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Abstract
Cell division cycle 25 A (Cdc25A), a dual-specificity protein phosphatase, is one of the most
crucial cell cycle regulators, which removes the inhibitory phosphorylation in cyclin-dependent
kinases (CDKs), such as CDK2, CDK4, and CDK6, and positively regulates the activities of
CDKs that lead to cell cycle progression. In addition, Cdc25A also acts as a regulator of apoptosis.
Overexpression of Cdc25A promotes tumorigenesis, and is frequently observed in various types of
cancer. Here we briefly summarize current understanding of the role of Cdc25A in cell
proliferation and apoptosis, as well as the impact of overexpression of Cdc25A on tumorigenesis.
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1. Introduction
One of the most prominent features in cancer cells is deregulated growth [1, 2]. This is often
due to mutations of genes that endow cancer cells with the ability of uncontrolled
proliferation and resistance to apoptosis [1, 3]. The uncontrolled proliferation is mostly
attributed to cell cycle deregulation [4, 5]. Cell cycle is a tightly controlled procedure, which
needs a delicate signaling network to determine the proper progression [5, 6]. Cyclin-
dependent kinases (CDKs) are foremost cell cycle regulators that phosphorylate and activate
downstream players like retinoblastoma (Rb) protein to promote cell cycle progression [7].
Not surprisingly, the activities of CDKs are also precisely regulated by multiple events such
as phosphorylation, dephosphorylation and protein-protein interaction [7], among which, the
removal of inhibitory phosphorylation on CDKs by cell division cycle 25 (Cdc25)
phosphatase, a dual-specificity protein phosphatase, is critical for activation of CDKs [7,8].

The Cdc25 dual phosphatase family has three members: Cdc25A, Cdc25B, and Cdc25C [9].
Although the catalytic domains of these phosphatases are well conserved, their regulatory
domains, which decide their subcellular distribution and turnover, are greatly diverse [10].
While Cdc25B and Cdc25C promote G2/M progression by primarily dephosphorylating
CDK1 at T14/Y15, two inhibitory phosphorylation sites [11], Cdc25A plays a more
extensive role in assisting both G1/S and G2/M progression by dephosphorylating CDK4 at
Y17 [12], CDK6 at Y24 [13], as well as CDK2 and CDK1 at T14/Y15 [11, 14]. More
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importantly, overexpression of Cdc25A has been frequently documented in multiple cancer
cell lines, which is highly associated with the malignancy and poor prognosis in cancer
patients [10, 15].

The human Cdc25A protein has 524 amino acid residues, with two distinct regions: N-
terminal regulatory domain and C-terminal catalytic domain [9]. The regulatory domain of
Cdc25A contains a series of phosphorylation sites that are involved in regulating protein
stability and protein-protein interaction [16, 17]. Besides, this domain also contains nuclear
localization sequence (NLS) and nuclear exportation sequence (NES), which determine the
subcellular location of Cdc25A [18]. The catalytic domain of Cdc25A shares a common
HCX5R motif with other protein tyrosine phosphatases, and has a shallow active pocket that
is accessible for substrates containing either phospho-tyrosine (p-Y) or phospho-threonine
(p-T) [19]. In this review, we focus on summarizing the role of Cdc25A in cell proliferation
and apoptosis. In addition, we discuss the impact of Cdc25A overexpression on
tumorigenesis.

2. The role of Cdc25A in regulating cell proliferation
2.1 G1/S entry

The proper cell cycle progression from G1 to S phase requires a series of genes related to
DNA synthesis to be expressed timely. These genes encode proteins such as dihydrofolate
reductase (DHFR), thymidine kinase (TK), and ribonucleotide reductase (RR), which
commonly share similar E2F binding sites in their promoters [20]. The binding of E2F
transcriptional activators to the promoters is associated with the acetylation and tri-
methylation on these genes, inducing the expression of these genes and the G1/S cell cycle
progression [21].

In the G0 and early G1 phase, hypophosphorylated Rb protein serves as a major inhibitor of
E2Fs by directly binding to and inhibiting the activation domain of E2Fs [22], as well as
recruiting co-repressors such as histone deacetylases (HDACs) to the target genes [22]. As
cell cycle progresses from G1 to S, the phosphorylation level of Rb gradually increases,
resulting in dissociation of E2F from Rb and activation of E2Fs [22] (Fig.(1)).

