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Abstract
Most cellular processes occur in systems containing a variety of components many of which are
open to material exchange. However, computer simulations of biological systems are almost
exclusively performed in systems closed to material exchange. In principle, the behavior of
biomolecules in open and closed systems will be different. Here, we provide a rigorous framework
for the analysis of experimental and simulation data concerning open and closed multicomponent
systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using
computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 in both open
and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory
is used to help rationalize the aggregation properties of the solutes. Here one observes that the
picture of solute association described by the KB integrals, which are directly related to the
solution thermodynamics, and that provided by more physical clustering approaches are different.
It is argued that the combination of KB theory and simulation data provides a simple and powerful
tool for the analysis of complex multicomponent open and closed systems.

Introduction
Most biological processes occurring under cellular conditions involve systems that are open
to some form of matter exchange. In contrast, most in vitro experiments study systems
closed to matter exchange. It is therefore important to determine any differences in behavior
expected under different thermodynamic constraints between otherwise similar systems.
While the properties of closed systems have been studied in detail, the study of open
systems is less common and yet can provide a wealth of thermodynamic information.
Furthermore, the use of computer simulations to help understand biological systems is now
common practice. However, simulations of open systems of biological interest remain quite
rare. The main aim of the current work is to illustrate how simulation data can be combined
with a rigorous theory of solutions (for both open and closed systems) to provide insights
into the behavior of biologically relevant solutes and cosolvents.

The thermodynamics of open systems have been studied in detail.1-6 The usual way to treat
binary osmotic systems of a solute (2) in a primary solvent (1) employs a virial expansion
for the osmotic pressure (π) in terms of the solute number density (ρ2) such that,

(1)

where β=1/RT, B1 = 1, and several terms (2-5) are typically required in the sum. We note
that the above osmotic virial coefficients (Bn) differ slightly from the usual values (Bn’ =
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Bn/n) in an effort to simplify some of the results shown below. In the presence of an
additional cosolvent (such as NaCl) equilibrium dialysis or isopiestic distillation techniques
provide an alternative to the virial expansion approach.7,8 The above equation can be
directly applied to fit the experimental data using the Bn’s as fitting constants. Experimental
data concerning protein-protein interactions can be obtained from B2, however higher order
osmotic virial coefficients are not normally required due to the low protein concentrations
involved.9-11 This is not the case for smaller and/or more soluble solutes.

Most statistical thermodynamic theories attempt to relate the virial coefficients to the
underlying solute molecular distribution functions.1,3,12 One of the more versatile
approaches is provided by the Kirkwood-Buff (KB) theory of solutions.12,13 KB theory
provides thermodynamic expressions for various properties of both open and closed systems
in terms of integrals over molecular distribution functions, commonly referred to as KB
integrals (KBIs). In contrast to the traditional McMillan-Mayer (MM) approach, the
resulting KB related expressions can easily be applied at any concentration in any
multicomponent system. Furthermore, the combined use of KB theory and molecular
simulation appears quite natural as the KBIs can be obtained directly from the simulation
data at the composition of interest.14

The application of KB theory to open systems has been widely recognized.4,12,15,16

However, only recently have specific applications to evaluate either experimental or
simulation data appeared. Kirkwood and Buff recognized the possible uses of their theory
for osmotic systems in their original paper.12 O’Connell and coworkers have since used KB
theory to probe the exact relationships between osmotic virial coefficients and other
thermodynamic properties of solution mixtures.15 More recently, KB theory has been used
to directly rationalize osmotic pressure data,16 and to reinterpret light scattering data which
can also provide estimates of the second virial coefficient for proteins.17 Just in the last
decade a considerable effort has focused on understanding equilibrium dialysis, and other
closely related experimental data, in terms of cosolvent preferential binding.14,18-22 Finally,
KB theory has also been applied to the study of reactive and association equilibria in a
variety of ensembles.23-26 Here, we extend these previous approaches to: i) provide a simple
analysis of experimental osmotic pressure data; ii) indicate how one can obtain valuable
information concerning solute-solute distributions; iii) compare and contrast similar
properties in both open and closed systems; and iv) illustrate how one can use KB theory to
probe association equilibria describing the aggregation of solutes.

The application of KB theory to open systems can be further illustrated using computer
simulation data. The simulation of open systems by Monte Carlo methods is quite straight-
forward.27,28 Molecular dynamics simulations of open systems are more problematic due to
technical issues surrounding particle creation and annihilation.29 The simplest methods
involve the application of semi-permeable physical boundaries (virtual membranes) between
various regions of the system which directly mimic the experimental situation.30-32 A
similar approach is adopted here for the study of small Glyn (n = 1-3) solutes with and
without NaCl as a cosolvent.

