for a wild-type (WT) mouse and a mouse lacking the P2X7 
receptor (P2rx7-/-). B. Representative EEG spectrograms during recordings after triggering status epilepticus for 
vehicle (veh) and P2X7 receptor antagonist (A-438079 (A-43), 1.75 nmol) injected mice. Note, reduced seizure 
severity in P2rx7-/- and A43-treated mice. C. Representative EEG trace recordings from mice after triggering status 
epilepticus. Time markings on left of each panel refer to point when either Veh, lorazepam or A43 were injected 
60 min post-status epilepticus (when seizures are normally continuous). Lorazepam partly reduces seizures but 
does not abolish them whereas the combination of lorazepam and A43 results in full seizure termination. Data are 
adapted and reproduced with permission from Engel et al. FASEB J. [62].
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mossy fiber terminals would also depend on 
whether CA3 neurons or the interneurons were 
most affected. Further evidence that P2X7 
receptors function presynaptically was provid-
ed in paired-pulse facilitation experiments. In 
this paradigm of synaptic plasticity, the delivery 
of two stimulations to the mossy fiber pathway 
results in augmentation of the release of neu-
rotransmitter, such that the second excitatory 
postsynaptic currents recorded in CA3 neurons 
was 174% of the first [67]. Armstrong et al. 
showed that application of a P2X7 receptor 
agonist increased the size of the second excit-
atory post-synaptic current to 214% of control. 
Together, these in vitro data suggest that acti-
vation of P2X7 receptor on mossy fiber termi-
nals can either depress excitation or enhance 
it, depending on the stimulation paradigm.

Epilepsy

Interest has developed in the role of P2X7 
receptors in the pathophysiology of epilepsy, 
particular following recent studies that revealed 
potent seizure-modulating effects of drugs that 
target the P2X7 receptor. Epilepsy is a com-
mon, chronic neurological disorder that is char-
acterized by recurrent unprovoked seizures. It 
affects about 50 million people worldwide, with 
a prevalence of about 0.9% although the life-
time associated risk is 3%. Across Europe, epi-
lepsy affects 6 million people and has an esti-
mated socioeconomic cost of €15.5 Billion 
[69]. Seizures are the result of a transient dys-
function within the brain caused by hypersyn-
chronous firing of neurons. This may occur in 
both sides of the brain simultaneously (a gener-
alized seizure) or be localized (focal or partial 
seizures) [70]. Seizures produce transient dis-
turbances of consciousness, motor, cognitive, 
autonomic and sensory functions.

The cause of epilepsy is often unknown. 
Epilepsy can result from mal-development of 
the brain. For a small number of cases epilepsy 
results from a mutation in a gene encoding an 
ion channel or other protein involved in neuro-
nal function or neurotransmission [70]. The 
genetic contribution in sporadic epilepsy has 
been explored using genome-wide association 
studies looking at polymorphisms and other 
genetic differences but this has failed to explain 
most cases [71, 72]. Epilepsy may develop fol-
lowing injury to the brain, and infection and 
tumor are also common causes of acquired/

symptomatic epilepsies [73]. Epileptogenesis 
– the process of epilepsy development - is char-
acterized by acute and chronic neuron loss and 
activation of surrounding glia [74, 75]. There is 
strong support for an important contribution of 
neuroinflammation, particularly interleukin-1β 
which is a potent pro-convulsant [76]. 
Epileptogenesis also features changes in 
expression of coding and non-coding RNA, 
altered neuropeptides and ion channel levels, 
synaptic plasticity and neurogenesis [73, 77, 
78]. Ultimately, the changes occurring during 
epileptogenesis contribute to network imbal-
ances between excitation and inhibition which 
result in the enduring predisposition to the gen-
eration of epileptic seizures.

In adults, temporal lobe epilepsy is the most 
common syndrome, in which seizures arise 
from brain structures such as the hippocampus 
and amygdala [70]. A common pathological 
finding in patients with temporal lobe epilepsy 
is hippocampal sclerosis. This is characterized 
by selective neuron loss and reactive gliosis 
within the CA1, hilus/CA4 and also CA3 sub-
fields, with relative preservation of the granule 
neuron population in the denate gyrus and the 
CA2 pyramidal neurons [79]. Experimental and 
clinical studies suggest hippocampal sclerosis 
may be both cause and consequence of tempo-
ral lobe epilepsy [80]. Indeed, prolonged or 
repeated seizures in animal models damage 
the hippocampus, as well as other brain 
regions, and can cause the emergence of recur-
rent spontaneous seizures [81, 82]. 