Phosphorylation of Rb protein is at least partially mediated by cyclin D-CDK4/CDK6
complexes [23, 24], and this event is considered to be the rate limiting step during the G1/S
cell cycle transition [23, 24]. Masatoshi et al. demonstrated that cyclin D-CDK4 complex is
able to phosphorylate Rb at S780 in vivo and in vitro [25]. Although accumulation of p-
S780 on Rb is not enough for dissociation of E2F from Rb [26], it is essential for further
phosphorylation of Rb by cyclin E-CDK2 complex in the late G1 phase [26] (Fig. (1)).

The observation that microinjection of Cdc25A antibodies to the proliferating cells results in
G1 cell cycle arrest suggests a significant role of Cdc25A in G1/S cell cycle progression
[27]. Later, it was demonstrated that transforming growth factor beta (TGF-β)-induced
downregulation of Cdc25A causes accumulation of inhibitory phosphorylation, p-Y17, on
CDK4 and consequent G1 arrest [12]. Consistently, in vitro studies showed that GST-bound
Cdc25A can remove inhibitory phosphorylation on CDK4 [28], confirming Cdc25A as a
positive regulator of CDK4. In addition, inhibition of Cdc25A expression by TGF-β also
results in accumulating inhibitory phosphorylation, p-Y24, on CDK6, decreasing CDK6
activity by at least two folds, and reducing Rb phosphorylation [13]. The results indicate that
CDK6 is also positively regulated by Cdc25A (Fig. (1)).

Besides cyclin D-CDK4/6 complexes, Cdc25A is also able to dephosphorylate p-T14/p-
Y15, two inhibitory phophorylation residues, on CDK2 in later G1 phase [14]. The activated
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cyclin E-CDK2 complex phosphorylates Rb at S567, eventually rendering the dissociation
of Rb from E2F, releasing repression on E2F transcription activity, and promoting G1/S
transition [26] (Fig. (1)). A study using ectopic expression of Cdc25A disclosed that
overexpression of Cdc25A can accelerate G1/S transition by prematurely upregulating the
CDK2 activity [29]. However, this study surprisingly showed that the activities of cyclin D-
CDK4/6 complexes are not affected by overexpression of Cdc25A and not associated with
Cdc25A-mediated acceleration of G1/S progression [29]. This contradictory observation
might root from lack of inhibitory phophorylation on both CDK4 and CDK6, which needs
induction by ultraviolet (UV) or TGF-β, in proliferating immortalized epithelial cell line
(MCF-10A) and NRK cells [29].

As Cdc25A is important for cell cycle progression, its activity has to be timely and precisely
regulated during the whole cell cycle. This can be achieved by multiple mechanisms
including regulation of Cdc25A expression at transcriptional [30, 31], translational [32, 33],
and post-translational level [16], as well as regulation of catalytic efficiency of Cdc25A by
modulating phosphatase activity [32] and enzyme-substrate interaction [17, 34].

The promoter of Cdc25A gene has three putative E2F binding regions: E2F-A, E2F-B, and
E2F-C, which locate around −60, 0, and −160 bps to the transcription start site individually
[35]. Upon serum starvation, E2Fs were observed to bind to E2F-A region in the complex
with Rb proteins, which inhibits the transcription of Cdc25A gene in NIH 3T3 cells [36].
After addition of serum, the E2F1 binds to the E2F-B region on Cdc25A gene and activates
Cdc25A transcription, which is necessary for E2F1-induced G1 phase progression and G1/S
transition in the originally quiescent Rat1 fibroblasts cells [30]. E2F1-dependent Cdc25A
transcription might be a consequence of replacement of E2F-Rb complex on putative E2F
sites by free E2F1, which is at least partially acetylated [37].

In addition to E2F1, E2F2 and E2F3 can also activate Cdc25A transcription [30]. However,
the induction of Cdc25A transcription by E2F2 and E2F3 is not only less potent but also
timely later than that by E2F1 [30]. A possible explanation of such observation is that E2F1
induces Cdc25A transcription by direct binding, whereas E2F2 and E2F3 do not [30].
Cycloheximide, which blocks de novo protein synthesis, inhibits E2F2- and E2F3-induced
Cdc25A transcription [30], implying that other proteins are required for E2F2- and E2F3-
induced Cdc25A transcription.

