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Abstract: Brain-derived neurotrophic factor (BDNF) plays critical roles in many aspects of brain functions, including 
cell survival, differentiation, development, learning and memory. Aberrant BDNF expression has also been impli-
cated in numerous neurological disorders. Thus, significant effort has been made to understand how BDNF tran-
scription as well as translation is regulated. Interestingly, the BDNF gene structure suggests that multiple promoters 
control its transcription, leading to the existence of distinct mRNA species. Further, the long- and short-tail of the 3’ 
un-translated region may dictate different sub-cellular BDNF mRNA targeting and translational responses following 
neuronal stimulation. This review aims to summarize the main findings that demonstrate how neuronal activities 
specifically up-regulate the transcription and translation of unique BDNF transcripts. We also discuss some of the 
recent reports that emphasize the epigenetic regulation of BDNF transcription.
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Introduction

Like other neurotrophins, brain-derived neuro-
trophic factor (BDNF) was initially identified for 
its role in neuron proliferation, neurogenesis, 
differentiation and degeneration [1, 2]. Its func-
tion in regulating activity-dependent neuronal 
modification has also been demonstrated. For 
example, BDNF regulates both memory forma-
tion and long-term potentiation (LTP), an activi-
ty-dependent strengthening of synaptic effica-
cy [3]. Two independent lines of BDNF mutant 
mice show severe impairments in LTP at the 
CA1 synapses in hippocampus [4, 5]. 
Importantly, BDNF heterozygous mutants show 
similar defective LTP to that of homozygous 
mice, indicating that full level of BDNF is 
required. Furthermore, these synaptic defects 
in the mutant mice are rescued by either acute 
application of exogenous recombinant BDNF or 
by virus-based over-expression of BDNF [5, 6]. 
Because the homozygous null mutants display 

shorter life span, memory formation has been 
mainly investigated with heterozygous mutants 
[7, 8]. Consistently, BDNF heterozygous mutants 
show impairments in the hippocampus-depen-
dent paradigms, including Morris water maze 
[7] and contextual fear conditioning [8]. Another 
independent group used forebrain-specific 
BDNF homozygous mutants, and found severe 
spatial memory defects in the Morris water 
maze test [9]. Moreover, infusion of BDNF anti-
sense oligonucleotides or anti-BDNF antibodies 
also impairs spatial memory [10, 11].

How does BDNF support activity-dependent 
modification of synapses and brain function? It 
has been suggested that the induction of LTP 
requires BDNF release from the presynaptic 
vesicles [12, 13]. Further, BDNF may promote 
vesicle docking at the presynaptic active zone 
[14]. However, the postsynaptic function is also 
suggested by that postsynaptic BDNF secretion 
triggered by a spike-timing protocol at the sin-
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gle-cell level is required for the long-term struc-
tural change of spines [15]. These data impli-
cate that presynaptic and postsynaptic BDNF 
release may differentially facilitate the induc-
tion and the maintenance phase of LTP, respec-
tively. Mechanistic studies have indicated that 
several signaling pathways may be activated 
upon BDNF binding to its receptor TrkB, a 
receptor tyrosine kinase [16]. For example, 
BDNF-dependent TrkB activation may potenti-
ate the glutamate function by promoting gluta-
mate release [17, 18] or increasing the open 
probability of NMDA receptor (NMDAR) [19, 20]. 
Additionally, BDNF elevates the expression and 
regulates the trafficking of both NMDA and 
AMPA receptors, which are essential steps for 
the induction and maintenance of LTP [21-23].

Interestingly, BDNF is not only required for 
many aspects of activity-dependent plasticity 

and brain function, its expression is also trig-
gered by neuronal activity both in vitro and in 
vivo. This is consistent with the notion that 
gene transcription and new protein synthesis 
are required for both LTP and memory forma-
tion [3, 24]. Through the investigation on how 
activity-dependent intracellular signaling and 
transcription factors regulate BDNF expres-
sion, we have also achieved better understand-
ing on gene-environment interaction. This 
review will mainly focus on transcriptional and 
translational regulation of BDNF.