Theory
General Background

In the following sections we will consider solutions containing a principle solvent (1), a
solute (2), and in some cases an additional cosolvent (3). The equilibrium concentration of
each species is expressed in terms of number densities (molarities), ρi = Ni/V, or
dimensionless molalities, mi = ρi/ρ1, and each species has an associated chemical potential,
μi. Temperature will be assumed to be constant throughout. The osmotic system(s) of
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interest involve a central fixed volume of interest (V) which is separated from a large bulk
solvent region by a barrier permeable (open) to the solvent, and in some applications the
cosolvent, but not to the solute. The bulk solvent is held at a constant chemical potential
(μ1) defined by the solvent at a particular temperature and a fixed outside pressure (PO).
Here, we use pure water at a temperature T = 298.15 K and a pressure PO = 1 bar
throughout. The pressure generated inside the central fixed volume region (PI) in the
presence of the solute then provides the osmotic pressure via π = PI – PO. The osmotic
pressure, the virial coefficients, and the integrals defined below are then a function of T,
μ1(PO), and ρ2. In the presence of a cosolvent the dependence extends to include ρ3, when
the barrier is impermeable (closed) to the cosolvent, or μ3 when the barrier is permeable
(open) to the cosolvent. However, in the following sections we have not included all of these
dependencies in an effort to simplify the notation used.

Kirkwood-Buff Theory of Binary Osmotic Systems
In this section we outline how KB theory can be used to understand osmotic systems. One of
the advantages of using KB theory is that the solution thermodynamics can be formulated in
terms of integrals which have a well defined physical significance. This is also true of the
MM theory of solutions, but there one is restricted to an interpretation in terms of
distributions at infinite dilution in the primary solvent.13 This restriction is not required by
KB theory, although MM theory is obtained, as expected, under infinite dilution conditions.
The following integrals are required,12

(2)

and correspond to integrals over the orientationally averaged two body g(2) and three body
g(3) distribution functions between the centers of mass of species α, β and γ, defined in the
Grand Canonical ensemble, and integrated over all relative center of mass positions r1 of
particle 1 of species α, etc. They clearly resemble the integrals appearing in the treatment of
imperfect gases or the MM theory of solutions.33 The key difference is that the solute
integrals G22 and G222 are composition dependent in KB theory. Hence, the distributions
(g22, etc) are for pairs of solute molecules after averaging over all other solute and solvent
degrees of freedom at the composition of interest. The physical interpretation of the G22
integral in open systems is quite simple. A positive value indicates a tendency for the solute
to self associate, while a negative value indicates a preference for solute solvation. We will
see that G222 provides a measure of triplet solute correlations and determines how G22
changes with composition. Alternatively, one can express the above integrals in terms of
particle-particle number fluctuations,

(3)

and,

(4)

where δN2 = N2 - < N2 > and the angular brackets denote an ensemble average for a local
region within the solution mixture. Here, N2 is the instantaneous number of solute molecules
observed in a small local fixed volume of the solution open to all species. KB theory relates
the properties (particle number fluctuations) of systems open to all species, to the properties
of semi-open (osmotic) or closed (isothermal isobaric) systems under the same average
thermodynamic conditions. We note that one does not have to use the commonly employed
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superposition approximation for the triplet distributions, or invoke additive potentials, when
using KB theory. The evaluation of G22 and other Gij values for various solutes represents
the major focus of this work.

The application of KB theory to binary osmotic systems provides expressions for derivatives
of the osmotic pressure in terms of the above integrals and the solute number density. The
first derivative is given by,12

(5)

Clearly, ideal osmotic behavior requires either a small solute concentration or G22 = 0 for all
compositions. A tendency for solute self association (G22 > 0) would result in a lower than
ideal (βπid = ρ2) osmotic pressure as the solute concentration is increased, and vice versa.
An expression for the second derivative has also been provided and can be written,26

(6)

Both derivative expressions apply at any solute concentration. Taking derivatives of the
right hand side of Equation 5 and equating with the right hand side of Equation 6 provides
an expression for the derivative of G22 with respect to solute concentration at constant T and
solvent chemical potential (all such derivatives will be indicated with a prime),

(7)

Hence, if G222 = 2G22
2 for all compositions the value of G22 will be independent of

composition, whereas one requires G222 = 0 for ideal systems. However, when G222 > 2G22
2

then G22 will tend to increase with composition and vice versa. When G22 is independent of

composition one finds that .