Current treatments

Anti-epileptic drugs (AEDs) are the frontline 
treatment for epilepsy [83]. There are over 20 
AEDs in clinical use, including phenytoin, sodi-
um valproate and carbamazepine, and newer 
generation drugs such as levetiracetam and 
lacosamide. The introduction of newer genera-
tion AEDs has provided a wider range of treat-
ment options that can reduce potential side 
effects and allow better tailoring of therapies to 
an individual patients’ specific syndrome. 
However, the proportion of pharmacoresistant 
epilepsy patients has changed relatively little, 
remaining at ~30% [83]. Patients with poorly-
controlled seizures suffer additional reductions 
in quality of life, severe limitations on work and 
other activities, and are at increased risk of 
neurological deficits, accidents and death [69].
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Table 1. P2X7 receptor expression and function in epilepsy
Model and time-point 
studied

Brain region P2X7R localization Drug effects on seizures Drug effects on damage Reference

Pilocarpine in rats 
(chronic)

Hippocampus Mossy fibers - - [91]

Seizure-prone gerbil Hippocampus Mossy fibers - - [101]
Systemic kainate in rats 
(acute, 24 h)

Hippocampus, piriform 
cortex, amygdala, ventral 
striatum

Microglia - - [92]

Systemic kainate in mice 
(acute, up to 48 h)

Hippocampus Microglia - Increased microglia membrane cur-
rents blocked by P2X7R antagonists

[93]

Pilocarpine in rats (acute 
and chronic)

Hippocampus Microglia and 
glutamatergic nerve 
terminals

- - [94]

Pilocarpine in rats (acute 
and chronic)

Hippocampus Microglia - Antagonists reduced astroglial death [95]

Pilocarpine in rats (acute 
and chronic)

Hippocampus and fronto-
parietal cortex

- - Antagonists prevented astroglial loss 
in some brain regions, but agonists 
exacerbated astroglial death in oth-
ers (e.g. dentate gyrus)

[96]

Pilocarpine in mice 
(acute)

Hippocampus - Antagonists increased seizure 
time during SE

- [97]

Pilocarpine in rats (acute) Hippocampus - - Antagonists increased CA3 damage, 
agonists increased TNF-α levels and 
decreased CA3 damage

[102]

Pilocarpine in rats (acute) Hippocampus and piri-
form cortex

- - Antagonists inhibited microglial acti-
vation, agonists activated microglial 
activation

[103]

Intra-amygdala kainate in 
mice (acute)

Hippocampus Granule neurons, 
CA1 neurons

Agonists increased seizure time 
and antagonists decreased 
seizure time 

Antagonists protected against cell 
death and interleukuin-1β induction

[62]

Pilocarpine in rats 
(chronic)

Medial entorhinal cortex - Pro-epileptic effect of ATP in 
naïve rats through P2X7R. No 
pro-epileptic effect of ATP in 
chronic epileptic rats

- [104]

Key; P2X7R, P2X7 receptor. SE, status epilepticus.
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Temporal lobe epilepsy is particularly associat-
ed with pharmacoresistance.

The need for new AEDs is a widely-recognized 
goal for the improved treatment of epilepsy 
[84]. Existing AEDs target a relatively small 
number of proteins. These include inhibitory 
(GABAergic) transmission, reducing excitatory 
(glutamatergic) neurotransmission and modu-
lation of neurotransmitter release, and target-
ing voltage-gated ion channels [85]. There is a 
need for new AEDs which function in different 
ways or target different modulatory proteins. 
Possible features of new AED targets include 
proteins with more subtle influence on excit-
atory neurotransmission to avoid the common 
side effects of many AEDs. Anti-
neuroinflammatory [76] or neuroprotective 
properties [86] could also yield disease-modify-
ing effects that would mitigate the underlying 
pathology.