Structure of BDNF gene

BDNF transcription is significantly induced by 
Ca2+ and neural activity. In cultured neurons, 
calcium influx through L type voltage gated cal-
cium channel (L-VGCC) [25] or NMDAR [26, 27] 
robustly increases BDNF mRNA that may last 

Figure 1. The structure of mouse and rat BDNF gene. BDNF gene consists of eight 5’ exons (I-VIII) and one 3’ exon 
(IX). Introns in the gene are presented as straight horizontal lines. The protein-coding region is shown as a dark box, 
and the non-coding exon regions are shown as open boxes. Three alternative splicing sites (A, B and C) in exon II 
and the two poly-adenylation sites (polyA site) are indicated with arrows. Exon IXA is the 5’ extended coding exon. 
Adapted from Aid et al., 2007 [35].
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for at least 6 hrs. Electrical activity, such as 
high frequency stimulation that induces LTP, 
also triggers BDNF transcription in brain slices 
[28]. In live animals, induction of BDNF tran-
scription has been observed after training of 
contextual learning [29], physical exercise [30], 
exposure to novel environment [31], chronic 
exposure to drugs of abuse [32], as well as kai-
nic acid (KA)-induced seizure [33].

Intriguingly, the activity-dependent BDNF tran-
scription only produces certain BDNF mRNA 
isoforms [33, 34]. BDNF gene consists of at 
least eight 5’ non-coding exons (i.e. from exon I 
to VIII) and one 3’ coding exon (i.e. exon IX). By 
using 5’ rapid amplification of cDNA ends 
(RACE), bioinformatics, RT-PCR and sequencing 
analysis, Aid and colleagues identified nine dis-
tinct transcriptional initiation sites: eight at the 
beginning of the individual 5’ non-coding exon 
and one in the intron proceeding exon IX [35]. 
This indicates that nine different promoters 
control BDNF transcription. Because of the 
existence of a splicing donor site 3’ to each of 
the exons, a single non-coding exon will join 
exon IX following RNA splicing. The discovery of 
exon IXA, alternative splice donor sites within 
exon II, and two poly-adenylation sites in the 3’ 
un-translated region of exon IX predicts that 
there are at least 22 isoforms of BDNF mRNA 
[33, 35] (Figure 1). Because only exon IX con-
tains the coding region, all these transcripts will 
be translated to a single species of BDNF poly-
peptide. Such sophisticated gene structure 
may fine-tune its dynamic transcriptional regu-
lation in different cell types and by different 
neuronal activity. For example, fear condition-
ing increases BDNF exon I and IV in hippocam-
pus (but only exon IV in the CA1 region [34, 36]) 
and amygdale [37, 38], whereas fear memory 
extinction elevates BDNF exon I and IV in pre-

frontal cortex [39]. Administration of cocaine 
enhances the activity of exon II promoter [40]. 
The existence of different non-coding exons 
and different versions of the 3’ UTR (dictated by 
the different poly-adenylation sites) may cause 
different sub-cellular localization [41-43].

There are multiple Ca2+-responsive elements 
in the BDNF promoter IV

Among all promoters that control the transcrip-
tion of distinct exons, the regulatory feature of 
promoter IV is most thoroughly investigated. In 
cortical neurons, exon IV-containing BDNF 
mRNA (this is according to the new designation; 
it was originally referred to as exon III.) is the 
major form induced by neuronal activity [25, 27, 
44]. Interestingly, BDNF exon IV transcription is 
also up-regulated by BDNF itself both in vitro 
and in vivo [45, 46]. Investigations on this spe-
cific transcript suggest that the 170-base pair 
(bp) 5’ flanking sequence of exon IV contributes 
as the regulatory region for calcium-mediated 
BDNF IV transcription. Within this regulatory 
region, three calcium responsive elements (i.e. 
CaRE1, 2 and 3) have been identified (Figure 
2).