Given a set of osmotic virial coefficients one can directly express the composition
dependence of G22 (G22’) and G222 according to,

(8)

The above expressions describe the composition dependence of the experimental or
simulated solute self association, and represent the principle quantities of interest in this
study. Expansion of the above expressions in a power series in the solute number density
leads to,

(9)

and provide the limiting values of G22 and G222 for an infinitely dilute solute,
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(10)

together with the derivative of G22,

(11)

The above expressions are necessarily equivalent to those of MM theory, except for the fact
that we have not inferred the superposition approximation for the triplet potential of mean
force to simplify and evaluate B3. The above relationships lead to the following osmotic
pressure expansion,

(12)

which provides the B2 and B3 coefficients in terms of KB integrals, and is in agreement with
previous results.12 Hence, MM theory is obtained from KB theory when the required
derivatives are obtained at infinitely dilute solute concentrations.

The above expressions can be used to analyze experimental or simulated osmotic pressure
data for any type of solute. It should be noted, however, that the G22 integral diverges

( ) for low concentration salt solutions.34 KB theory can still be applied to study salt
solutions, but with less interpretive power as provided for non ionic systems. For both ionic
solutes and cosolvents we then distinguish between the traditional salt concentration (ρs) and
the total ion concentration (ρ2 or ρ3).35 Before leaving this section we note that KB theory
can be used to provide an expansion in terms of solute molality,25,36,37 but the expressions
then involve the G21 integrals and become somewhat more complicated to interpret.

Kirkwood-Buff Theory of Ternary Osmotic Systems
Ternary osmotic systems are more complicated and yet just as important. In particular, the
effects of osmolytes (or molecular crowding) on protein folding and association under
cellular (open) conditions requires a detailed knowledge of osmotic systems and their
behavior.38-40 Here, we provide expressions to illustrate the effects of a cosolvent (3) on the
osmotic pressure displayed by a solute (2) in a primary solvent (1), which depend on
whether the system is open or closed with respect to cosolvent. The following expressions
then hold,25

(13)

where we have written Nij = ρj Gij, and the last expression corresponds to the Gibbs-Duhem
equation at constant T. These differentials can be applied toward the analysis of systems in
any ensemble where T is held constant. Several different cases will be considered.

If the system is open to both the solvent and the cosolvent then one has dμ1 = dμ3 = 0 and
dP = dπ, which on insertion into the above expressions provide,
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(14)

In this situation there is no explicit dependence of the osmotic pressure on the KB integrals
involving either the solvent or cosolvent. However, the value of G22 will depend implicitly
on the cosolvent concentration. The difference between the G22 values in the presence and
absence of the cosolvent can be obtained from,

(15)

which is valid for low solute concentrations. If G22(ρ2) > G22(0) then the presence of the
cosolvent tends to increase the self association of the solute and is characterized by a lower
solute osmotic pressure in the presence of the cosolvent compared to that in pure solvent (for
the same solute concentration). The above conditions are the same as found in equilibrium
dialysis experiments. Here, one can quantify the relative binding of the cosolvent (G23) and
solvent (G21) to the solute via the preferential binding parameter,36,37

(16)

where mi = ρi/ρ1 is the (dimensionless) molality of i. This property is particularly useful
when describing the effects of cosolvents on molecular association as demonstrated below.

If the system is only open to the solvent and the cosolvent then one has dμ1 = dρ3 = 0 and
dP = dπ, which on insertion into the above expressions provide,

(17)

where N23 can be considered as a measure of the solute-cosolvent affinity. When species 2
and 3 are both proteins this provides insight into mixed protein-protein interactions that can
be extracted from experimental osmotic data. In either case, the above expression reduces to
Equation 5 when G23 = 0. Equation 17 is much more complicated in comparison to Equation
5 or 14. However, one can extract information on the cosolvent and solute association via,

(18)

which is valid for low solute and cosolvent concentrations.

Solute Association Equilibria in Osmotic and Closed Systems
The previous analysis indicates how one can obtain information concerning G22 for solutes.
It should be noted that this is the most relevant property describing solute-solute association
that relates to the thermodynamics of the solution. It involves both the direct binding
between solute molecules, together with more subtle and/or long range changes in the
solute-solute distribution with respect to a random bulk distribution (see Equation 2). Hence,
solute-solute association could increase without inferring the formation of well defined
dimers, etc. However, a much more physical picture of solute-solute association is provided
by spectroscopic studies, where information may be provided concerning the concentration
of specific tightly bound dimers. KB theory can also be used to study these types of
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association equilibria.23-26 The results for binary and ternary systems are presented here and
compared to equivalent results for closed systems.