A second potential clinical application is for the 
treatment of status epilepticus (non-terminat-
ing seizures). Current clinical practice is to use 
benzodiazepines such as lorazepam and mid-
azolam or barbiturates such as phenobarbitone 
[87]. However, status epilepticus becomes 
pharmacoresistant over time, which is thought 
to be due to internalization or otherwise desen-
sitization of the GABAA receptor [88]. Thus, 
drugs acting on a separate aspect of the patho-
physiology of status epilepticus may be useful 
frontline or adjunctive treatments for status 
epilepticus.

ATP and P2X receptors in epilepsy

Early evidence of a possible role of ATP during 
seizures stems from studies showing increased 
extracellular ATP levels after direct electrical 
stimulation of the cortex in rodents [18]. A later 
study confirmed and extended this insight, 
showing increased ATP release after electrical 
stimulation of hippocampal slices [19]. Another 
early study showed that epileptiform activity in 
the CA3 region of rat hippocampal slices was 
possibly modulated by P2X receptors [89] and 
microinjection of ATP analogues into the piri-
form cortex or into the ventricle of mice induces 
or exacerbates seizure activity [62, 90]. The 
DBA/2 strain of seizure-prone mice also has 
increased extracellular ATP levels, possibly due 
to decreased ATPase activity [19]. Glutamate 

released from astrocytes induced by ATP and 
ectonucleotidase activity/expression changes 
have also been implicated in epileptogenesis 
[23].

P2X7 receptor in epilepsy

The first studies to explore expression of the 
P2X7 receptor in epilepsy used tissue from 
chronically epileptic rats. P2X7 receptor stain-
ing was found to be increased in the hippocam-
pus, mainly within mossy fibers and the dentate 
gyrus [91]. Subsequent studies in rodents 
found enhanced immunoreactivity of the P2X7 
receptor after status epilepticus, and respon-
siveness to ATP, in microglia in relation to trans-
formation to the activated state [92, 93]. Dona 
et al also found increased P2X7 receptor immu-
noreactivity on microglia during the acute and 
chronic phase of epilepsy in rats [94]. 
Additionally, they also noted P2X7 receptor 
staining on glutamatergic nerve terminals [94]. 
Interestingly, P2X7 receptor immunoreactivity 
has not generally been reported on astrocytes, 
which was confirmed recently by work using 
P2X7 receptor reporter mice [92].

Studies in our laboratory confirmed upregula-
tion of the P2X7 receptor in the ipsilateral hip-
pocampus after status epilepticus induced by 
the unilateral microinjection of kainic acid into 
the mouse amygdala [62]. Indeed, we surveyed 
the hippocampal expression of most of the P2X 
receptor family in this model and only P2X7 
receptor levels increased [62]. Using the P2X7 
receptor reporter mouse, we found increased 
transcription of the gene mainly in granule neu-
rons in the dentate gyrus, as well as in some 
CA1 pyramidal neurons. The EGFP signal driven 
by P2X7 receptor promoter activation did not 
increase in cells positive for the microglial 
marker Iba-1 or the astrocyte marker GFAP 
[62]. Together, these studies reveal P2X7 
receptor expression is profoundly altered after 
status epilepticus and in chronic epilepsy 
although model, time period and region studied 
and other technical explanations may underlie 
the apparent differences reported for P2X7 
receptor localization in these models. Table 1 
summarizes the available evidence of P2X7 
receptor expression in models of seizures/epi-
lepsy and the results of in vivo studies with 
P2X7 receptor ligands.
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Effects of P2X7 ligands on seizures

Research on the in vivo effects of P2X7 recep-
tor ligands in seizure models has produced 
exciting discoveries in the past two years. In 
studies by the authors, central (intracerebro-
ventricular) injection of mice with P2X7 recep-
tor agonists increased the severity of seizures 
during status epilepticus triggered by intra-
amygdala kainic acid [62]. This suggests activa-
tion of the P2X7 receptor may exacerbate sei-
zures. P2X7 receptor antagonists strongly 
reduced production of interleukin-1β and sei-
zure-damage to the hippocampus (Figure 2). 
Seizure severity was also strongly reduced by 
either pre- or early post-treatment of mice with 
P2X7 receptor antagonists (Figure 3). Finally, 
P2X7 receptor antagonists were even effective 
at reducing status epilepticus once seizures 
became partially refractory to a traditional anti-
convulsant (lorazepam). In this experiment, a 
combination of lorazepam and the P2X7 recep-
tor antagonist A-438079, but not either drug on 
its own, fully abrogated seizures (Figure 3). This 
indicates a potential application of P2X7 recep-
tor antagonists in the treatment of refractory 
status epilepticus. Thus, P2X7 receptor antago-
nists may be useful new adjunctive agents for 
seizure suppression.