CaRE1 is located at -73 to -64 relative to the 
exon IV transcriptional initiation site (Figure 2), 
which is conserved in rat, mouse and human 
BDNF gene. By using the yeast one hybrid 
screening, Tao et al. [47] identified a novel tran-
scription activator CaRF (calcium responsive 
factor) that can bind the CaRE1 sequence. 
Recently, McDowell and colleagues generated 
mice lacking CaRF DNA binding domain, and 
found that BDNF IV mRNA level is reduced in 
the mutant cortex [48]. The mutant mice also 
show disrupted remote memory and impaired 
extinction. Interestingly, activity profiles of 

Figure 2. The arrangement of functional cis-elements and the corresponding transcription factors in BDNF promoter 
IV. The relative location of the sequences to the transcription initiation site (+1) is labeled. The E-Box and the NFκB 
sequence have one base pair overlap.
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CaRE1 and CaRF appear to be different. For 
example, the Ca2+-dependent CaRE1-mediated 
transcription depends on both L-VGCC and 
NMDAR. The CaRF-mediated transcription only 
depends on L-VGCC but not NMDAR [27].  
Further, the L-VGCC-dependent activation of 
CaRE1-mediated transcription requires PKA 
(protein kinase A), CaMKI (calmodulin-depen-
dent protein kinase I), and CaMKIV (calmodulin-
dependent protein kinase IV) activity. In con-
trast, CaRF activation requires MEK, PI3K and 
CaMKII activity [27]. It is suggested that, in 
addition to CaRF, other transcriptional regula-
tors may also exist in the CaRE1/CaRF com-
plex. Another possibility is that the CaRF activa-
tion and its binding to CaRE1 may be 
differentially regulated by different intracellular 
signaling molecules.

CaRE2 locates at 52 to 43 bp upstream of exon 
IV transcriptional initiation site (Figure 2). It has 
been identified as an E-box element, which may 
be recognized and bound by members of the 
basic helix-loop-helix (bHLH) family. Chen et al. 
has demonstrated that homo- or heterodimer 
of USF1 (upstream stimulatory factor 1, a bHLH 
protein) and USF2 regulates BDNF transcrip-
tion in a L-VGCC dependent manner in cultured 
DIV 5 (days in vitro 5) neurons [49]. Surprisingly, 
the activation of L-VGCC or NMDAR fails to stim-
ulate CaRE2-mediated transcription in DIV 11 
neurons [27], suggesting possible developmen-
tal influences.

CaRE3 locates between nucleotide -36 and -29 
relative to transcriptional initiation site of exon 
IV. The CaRE3 sequence resembles the con-
sensus sequence of cAMP response element 
(CRE) (Figure 2). Electrophoretic mobility shift 
assays (EMSA) demonstrate that CaRE3 binds 
CRE binding protein (CREB) in vitro [25]. Several 
lines of evidence also suggest regulatory 
effects of CREB on CaRE3-mediated transcrip-
tion in live neurons. First, the activity of CaRE3 
and CRE is similarly regulated by the same 
Ca2+-stimulated protein kinases [27]. Secondly, 
constitutive active CREB (i.e. CREB-VP16) up-
regulates both CaRE3- and CRE-mediated tran-
scription in cultured neurons [27]. Furthermore, 
disruption of CREB binding by mutating CaRE3 
sequence abolishes activity-induced BDNF IV 
transcription [25, 50]. Consistent with that 
BDNF transcription is responsive to neuronal 
activity, CREB activity can be up-regulated by 
calcium influx through either L-VGCC and 

NMDAR, by high frequency stimulation [51], 
and by learning-related trainings (such as con-
textual fear conditioning and passive avoid-
ance) [52]. Similar to the effects caused by the 
reduction of BDNF, lack of CREB results in 
defective LTP and memory formation [53, 54].