If we consider a solute which can exist as a monomer (M) and an aggregate (A) consisting
of n monomers, then one can define an equilibrium constant for the association reaction nM

→ A such that  under the equilibrium conditions μA = nμM. We note that the
equilibrium constant defined here is not dimensionless. One could include a standard
concentration in the definition of the equilibrium to make K dimensionless. However, we
will only be concerned with changes in the equilibrium constant (KB theory is mute on the
value of K itself), and hence this factor will disappear. Previous studies indicate that,25

(19)

for a ternary system. The above differential complements the expressions in Equation 13 and
involves KB integrals describing the correlation between each solute form and the primary
components of the solution. The relationships between the solute KB integrals (independent
of solute form) and the integrals for solute specific forms are given by,25

(20)

where δij is the Kronecker delta function and the monomer and aggregate fractions are given
by fM = ρM/ρ2 and fA = nρA/ρ2, respectively. More details can be found in the original
literature.25,26

Using Equations 13 and 19 for binary systems (ρ3 = 0) one finds the following expressions
for the effect of increasing solute concentration on the solute association equilibrium in
open,

(21)

and closed,

(22)

systems. After taking derivatives of Equation 19 with respect to pressure one can then
eliminate the Gi1 terms to provide,

(23)

where ΔV* is the change in volume for the process, which can be expressed in terms of
KBIs but is simpler to interpret in this form. The above expressions demonstrate that the
change in the association equilibrium differs in open and closed systems (possessing the
same average thermodynamic properties) by terms in both the numerator and denominator.
The compressibility term in the denominator will typically be small (10−3) and can be
neglected, and the difference between the ensembles is related to the magnitude of ΔV*. In
open systems an increase in solute concentration increases the equilibrium constant if
association of the solute, in any form, is larger to the aggregate than n times the monomer.
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In closed systems the effect of water association is also directly present and can be
represented in terms of the volume change associated with the aggregation process. Hence,
open systems will resist (compared to closed systems) any processes which result in an
increase in volume by a term related to πΔV*.

Ternary systems are more complicated and involve additional KB integrals. Furthermore,
component 3 may be held at constant chemical potential or fixed concentration, and one can
follow the equilibrium by varying either the solute or cosolvent concentration. If the
cosolvent concentration is held fixed and the solute concentration varied one finds (in
addition to Equation 17) that,

(24)

These expressions also describe the effect of varying the cosolvent concentration for a fixed
solute concentration after a simple index change (2 ↔ 3).

The previous expressions are greatly simplified if we restrict ourselves to situations in which
the solute concentration is negligible (a common biological situation) and the cosolvent
concentration is varied. Then we find for open systems,

(25)

while for closed systems we have,

(26)

and provides the KB expression for the m-value of protein denaturation when A → D, M →
N and n = 1. Performing the same manipulation as for binary systems one finds,

(27)

which takes a similar form as before.41 Hence, the change in the equilibrium constant for
association will be larger (more positive) in closed versus open systems when the volume
change for association is positive and vice versa. The ease with which the above
manipulations can be performed for multicomponent systems in any ensemble represents a
particular advantage of the KB approach.

In summary, we have provided a series of expressions which can be applied to understand
the behavior of open and closed systems. In particular, expressions describing variations in
both the osmotic pressure and association equilibria in terms of a series of KB integrals have
been provided. The main difference between equilibria in open and closed systems relates to
the volume change accompanying the process. Hence, a significant difference between
ensembles would only be expected for large volume changes and/or osmotic pressures.
Finally, we want to be clear concerning the exact interpretation of the KBIs. The KBIs are
defined in a Grand Canonical ensemble open to all species. Hence, Gij = Gij (T, V, μ1, μ2)
for binary systems. The KBIs obtained from an analysis of the osmotic data correspond to
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changes in μ2, ρ2 or π, whichever is more convenient to use. The KBIs will not be the same
as those obtained from isothermal isobaric (PO) data, even if the solute and solvent
compositions are identical, but will correspond to the KBIs obtained from an isothermal
isobaric analysis at the same composition and the higher pressure of PO + π. These
differences may or may not be important depending on the exact application.6,15

The primary use for the above expressions is two-fold. First, one can apply the expressions
provided in Equations 5-7, 14, 17 to help interpret the experimental data concerning osmotic
pressure changes, or Equations 21, 23, 25 and 27 to help interpret changes in equilibrium
constants, in terms of the distribution functions between molecules provided in Equation 2.
Hence, one can develop a link between the experimental thermodynamic data and the
relative distributions of the various species in solution. Second, one can reverse the whole
process and relate the solution distributions, obtained from theory or simulation, to compare
with available experimental data or to make predictions concerning the thermodynamic
behavior of the solutions.