Besides E2Fs, signal transducer and activator of transcription 3 (STAT3) was demonstrated
to mediate cytokine-induced G1/S transition by upregulating Cdc25A transcription and
activities of CDKs [38]. Another study revealed that upon IL-6 treatment, STAT3 binds to
the promoter of Cdc25A gene and activates Cdc25A transcription in serum-starved cells
[39]. Such activation appears to be in a Myc-dependent manner, as knockdown of Myc
neutralizes the effects of STAT3 on activation of Cdc25A transcription [39]. This is
consistent with the finding that Cdc25A is a transcriptional target of Myc/Max heterodimer
[31]. Likely, binding of STAT3 to Cdc25A promoter facilities recruitment of Myc, even
though there is no direct interaction between STAT3 and Myc [39]. On the contrary, STAT3
can also inhibit Cdc25A transcription by recruiting Rb to the promoter under reactive
oxygen species (ROS) stimulation [39]. The molecular mechanism by which recruitment of
Rb by STAT3 inhibits Cdc25A transcription is still not known. Possibly, Rb represses
STAT3-induced Cdc25A transcription by recruiting histone deacetylases or
methytranferases.

After Cdc25A mRNA is translated, the de novo synthesized protein will undergo various
post-translational modifications, among which, phosphorylation is the most prevalent one.
The N-terminal domain of Cdc25A contains multiple phosphorylation residues, which
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modulate either Cdc25A stability or Cdc25A-CDK interaction to match cellular requirement
[16, 17]. The most important post-translational modification of Cdc25A is cyclin E-CDK2
complex-dependent phosphorylation, which activates Cdc25A to promote G1/S progression
[27]. This, together with the fact that cyclin E-CDK2 is positively regulated by Cdc25A,
suggests that there is a feedforward loop between cyclin E-CDK2 complex and Cdc25A
[27]. The kinetic data indicates that the feedforward loop between cyclin E-CDK2 complex
and Cdc25A is critical for cells to overcome the restriction point (R-point or G1 checkpoint)
[40], after which next round DNA replication is committed [41].

As keeping faithful transmission of genomic content from an individual cell to its daughter
is the key to survival of organisms, a cell has to withdraw from DNA synthesis in response
to genotoxic stress [42]. One feasible strategy for this goal is to downregulate cellular
Cdc25A level, which can be achieved by promoting Cdc25A turnover upon DNA damage
[43]. The genotoxic stress initiates DNA damage response (DDR) pathway by activating the
serine/threonine (S/T) kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and
Rad3-related) [44]. Activated ATM or ATR phosphorylates a number of downstream
signaling cascades, including cell cycle checkpoint proteins (Chk1 and Chk2) [45] (Fig. (2)).

Chk1 was originally considered to be activated by ATR in the presence of single-stranded
DNA (ssDNA) [46], but a recent study undermined this point by providing evidence that
Chk1 can be phosphorylated and activated by ATM in response to radiation [47]. Activated
Chk1 phosphorylates multiple residues on Cdc25A, among which, phosphorylation at S76 is
necessary for further phosphorylation at S79 and S82, residues locating in DSG motif
(TDS82GFCLDS88PGPLD), by casein kinase 1α (CK1α) [48-50]. After phosphorylation at
S82, an E3 ligases complex, SCF (Skp1/Cul1/F-box protein) binds to Cdc25A through
interaction between DSG motif and β-TrCP (F-box protein) to facilitate Cdc25A
ubiquitination and subsequent degradation [50, 51], which, in turn, causes inhibition of
CDK2 activity [52] and G1/S cell cycle arrest [53] (Fig. (2)).

S76 residue of Cdc25A is also a phoshorylation target of glycogen synthase kinase 3 beta
(GSK3β) [54], which has long been known to negatively affect G1 cell cycle progression by
promoting cyclin D1 and c-Myc degradation [55, 57]. The GSK3β-induced phosphorylation
at S76, which requires a prime phosphorylation at T80 by Polo-like kinase 3 (Plk-3) [54], is
associated with SCF-mediated Cdc25A degradation and G1/S cell cycle arrest [54].

Chk2, another checkpoint protein, was reported to be phosphorylated and activated by ATM
upon ionizing radiation (IR) [58], and activated Chk2 phosphorylates Cdc25A at S123,
which promotes Cdc25A degradation and downregulates CDK2 activity resulting in
blocking DNA synthesis and inducing S-phase checkpoint [58]. However, other studies
argued that it is Chk1, but not Chk2, that plays an essential role in regulating Cdc25A level
in response to DNA damage, because there is no much difference in kinetics of IR-induced
Cdc25A degradation between Chk2−/− and Chk2+/+ HCT116 cells [59].