In addition to the CaREs, accumulating evi-
dence has also implicated the function of other 
cis-elements in regulating BDNF IV transcrip-
tion (Figure 2). An NFκB (nuclear factor κB) site 
and a class B E-box [55, 56] exist in a 22 bp 
segment spanning from -21 to +1 of the initia-
tion site. Although the function of NFkB binding 
is unclear, the NMDA-stimulated BDNF IV tran-
scription does require the intact NFkB site. The 
class B E-box is bound by BHLH2, a suppressor 
in the bHLH family. The reduced BHLH2 binding 
after NMDAR activation is needed for the up-
regulation of BDNF IV. Furthermore, both the 
basal and KA-induced level of BDNF IV are 
increased in BHLH2 knockout (KO) mice. 
Moreover, the existence of a composite NFAT/
MEF2 (nuclear factor of activated T cell/ myo-
cyte enhancer factor 2) consensus sequence is 
identified at the +140-156 region. The NMDA-
stimulated BDNF IV mRNA up-regulation is 
decreased by silencing NFATc4, and increased 
by overexpressing NFATc4. This indicates that 
NFATc4 positively regulates BDNF IV transcrip-
tion [57]. Through interacting with NFATc4, a 
transcription factor MEF2 [58], which recruits 
histone deacetylases (HDAC) also regulates the 
activity of promoter IV [59]. Additionally, the 
persistent up-regulation of BDNF IV following 
neuronal stimulation may require Npas4 [67].

Regulation of BDNF transcription by Ca2+-stim-
ulated intracellular signaling

Because BDNF is an immediate early gene, its 
transcriptional up-regulation depends on the 
pre-existing molecules, and does not require 
any de novo protein synthesis. The causal func-
tion of calcium influx following the activation of 
L-VGCC and NMDAR suggests that Ca2+-
stimulated protein kinase activity may regulate 
the activation of the relevant transcription fac-
tors. It is well known that elevation of intracel-
lular calcium leads to the activation of Ras/
ERK1/2 [60], cAMP/PKA [61] and CaM kinase 
pathway [62]. These Ca2+-stimulated kinases 
may, in turn, stimulate both CREB and CaRF. 
Although PKA was identified as the main kinase 
for CREB initially, ERK1/2 may play a major role 
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for the persistent phosphorylation of CREB in 
neurons [63, 64]. CaMKII may have dual effects 
on CREB, because it may phosphorylate both 
Ser 133 and 142 of CREB. While the phosphor-

ylation at Ser 133 activates CREB-mediated 
transcription, the phosphorylation at Ser 142 
inhibits the interaction between CREB and its 
co-activator CBP (CREB binding protein) [65]. 