Methods
Molecular Dynamics Simulations

All molecular dynamics simulations were performed using the KBFF models (http://
kbff.chem.k-state.edu),35,42,43 together with the SPC/E water model,44 as implemented in
the GROMACS 4.0.5 package.45 All simulations were performed at 300 K and the pressure
of interest (P = PO = 1 bar or P = PO + π) using the weak coupling technique to modulate
the temperature and pressure with relaxation times of 0.1 and 0.5 ps,46 respectively. A time-
step of 2 fs was used and the bond lengths were constrained using the Lincs (solutes) and
Settle (water) algorithms.47,48 The particle mesh Ewald technique was used to evaluate
electrostatic interactions with a grid resolution of 0.1 nm.49 A real space convergence
parameter of 3.5 nm−1 was used in combination with twin range cutoffs of 1.0 and 1.5 nm,
and a nonbonded update frequency of 10 steps. Random initial configurations of molecules
in a cubic box were used to study the closed systems. Initial configurations of the different
solutions were generated from a cubic box (L≈6.0 nm) of equilibrated water molecules by
randomly replacing waters with solutes until the required concentration was attained. The
steepest descent method was then used to perform 100 steps of energy minimization. This
was followed by extensive equilibration, which was continued until the rdfs displayed no
drift with time (typically 5 ns). Total simulation times were in the 25-50 ns range, and the
final 25-30 ns were used for calculating ensemble averages. Configurations were saved
every 0.1 ps for the calculation of various properties. Errors (±1σ) in the simulation data
were estimated by using five block averages.

Osmotic Simulations
There are several simulation techniques available to study osmotic systems. Here, we take a
very simple physical approach. Simulations of systems extended in the z direction (6 × 6 ×
24 nm) were performed which included a series of Lennard-Jones (LJ) particles to act as two
semi permeable walls separating the bulk solution from a central semi open region of
interest. The LJ “walls” were separated by a z distance of 12 nm and all solutes were placed
in the central region between the two walls. The parameters for the LJ particles were taken
to be 0.3 nm and 0.02 kJ/mol, and each wall was constructed of 20×20 particles separated by
0.3 nm in both the x and y directions. The walls were held fixed during the simulations and
all interactions between the LJ particles and between the LJ particles and the solvent were
excluded. Periodic boundary conditions were applied in all directions. Anisotropic pressure
coupling was used to keep the x and y box lengths fixed and to maintain a fixed pressure in
the z direction. All other simulation conditions were the same as for the closed systems. The
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osmotic pressure was then obtained by determining the pressure on the walls provided by
the non diffusible components.32

Several technical issues can arise with such a system setup. First, the presence of the walls
could affect the solute distribution and/or the pressure profile for the central region. This
issue is discussed in the Results Section. Second, the use of a finite bulk solvent region
acting as the chemical potential bath leads to a drop in the pure solvent pressure, as the
solvent moves into the central (low μ1) region, when one simply couples Pzz = PT to a
barostat at 1 bar. Hence, the outside pressure displayed by the pure solvent region will be
less than 1 bar and therefore the system, while providing the same solvent chemical potential
inside and outside the open region, will correspond to different constant solvent chemical
potentials for each solute concentration. This makes it difficult to follow the equilibrium line
where μ1 is held constant, at 1 bar for instance, as performed experimentally. Fortunately,
this is easy to correct if we note that the total or reference pressure (PT), the inside pressure
(PI), and the outside pressure (PO) are related by,

(28)

Hence, given the measured osmotic pressure, π = P1 – P0, one can then determine the
outside (and thereby inside) pressure according to,

(29)

To ensure that the solvent chemical potential remains at the same constant value as the
solute concentration is increased, one needs to adjust the reference pressure to raise the
outside pressure to the desired value of 1 bar. The above equation can be used to predict the
value of PT that is consistent with PO = 1 bar, assuming the osmotic pressure is independent
of PT, and the whole processes can be iterated (2-3 cycles) to consistency. The same process
was performed for the NaCl simulations where μ1 and μ3 were held constant, except that the
target outside pressure was the osmotic pressure obtained from the NaCl solute simulations.
While these adjustments are usually small they can also be important.6,15

Analysis of the Simulation Data
The primary analysis involved the determination of the KBIs from the simulations. This was
achieved in two ways. The first involved the usual integration of the corresponding rdf. The
KBIs are defined in systems open to all components and hence one cannot integrate over the
full volume. Hence, the integration was truncated at a distance R from the central particle,
where R is the distance at which the rdf approaches unity.50 This also provides a distance
dependent KBI which can be used to determine contributions from various solvation shells,

(30)

For this work we used a final value of R = 1.5nm. KBIs were only determined from the
closed systems at the equivalent state point. The main advantage of this approach is that the
rdfs and KBIs provide information concerning the “structure” of the solution surrounding
the central i particle. The second approach involves the direct application of Equation 3 and
the determination of the appropriate particle number fluctuations. The closed systems were
analyzed by considering a series of reference volumes centered on a randomly chosen origin
and then averaging over these volumes. The reference volumes were chosen as cubes of
length 3 nm and approximately 10,000 origins were used. The advantage of this approach
lies in the large number of origins which can be used, which greatly improves the statistical
significance but with the loss of structural information. The determination of G222 was
performed using the particle number fluctuations and Equation 4.
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A more physical analysis of solute association was also performed. The most prominent
interaction between the Glyn solutes involved direct association between the N and C
terminal groups, as evidenced by the atom based rdfs. Hence, a solute dimer, (and trimer,
etc) was defined by considering the contact distance between the nitrogen and the midway
point between both oxygens of the carboxylate groups. If this distance was less than 0.5 nm,
the first minimum in the rdf between these two groups, then the two solutes were considered
to be associated. An iterative procedure was then applied to determine the number of solutes
in each solute cluster.