According to the two-wave model [14], the G1/S checkpoint is initiated and maintained by
two unique pathways: one is ATR/ATM-Chk1/2-Cdc25A cascade, which is rapidly
activated to arrest G1/S transition in response to DNA damage [14]; the other is p53-
mediated cell cycle arrest, which appears later, but lasts longer [14]. p53-associated G1
arrest was demonstrated to be mediated by p21Cip1 [60, 61]. Interestingly, Rother et al.
found that p53 expression is inversely correlated to the mRNA and protein level of Cdc25A
[62]. Since p21Cip1 was found to bind to Cdc25A promoter and repress Cdc25A
transcription upon DNA damage [63], p21Cip1 was considered to be necessary for p53-
mediated repression of Cdc25A transcription. Nevertheless, the p53 homologues such as
TAp63α and p73α can activate p21Cip1 transcription, but cannot repress Cdc25A
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transcription, indicating that p53-mediated suppression of Cdc25A may be independent of
p21Cip1 [62].

Since there is no binding sequence for p53 in Cdc25A promoter, Demidova et al. analyzed
the Cdc25A promoter sequence to look for binding sites for other regulators, and found that
this region contains binding sequence for activating transcription factor 3 (ATF3), a direct
target of p53 [64]. It has been demonstrated that ATF3 mediates p53-induced transcription
repression of Cdc25A, which is responsible for maintaining long term cell cycle arrest in
response to genotoxic stress [64] (Fig. (2)).

In addition to DNA damage, hypoxia was found to be capable of affecting Cdc25A
expression in colon cancer cells [65]. Hypoxia-associated downregulation of Cdc25A is
mediated by p21Cip1 and miR-21, but independent of p53 and DDR pathway [65].
Combining the finding that hypoxia-induced S phase accumulation also requires p21Cip1 and
miR-21, it is highly suspected that hypoxia-induced S phase arrest is a consequence of
hypoxia-mediated downregulation of Cdc25A [65]. A recent report revealed that the 3′-
Untranslated Region (3′-UTR) of Cdc25A mRNA contains a putative binding site for
miR-21, which is essential for interaction between miR-21 and Cdc25A mRNA [66]. This
interaction downregulates Cdc25A expression, thereby arresting cells at G1/S entry [66].

Unlike transcriptional or post-translational regulation, the effect of translational regulation
of Cdc25A on cell cycle is largely unexplored. Lin et al. reported that protein boule-like
(BOLL protein) is another factor that utilizes the 3′-UTR region to regulate Cdc25A
expression [32]. The interaction between 3′-UTR of Cdc25A and BOLL protein does not
affect the stability of Cdc25A mRNA as miR-21 does, but promotes translation of Cdc25A
mRNA [32]. Although BOLL protein is widely known as a meiotic regulator, whether
BOLL protein-mediated Cdc25A translation contributes to cell proliferation remains to be
determined.

Another currently known translation factor of Cdc25A is eukaryotic initiation factor 2 alpha
(eIF2α), which plays a major role in regulating global translation upon cellular stress [67].
In response to cellular stress, phosphorylation of eIF2α at S51 increases its affinity to
eukaryotic initiation factor 2B (eIF2B) to form a complex that inhibits the guanine
nucleotide exchange in translation [68, 69]. Treatment of cells with salubrinal, an eIF2α
inhibitor, decreases the expression of Cdc25A, implying that Cdc25A translation can be
regulated by eIF2α [33]. However, it is unclear how eIF2α regulates Cdc25A translation.

The phosphatidylinositol 3-kinases (PI3K)-mammalian target of rapamycin (mTOR)
cascade has long been known as an important signaling pathway that regulates translation
initiation [70]. The observation that LY294002, a PI3K inhibitor, reduces the expression of
Cdc25A indicates involvement of PI3K signaling in Cdc25A expression [71]. As mTOR is
also a G1/S cell cycle regulator [72], it is possible that Cdc25A plays a role in mTOR-
associated G1/S cell cycle progression. However, how PI3K-mTOR cascade regulates
Cdc25A expression remains to be defined.

2.2 G2/M entry
The cyclin B-CDK1 complex was identified as a major component of maturation promoting
factor that drives G2/M progression [73]. The activation of CDK1 at the G2/M boundary
includes two independent events: one is CAK-mediated phosphorylation at T161 [74, 75],
which is necessary for cyclin B-CDK1 complex formation [76], and the other is Cdc25-
mediated dephosphorylation at T14/Y15 [11]. It was demonstrated that the
dephosphorylation and activation of CDK1 by Cdc25A is a rate limiting step during the G2/
M transition, and activated cyclin B-CDK1 complex phosphorylates Cdc25A at S17/S115,
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which stabilizes Cdc25A by uncoupling it from check point regulation [77]. Therefore,
cyclin B-CDK1 complex forms a feedforward loop with Cdc25A to overcome the G2/M
checkpoint [77]. Cdc25B was considered to initiate this feedforward loop between cyclin B-
CDK1 complex and Cdc25A by dephosphorylating inhibitory phosphorylation on CDK1
[77]. Mitra et al. further substantiated that cyclin A-CDK2 complex positively regulates
CDK1 activity by activating Cdc25B in S phase [78]. At the mitotic exit, Cdc25A is targeted
by an E3 ligase complex, APC/C (anaphase promoting complex/cyclosome), which binds to
Cdc25A through Ken-Box motif in a phosphorylation-independent manner and specifically
ubiquitinates Cdc25A causing its degradation [79] (Fig. (3)).