Figure 3. Ca2+-stimulated adeny-
lyl cyclase activity is required for 
learning-induced BDNF exon I 
transcription. Two- to three-month 
old wild type (n = 21) and AC1/
AC8 DKO (n = 12) mice were 
trained by contextual fear condi-
tioning. Animals were introduced 
to the contextual chamber, and 
allowed to explore for 2 min, af-
ter which 3 mild electric foot 
shocks (0.7 mA, 2 sec duration) 
were delivered with 20 sec in-
tervals. Animals remained in the 
chamber for 1 min after the last 
shock, and were then returned 
to their home cages. The control 
animals only received 3 shocks 
without exposure to the contextu-
al chamber. Hippocampi were col-
lected 2 hours after training. The 
procedures have been approved 
by the Institutional Animal Care 
and Use Committee at Michigan 
State University. The mRNA lev-
els of BDNF exon I, BDNF exon 
IV, and c-fos were determined by 
quantitative RT-PCR, and normal-
ized to GADPH mRNA level. The 
primers used for BDNF exon I 
were ACTCAAAGGGAAACGTGTCTC 
(forward) and GCCTTCATGCAAC-
CGAAGTA (reverse); the prim-
ers used for exon IV were CTC-
CGCCATGCAATTTCCAC (forward) 
and GCCTTCATGCAACCGAAGTA 
(reverse); the primers used for 
c-fos were AGCCTTTCCTACTAC-
CATCC (forward) and ATTCCG-
GCACTTGGCTGCAG (reverse); 
the primers used for GADPH 
were TCCATGACAACTTTGGCATT-
GTGG (forward) and GTTGCTGTT-
GAAGTCGCAGGAGAC (reverse). 
A. BDNF exon I and c-fos but not 
BDNF exon IV are significantly 
increased after contextual train-
ing.  B. The up-regulation of BDNF 
exon I and c-fos is abolished in 
AC1/AC8 DKO mice. N.S.: not 
significant.  C. the arrangement 
of cis-elements and the corre-
sponding transcription factors in 
BDNF promoter I. The relative lo-
cation of the cis-elements to the 
transcription initiation site (+1) is 
labeled. The sequences of USFBE 
and CRE overlap.
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Furthermore, the CaMKIV-dependent phos-
phorylation of CBP at Ser-301 [66] may trigger 
its histone acetyltransferase (HAT) activity, 
which modifies histone and chromatin struc-
ture, recruits RNA polymerase II complex, and 
acts as an adaptor for other transcriptional fac-
tors (e.g. calcium-responsive trans-activator or 
CREST) [67-70]. Further, calcineurin-dependent 
CREST-CBP interaction facilitates CRE-mediate 
transcription [71]. Sequence analysis predicts 
that CaRF may be phosphorylated by ERK1/2, 
CaMKII, and PKC (protein kinase C) [47]. 
Experimentally, CaRF-mediated transcription in 
cortical neuron requires the activity of MEK, 
PI3K, and CaMKII [27].

To thoroughly examine the function of the major 
Ca2+-stimulated protein kinases, we studied the 
regulation of BDNF IV mRNA and promoter IV 
activity in cultured cortical neurons [27]. We 
found that the previously defined promoter IV 
activity and BDNF IV mRNA level share similar 
regulatory properties. They are both up-regulat-
ed by the activation of L-VGCC or NMDAR. 
Inhibition of MEK or CaMK activity decreased 
the basal level as well as Ca2+-stimulated 
increase of both promoter IV activity and BDNF 
IV mRNA. PKA or PI3K activity is only required 
for Ca2+-stimulated up-regulation of both pro-
moter IV and BDNF IV mRNA. Further investiga-
tion with dominant negative CaMK constructs 
show that CaMKI is required for the basal and 
Ca2+-stimulated activity of promoter IV. CaMKII 
and CaMKIV are required for the Ca2+-stimulated 
but not basal activity of promoter IV. 
Interestingly, the L-VGCC- and NMDAR-
dependent activation of the CaREs may involves 
different Ca2+-stimulated protein kinases. 
Specifically, the L-VGCC- but not NMDAR-
mediated CaRE1 activation requires PKA, 
CaMKI, and CaMKIV activity. The NMDAR- but 
not L-VGCC-mediated CaRE3 activation requires 
CaMKI activity.

In addition to the major Ca2+-stimulated protein 
kinases, other Ca2+-stimulated intracellular 
molecules may also regulate activity-depen-
dent BDNF transcription through ERK1/2 and 
CREB. The activity of type 1 and 8 adenylyl 
cyclases (AC1 and AC8) can be stimulated by 
calcium, leading to Ca2+-stimulated production 
of cAMP and activation of PKA [72, 73]. Mice 
lacking both AC1 and AC8 are defective in LTP 
and hippocampus-dependent memory forma-
tion [72, 73]. The impairments may be due to 