Results
In this section we analyze both the experimental and simulated data for binary mixtures of
water containing various concentrations of NaCl, Gly, Gly2 and Gly3 as solutes. In addition,
simulated data for ternary mixtures of water with a solute and cosolvent are also examined.
In performing the osmotic simulations one has little control over the exact concentration of
the diffusible components. Hence, while we will constantly refer to systems at 3 m Gly or 6
m NaCl, etc, it should be remembered that these are approximate concentrations (to within
10%). The exact concentrations can be found in the various tables. Furthermore, the
statistical noise associated with KBIs increases as the concentrations of the components
decreases.51 Therefore, in many situations we have chosen to analyze only the simulations at
high solute and cosolvent concentrations, and to use the highest possible concentrations of
both solute and cosolvent.

Before continuing with the present analysis it is important to ensure there were no
significant artifacts in the osmotic simulations. This is unlikely due to the fact that there is
no significant desolvation process for the solutes at the walls, although effects on solute-
solute distributions are still possible. The pressure and density profiles for the 6m NaCl
osmotic system are displayed in Figure 1. The pressure profile, P(z), was determined using
the approach outlined in previous work on surface tension.52 However, here we
approximated the pressure contributions using a simple Coulomb plus LJ potential truncated
at 1.5 nm for the molecular virial, primarily due to the excessive cost involved with
calculating the contributions using the full Ewald potential. Hence, the pressures do not
exactly match the pressure determined during the simulation. Nevertheless, it seems clear
that neither the density nor pressure profiles indicate any surface effects beyond a few
molecular diameters.

The experimental and simulated osmotic pressures are displayed in Figure 2. The force
fields used here performed reasonably well at low solute concentrations, but displayed some
deviation from experiment at higher solute concentrations. It also appears that, even if the
force fields were perfect, the estimated errors are such that one could not distinguish
between the real experimental data and the ideal data provided by the van’t Hoff curves,
using the current simulation times. This picture changes somewhat when the focus is shifted
to the KBIs as we shall see later.

One of the goals of this work is to investigate the thermodynamics of open (and closed)
systems in terms of the KBIs. The presence of the walls and the subsequent loss of
periodicity hinder the determination of the KBIs for the inside region. To circumvent this
problem we have performed additional isothermal isobaric simulations at the reference
pressure of PO = 1 bar and also at a pressure of PO + π, using the solute and solvent
concentrations obtained for the inside region. The solute-solute rdfs obtained for all three
systems are displayed in Figure 3. They clearly show that the rdfs are identical within the
precision of the simulations. Hence, while the KBIs will vary with composition, they appear
to be relatively insensitive to pressure, i.e. G22 (T, m2, PO) ≈ G22 (T, m2, PO + π). This is to
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be expected for the relatively low pressures exhibited in the current osmotic systems.
Consequently, we have obtained all the KBIs presented here from the corresponding closed
system simulations.

The experimental and simulated fluctuating quantities are provided in Table 1, Table 2 and
Figure 4. The values of G22 for all solutes start positive and decrease with increasing solute
concentration. Hence, there is a tendency for solute self association at low solute
concentrations which increases as one moves from Gly to Gly2 to Gly3. This behavior has
been observed before in closed systems where we used the isobaric isothermal results to
investigate possible group contributions to the observed association behavior.53 A
comparison of the closed (isothermal isobaric) and open (osmotic) results indicates that the
G22 values are essentially the same, to within the typical precision of the data, which is to be
expected considering the negligible pressure dependence exhibited by the rdfs in Figure 3.
The simulated values of G22 are also provided in Table 3 and Figure 4. There is not perfect
agreement with experiment. The trends in G22 with composition appear to be correct and
one observes a general agreement in sign. Fortunately, unlike the raw osmotic pressure data,
it does appear possible to distinguish the G22 values from their ideal values (G22 = 0).
Furthermore, the infinite dilution KBIs obtained from a fit of the simulated osmotic
pressures appear to be reasonable (see Table 1), which is probably a reflection that the
largest disagreement only occurs for high solute concentrations. This is potentially important
for applications in force field design as it allows one to determine if one has a correct
balance between the solute-solute, solute-solvent and solvent-solvent distributions.