Some studies have reported different effects of 
P2X7 receptor ligands on seizures (see Table 
1). Kim et al. reported reduced astroglial degen-
eration during chronic epilepsy in the dentate 
gyrus in animals that received a P2X7 receptor 
blocker [95]. Also, Kim et al showed that P2X7 
antagonists exacerbated astroglial cell death in 
the CA1 hippocampal subfield [96]. Conversely, 
P2X7 receptor agonists protected against 
astroglial cell death in the CA1 hippocampal 
subfield but promoted astroglial cell death in 
the dentate gyrus and in the frontoparietal cor-
tex [96]. In further studies, this group found 
that mice lacking P2X7 receptors were more 
vulnerable to status epilepticus induced by pilo-
carpine (although not kainate), and P2X7 recep-
tor antagonists exacerbated seizures in the 
pilocarpine model [97]. However, this study 
also reported that pannexin channels mediated 
anticonvulsant effects, which strongly con-
trasts findings by others on the pro-convulsive 
properties of these channels [98, 99]. 
Regardless, in vivo studies now suggest P2X7 
receptor ligands have excitability-modulating 

effects that might make them suitable for the 
treatment or prevention of seizures.

Final comments and summary

There remains a need for alternative drug tar-
gets for seizure control in pharmacoresistant 
epilepsy and refractory status epilepticus. The 
P2X7 receptor may be one such target. Potent 
seizure-suppressing effects have been report-
ed for drugs which block the P2X7 receptor 
and, in combination with traditional benzodiaz-
epine anticonvulsants, seem to stop seizures in 
refractory status epilepticus [62]. These drugs 
may also have direct effects on neuronal and 
glial survival which could be beneficial in miti-
gating the pathophysiology associated with 
temporal lobe epilepsy (Figures 2 and 3).

There are a number of questions, however, 
which must be addressed in driving forward 
this area of epilepsy research. First, given the 
apparently paradoxical performance of P2X7 
receptor antagonists in the pilocarpine and kai-
nate models [62, 97] groups must now test 
P2X7 receptor antagonists in other seizure 
models (e.g. electroshock, kindling). Such 
experiments would ideally be supplemented by 
testing the drug for specificity, perhaps using 
the available P2X7 receptor knockout animals. 
Administration route is another area that 
should be explored further. In the studies by our 
group, P2X7 receptor ligands were delivered 
intracerebroventricularly but work to optimize 
blood-brain barrier permeability of P2X7 recep-
tor ligands is critical. Another potential applica-
tion for P2X7 receptor antagonists would be for 
the treatment of neonatal seizures, where cur-
rent pharmacotherapy is often ineffective 
[100].

Another aspect of the P2X7 receptor research 
is whether altered seizure-induced cell death 
after treatment with P2X7 receptor ligands in 
some studies (see Table 1) is a result of altered 
seizure time alone or due to direct effects on 
pathways downstream of P2X7 receptors.
Finally, do P2X7 receptor antagonists prevent 
seizures in already-epileptic mice and in mod-
els of drug-resistant epilepsy? These drugs are 
likely to perform differently in models where 
P2X7 receptor expression is particularly 
increased in microglia versus neurons. 
Expression of the P2X7 receptor has not been 
well characterized in human epilepsy and has 
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not been examined at all in non-temporal lobe 
epilepsies. Do P2X7 receptor ligands work in 
human epileptic tissue?

In summary, the present review supports the 
P2X7 receptor as a promising new target of 
interest for seizure control and also as a con-
tributing factor to the pathophysiologic mecha-
nisms underlying epilepsy.
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