the lack of learning-induced ERK1/2 and CREB 
activation in the mutant hippocampus [74]. 
This is consistent with that CREB activation 
requires PKA as well as ERK1/2, whose activity 
may be stimulated by PKA and cAMP through 
Rap1 [75-77]. The function of Ca2+-stimulated 
ACs (i.e. AC1 and 8) in regulating CREB activity 
suggests their involvement in BDNF transcrip-
tion. We trained wild type (WT) and AC1/AC8 
double knockout (DKO) mice with contextual 
fear conditioning. Quantitative RT-PCR revealed 
that, comparing to the shock only group, pairing 
shock with the context caused significant 
increase of BDNF exon I in WT hippocampus 
(Figure 3A). The level of exon IV remained un-
changed after training. There was no training-
induced BDNF mRNA up-regulation in AC1/AC8 
DKO mice (Figure 3B). This is consistent with 
that exon I may be more sensitive to activity. 
Six-hour physical exercise elevates exon I tran-
scription but not other exons in the hippocam-
pus; longer-time exercise up-regulates the tran-
scription of multiple exons [78]. We are aware 
that previous studies demonstrated that BDNF 
exon IV is up-regulated in the hippocampus fol-
lowing contextual fear conditioning [34, 36]. 
The contrary may result from different animal 
models (e.g. rat vs. mouse) and different experi-
mental conditions. Mechanistically, due to the 
existence of CRE in promoter I [79] (Figure 3C), 
AC1 and AC8 may regulate activity-dependent 
exon I transcription through CREB [74]. It is 
interesting to note that the training-induced up-
regulation of another CREB target gene c-fos 
was also ablated in AC1/AC8 DKO mice (Figure 
3A and 3B).

Epigenetic regulation of BDNF transcription

Beside the regulation by transcriptional factors, 
accumulating evidence indicates that epigene-
tic mechanisms including both chromatin 
remodeling and DNA methylation also regulate 
BDNF transcription. Changes in chromatin 
structure results from the post-translational 
modification on histone proteins by acetylation, 
methylation, and phosphorylation [80]. A recent 
study first demonstrates the role of HDAC2 (his-
tone deacetylase 2) in synaptic plasticity and 
memory formation. HDAC2 knockout mice 
show enhanced memory formation, whereas 
HDAC2 over-expression animals show learning 
deficits [81]. Additionally, a decrease in lysine 9 
dimethylation of histone 3 (H3) is essential for 
NMDA-induced BDNF exon I transcription in 
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hippocampal neurons [82]. It is interesting and 
important to note that the activity-dependent 
modification of chromatin structure is not uni-
versal, but rather occurs in histones associated 
with specific genes. For example, memory 
extinction protocol increases the acetylation of 
H4 in chromatins at BDNF promoter IV but not 
other exons [39]. Acetylation of H3 is uniquely 
up-regulated at promoter IV following contextu-
al fear conditioning [34]. Environmental enrich-
ment specifically up-regulates the methylation 
of H3 lysine 4 at promoter III and IV, but down-
regulates lysine 9 methylation of H3 at promot-
er IV [83]. As described earlier, CBP is a CREB 
co-activator and confers acetyltransferase 
(HAT) activity. Mice with CBP mutation show 
reduced histone acetylation along with impaired 
LTP and memory retention [84, 85]. Notably, 
the inheritable disorder Rubinstein-Taybi syn-
drome is caused by CBP mutation, and HDAC 
inhibitor rescued memory and synaptic deficits 
in an animal model [86]. Although deficiency of 
CBP leads to histone hypoacetylation, the 
expression level of BDNF is surprisingly intact 
in the CBP mutant mice [86]. However, overex-
pression of CBP increases BDNF expression 
and rescues memory deficits in an animal 
model of Alzheimer’s disease [87].