Also displayed in Figure 4 are the G222 values. The G222 values quantify the role of triplet
distributions towards the thermodynamic behavior of the mixture and should be zero for
ideal solutions. The experimental data suggests that triplet correlations become increasingly
important for Gly3 and display a strong dependence on concentration. In contrast, the
relatively small negative values of G222 for Gly and Gly2 suggest a focus on dimer
association for most solute concentrations. The particle number fluctuations (Equation 3) are
also displayed in Figure 4. The data display both positive and negative deviations from ideal
behavior with significant deviations even at low solute concentrations. The finite values for
F222 also indicate that the number fluctuations are not characterized by a symmetric
distribution, i.e. they are non-Gaussian. Finally, we attempted to determine F222 from our
simulations. Even for the highest (most statistically reliable) solute concentration the value
of F222 was found to be −0.02(30) for 3 m Gly, which is essentially meaningless using the
current simulation times of 25 ns or so.

The previous analysis has centered upon the KBIs. We have argued that these are the most
relevant quantities relating molecular distributions to the corresponding thermodynamics,
and can provide an interpretation of solute association. However, it is more typical to
analyze simulation results in terms of molecular association defined by some simple
distance criteria. This is also likely to be more relevant to spectroscopic data for protein
association, for example. To investigate the similarities and differences between these two
viewpoints we have analyzed the degree of association of the solutes in our simulations, and
investigated the effect of salt on these distributions. A detailed examination of all the solute
atom-atom rdfs indicated that the only significant interaction leading to dimer or higher
aggregate formation was that between the zwitterionic N and C terminal groups, and so the
first minimum in this rdf was used to define the degree of solute aggregation. The results are
presented in Table 3 and Figures 5 and 6.

Figure 5 displays the fraction of solute molecules observed in aggregates containing n solute
molecules during the simulations. The predominant solute form was the monomer for all
solutes at all concentrations. However, as solute concentration increases it becomes more
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difficult to find isolated solute molecules, indicating a potential difficulty one encounters
when applying such simple models to concentrated solutions. Figure 5 also displays the
equilibrium constants for association (ln Kn) as a function of solute concentration. The
equilibrium constant data display an increase in solute association with solute concentration
for both Gly and Gly2. This is the opposite trend to that indicated by the previous analysis
on the KBIs. However, both approaches agree that solute association (dimer or trimer)
increases from Gly to Gly3. Of course, the difference between the two approaches can be
reconciled when one considers that Kn will increase with solute concentration, even if there
is no net affinity between the solutes, simply because one has more solutes per unit volume.
Comparison with Equation 21 indicates that solute association with the dimer or trimer
(GA2) must therefore be larger than n times the solute association with the monomer (GM2).

The addition of salt had a dramatic effect on the solute association. This was demonstrated
by both a significant drop in G22 as indicated in Table 3, and a drop in the equilibrium
constants as shown in Figure 5. However, the underlying story was much more complicated.
First, the fraction of solute molecules in either the monomer, dimer or trimer form is
increased in the presence of salt. This appears to result from a decrease in the number of
high n aggregates. Second, the equilibrium constant drops in the presence of salt primarily
because the monomer concentration increases. Third, as the total concentration is decreased
the fraction of monomer will naturally increase. Hence, the monomer fraction is largest for
Gly3 at the concentrations displayed in Figure 5, even though Gly3 displays the largest
equilibrium constant for dimer or trimer formation at equivalent solute concentrations.

The change in solute association could be attributable to either a general salt screening of the
large dipole-dipole interactions between the solutes, or specific binding of anions and/or
cations with the solutes such that solute association is diminished. To investigate further we
present the relevant rdfs in Figure 6, and have also determined the corresponding
preferential interaction coefficients between the solutes and NaCl, which are displayed in
Table 3. The solute-solute N to C terminal rdf is changed on addition of NaCl. The first peak
is decreased and the second peak increased in the presence of NaCl. The increased second
solvation shell probability appeared to correspond to the binding of multiple Gly solutes
with a shared sodium ion via their carboxylate groups. This also had an effect (−91 to 36
cm3/mol) on the value of G22 truncated after the first solvation shell (denoted as G22*),
suggesting an increase in solute-solute contacts at short range, which must be compensated
by changes at large distances. The first shell coordination numbers for the N to C termini
were 0.74 and 0.48 for 3 m Gly in the absence and presence of 6m NaCl, respectively. The
values of Γ23 were all positive indicating a net thermodynamic binding of salt ions with the
solutes. However, the values of G21 were consistently larger than G23 suggesting that the
greater effect was due to water exclusion from the solutes rather than ion binding.
Interestingly, the G21 values were the same in the presence and absence of 6m NaCl. The
rdfs between the ions and the terminal groups displayed in Figure 6 also support a role for
ion binding. First shell coordination numbers were found to be 1.14 and 0.67 for the chloride
and sodium ions, respectively, and were essentially the same for all three solutes. However,
the net ion first shell coordination of 1.81 was significantly higher than that provided by the
corresponding thermodynamic quantities (G23 or Γ23). Hence, changes in solute association
on the addition of salt appear to be distance dependent.

Conclusions
Expressions have been provided for the analysis of binary and ternary open and closed
systems using the KB theory of solutions and the corresponding KB integrals. The KBIs
provide an alternative to the cluster integrals in the MM expressions, which are much easier
to determine from simulations of concentrated solutions. The expressions have been
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illustrated using both experimental and simulation data for small Gly, Gly2 and Gly3
zwitterionic peptide solutes in the presence and absence of NaCl. Two measures of solute
association were investigated and found to provide different viewpoints of the association
process. A thermodynamic measure of solute association is provided by G22, and this is
aided by the additional information concerning triplet correlations provided by G222. The
experimental and simulation data indicated that solute association prevails at low
concentrations and increases within the series Gly < Gly2 < Gly3. In addition, solute
association decreases with increasing solute concentration for all the solutes. A more
physical measure of solute association was investigated and expressed in terms of
equilibrium constants for dimer and trimer formation. Here, an increase in the equilibrium
constants was observed on increasing the solute concentration, in contrast to the
thermodynamic measure of association. The differences arise as the thermodynamic measure
includes changes to the solute distribution over all distances, while the physical measure
focuses primarily on the first solvation shell. The addition of salt to solutions of Glyn solutes
reduces the values of G22 and the equilibrium constants for association. Further analysis of
3m Gly solutions indicated that this was a consequence of the disruption of larger aggregates
leading to an increase in the number of monomers, dimers, and trimers. The overall global
(long range) effect was clearly solute disassociation as indicated by the decrease of G22 in
the presence of NaCl, whereas solute association increased at the local (first shell) level.
This suggests an overall salt screening effect that includes a local increase in dimer and
trimer formation due to the binding of sodium ions with multiple solute carboxylate groups.
It should be noted that, while the value of G22 is the most thermodynamically relevant
quantity, a clear physical interpretation is often difficult as it probes changes in the solute-
solute distribution over multiple solvation shells. In contrast, the physical picture of
association is quite clear, but often subjective and not necessarily thermodynamically
relevant. The present results therefore illustrate the advantages of a combination of KB
theory and computer simulations data provide for the interpretation of complex solution
behavior.
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Figure 1.
Pressure and concentration profiles obtained from the simulation of the 6m NaCl osmotic
system at 300 K. The top panel shows a snapshot from the simulation with water molecules
removed. The LJ spheres comprising the “walls” are displayed in red. The sodium ions
(blue) and chloride ions (green) are confined to the central inside region. The central panel
displays the pressure profile in units of bar. The lower panel displays the molar
concentrations of water (black) and ions (red).
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Figure 2.
Experimental and simulated osmotic pressures at 300 K as a function of solute molarity.
Data are displayed as π/πid where solid lines correspond to the experimental data and
symbols indicate simulated results. Experimental data taken from 54-58.
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Figure 3.
Solute-solute (g22) and solute-solvent (g12) rdfs as a function of ensemble and pressure.
Data are presented for 3m Gly as a solute, but similar observations are found for the Gly2
and Gly3 systems. Curves correspond to the osmotic simulation (black) and closed systems
with P = PO = 1 bar (red) and P = PO + π = 53 bar (green).
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Figure 4.
Experimental and simulated KBIs and solute fluctuations for Gly (black), Gly2 (red) and
Gly3 (green) solutes as a function of solute molarity at 300 K. The values of G22 and G222
are in units of M−1 and M−2, respectively. The colors correspond to the different solutes
investigated here. Solid lines correspond to the current analysis of the experimental osmotic
data, while dashed lines were obtained from an analysis of the corresponding experimental
isothermal isobaric data. 54-56 The fluctuating quantities F22 and F222 are given by Equations

3 and 4 with ideal values of . Symbols represent the simulated data.
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Figure 5.
The fraction of solute molecules in an aggregate of n solute molecules (top) as a function of
aggregate size. The equilibrium constants for dimer (middle) and trimer (bottom) formation
as a function of solute molarity. See text for definitions. The solid curves correspond to
3.0m Gly (black), 1.5 m Gly2 (red) and 0.3m Gly3 (green), while the symbols and dashed
curve represents the same solutes in 6.0m NaCl.
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Figure 6.
Solute-solute and solute-ion atom based rdfs. The N terminus to C terminus rdf for 3 m Gly
in the absence and presence of 6m Nacl (top). The N terminus to chloride (center) and the C
terminus to sodium (bottom) rdfs for various 3.0 m Gly (black), 1.5 m Gly2 (red) and 0.3 m
Gly3 (green) concentrations in the presence of 6 m NaCl (bottom).
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