DNA methylation is another important epigen-
etic mechanism for BDNF transcription and 
synaptic plasticity. For example, membrane 
depolarization decreases expression of Dnmt1 
(DNA methyltransferase I) and Dnmt3a in cul-
tured cortical neurons and consequently 
unmethylates the CpG islands (which contain a 
high frequency of a cytosine residue followed 
by a guanine residue; the methylation occurs 
on the cytosine residue) in promoter I and IV, 
which at least partially contribute to activity-
dependent BDNF mRNA up-regulation [88, 89]. 
In vivo, contextual learning also decreases 
methylation at BDNF promoters [34]. It appears 
that the global level of methylation reduction 
and BDNF up-regulation are only transient in 
the hippocampus after contextual learning. In 
contrast, DNA hypermethylation in dorsomedial 
prefrontal cortex consisting of anterior cingu-
late and prelimbic cortices, persists for as long 
as one month, and may be crucial for the stor-
age of remote memory [90]. Notably, although 
inhibition of Dnmt results higher BDNF expres-
sion, applying Dnmt inhibitors or genetically 
deleting Dnmt1 and 3a in forebrain impairs syn-

aptic plasticity and results in learning deficits 
[34, 88, 91]. There are two possible interpreta-
tions: 1) other Dnmt targets are involved and 
function as negative regulators of memory for-
mation (e.g. protein phosphatase 1 [92]), and 
2) the maintenance of basal DNA methylation is 
more essential for the de novo signals to modi-
fy brain structure.

In general, DNA hypermethylation leads to the 
reduction of transcription, possibly due to that 
the addition of methyl group on cytosine reduc-
es the binding and assembly of transcription 
machinery. Another consequence of DNA meth-
ylation is to facilitate the recruitment of MBD 
(methyl-binding domain)-containing proteins. 
For BDNF IV promoter, the occupancy of the 
methyl-CpG binding protein 2 (MeCP2) under-
goes dynamic changes following neuronal stim-
ulation. Two independent research groups have 
revealed novel insight of how neuronal activity 
changes the interplay between MeCP2 and 
BDNF promoter IV in cultured cortical neurons 
[93, 94]. By using chromatin immunoprecipita-
tion assay, both groups found that the occu-
pancy of MeCP2 was more predominant at pro-
moter IV than at other promoters of BDNF. 
Further, they both showed that membrane 
depolarization reduced DNA methylation in pro-
moter IV along with up-regulation of exon IV 
transcription. Consequently, MeCP2 dissociat-
ed from promoter IV following membrane depo-
larization. Martinowich et al. [94] further dem-
onstrated that engineered methylation of 
specific cytosine sites (at -109, -66, -35, and 
-24) was sufficient to decrease promoter IV 
activity. Consistently, overall hypomethylation 
in Dnmt1 mutant neurons showed higher 
expression level of BDNF mRNA. Chen et al. 
[93] identified another mechanism that caused 
MeCP2 dissociation from promoter IV. 
Membrane depolarization triggered MeCP2 
phosphorylation at Ser 421, which lowers the 
binding affinity even when the target sequence 
in promoter IV is highly methylated.

Intriguingly, these two teams reported that dif-
ferent methylated CpG sites changed in pro-
moter IV. While Martinowich et al. found 
decrease in cytosine methylation at -111, -109, 
and -24 sites after membrane depolarization 
[94], Chen et al. observed the major change at 
-148 site [93]. It is also apparent that such epi-
genetic regulation on BDNF transcription may 
vary depending on the type of neuron and stim-
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ulation. For example, Lubin et al. demonstrated 
that contextual fear conditioning induced sig-
nificant decrease of DNA methylation in pro-
moter I and IV along with tremendous increase 
of methylation in promoter VI in the hippocam-
pus [34]. Within promoter IV, bisulfite-sequenc-
ing analysis identified at least 12 CpG sites, 
whose methylation was down regulated follow-
ing contextual training. To add another layer of 
complication, examination of gene expression 
patterns in hypothalamus lacking or overex-
pressing MeCP2 revealed that the majority of 
genes, including BDNF, are activated rather 
than suppressed by MeCP2 [95], whereas 
BDNF exon IV mRNA is expressed higher in cul-
tured Mecp2 null neurons [93]. Moreover, Zhou 
et al. suppressed endogenous wild type MeCP2 
and expressed MeCP2 S421A (the mutation 
abolishes the activity-dependent MeCP2 phos-
phorylation) in cultured neurons, and observed 
lower BDNF mRNA induction [96], supporting 
the findings of Chen et al.. However, this mech-
anism is challenged by in vivo studies. Li and 
colleagues generated MeCP2 S421A/S424A 
mice and found higher expression of BDNF 
exon IV as well as enhanced plasticity and 
learning [97]. One possibility is that MeCP2 
may associate with transcription activators 
such as CREB1 and up-regulate gene expres-
sion [95]. The controversial conclusions from in 
vitro cultures and live animals also suggest that 
MeCP2 regulates gene expression in a more 
systematic pattern involving both excitatory 
and inhibitory neurons [98].

Translational regulation of BDNF through the 
3’ un-translated region

Due to two poly-adenylation sites (Figure 1), 
either a long 2.85 kb or a short 0.35 kb 3’ UTR 
is present in BDNF transcripts [33]. A recent 
study has found that the expression ratio of 
long to short version of BDNF mRNA shows vari-
ation in different brain regions. For example, 
the relative abundance of the long transcript is 
higher in the cortex and lower in the brain stem 
[41]. Further, mRNA with short 3’ UTR is local-
ized within soma; long mRNA is detected in 
both soma and dendrite. In mouse mutants 
that only express mRNA with short 3’ UTR, 
BDNF transcript is absent in dendrites. 
Strikingly, the mutants only show impaired LTP 
at the dendritic synapses but not at the somat-
ic synapses. This study, consistent with previ-

ous findings [99], suggests that local protein 
synthesis of dendrite-targeted mRNAs is 
required for certain aspects of neuroplasticity. 
It would be more revealing if learning and mem-
ory are examined with the 3’ UTR mutant mice.

The study by Lau et al. suggests another aspect 
of the BDNF 3’ UTR function [100]. Robust 
expression of luciferase in hippocampal neu-
rons is observed when the short but not long 3’ 
UTR is present in the reporter construct. 
Consistently, BDNF transcript with long 3’ UTR 
is mainly associated with the translational inac-
tive ribonucleoprotein particles. Thus, it is sug-
gested that the long 3’ UTR suppresses transla-
tion, and the basal BDNF level is maintained 
mostly by the translation of short 3’ UTR tran-
script. Because the long 3’ UTR transcript is 
targeted to dendrite, this specific mRNA may be 
involved in activity-dependent translational up-
regulation. Two lines of evidence have demon-
strated this possibility. First, stimulation with 
tetraethylammonium, which is sufficient to 
induce LTP, increases the expression of a 
reporter gene attached to long but not short 3’ 
UTR. Second, the presence of long BDNF tran-
script is remarkably increased in polyribosome-
associated complexes, and decreased in trans-
lational inactive complexes after 
pilocarpine-induced seizure. Identification of 
the key cis-elements and trans-factors that are 
responsible for dendritic targeting and activity-
dependent translation shall further advance 
the field.

In summary, the dynamic and multi-level regu-
lation of BDNF expression has demonstrated 
how cellular signaling and genomic programs 
enable excitable cells (i.e. neurons) to cope 
with the environmental changes. Importantly, 
altered expression of BDNF and mutations of 
many of its transcription regulators are impli-
cated in a variety of neurological disorders 
including Rubinstein-Taybi syndrome [101], 
Rett syndrome [102], depression [103], neuro-
degeneration [104, 105], addiction [106], 
schizophrenia [107], and bipolar disease [108]. 
It is hoped that better understanding on BDNF 
function and regulation may benefit therapeu-
tic development.
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