Timofeev et al. reported their striking discovery that overexpression of Cdc25A accumulates
p-Y15 on CDK1, whereas the activity of CDK1 is still high [80]. Moreover, this study also
revealed that Cdc25A activates CDK7, which, in turn, phosphorylates CDK1 at T161 and
promotes the cyclin B-CDK1 complex formation [80]. Therefore, Cdc25A, in addition to
Cdc25B, might play a role in initiating feedforward loop between cyclin B-CDK1 and
Cdc25A.

In order to avoid entering mitosis with damaged DNA that threatens cell survival, a cell has
to stop prematurely initiated mitosis at G2/M entry [81]. Like G1/S entry, DDR pathway
plays a critical role in controlling G2/M entry by regulating Cdc25A abundance [82]. It was
revealed that activated Chk1 phosphorylates NIMA (never in mitosis gene A)-related kinase
11 (NEK11) at S273 and causes NEK11 activation [83]. The activated NEK11, in turn,
phosphorylates Cdc25A at S82, which requires a prime phosphorylation of Cdc25A at S76
by Chk1 [83]. Phosphorylation of DSG motif (p-S82) thus provides a docking site for β-
TrCP-mediated SCF complex binding, which promotes ubiquitination and proteasome-
mediated degradation of Cdc25A [83]. A new model points out that dimerized 14-3-3λ
serves as a scaffold to form a Cdc25A-Chk1-14-3-3λ ternary complex, which is essential to
phosphorylate Cdc25A at S76 [84].

Besides proteasome-mediated degradation, in vitro studies showed that checkpoint signaling
also accumulates phosphorylation on Cdc25A at S123, which decreases the stability of
Cdc25A and arrests cells at G2/M transition [58, 85]. However, in vivo results disclosed that
although S123A knock-in mutants have a longer half-life than that in normal cells upon IR,
the G2/M cell cycle checkpoint is not perturbed in the mutants [86], implying that the IR-
induced G2/M cell cycle arrest does not really require Cdc25A degradation. Meanwhile, the
authors also showed that Cdc25A S123AKI/KI accumulates at centrosome and promotes
centrosome duplication by increasing CDK1 activity upon IR [86]. This, together with G2/M
cell cycle arrested by IR, causes uncoupling of centrosome duplication and DNA replication,
which eventually leads to supernumerary centrosomes [86].

The elongated half-life of Cdc25A S123AKI/KI does not disturb the IR-induced G2/M
checkpoint, suggesting that other post-translational modifications of Cdc25A affect G2/M
cell cycle progression in response to IR-induced checkpoint activation. Chen et al. reported
that phosphorylation of Cdc25A at T507 or S178 provides a docking site for 14-3-3 binding
[17]. The interaction between 14-3-3 and Cdc25A prevents Cdc25A from binding to cyclin
B-CDK1 complex; thus, phosphorylation of Cdc25A at T507 inactivates cyclin B-CDK1
complex and inhibits associated mitotic entry [17]. This is supported by another study that
Chk1 phosphorylates Xenopus Cdc25A (Xe-Cdc25A) at T504 (corresponding to human
T507), which prevents Cdc25A from interacting with Cdk1-cyclin A, Cdk1-cyclin B, or
Cdk2-cyclin E and consequently inactivates these cyclin-CDK complexes [34]. Therefore,
phosphorylation of Cdc25A at T507, rather than Cdc25A degradation, is exactly responsible
for activating mitotic checkpoint [34]. Strikingly, p-T507-triggered inhibition of CDK1
activity does not require 14-3-3 protein, implying that 14-3-3 has other role such as
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preventing dephosphorylation of Cdc25A at T507, rather than inhibiting activation of
cyclin-CDK complexes [34].

Recently, a member of Cdc14 dual-specificity phosphatase family, Cdc14A, was found to be
able to negatively regulate G2/M progression and CDK1 activity by downregulating
phosphatase activity, but not stability, of Cdc25A through an unknown mechanism [87].

3. The role of Cdc25A in apoptosis
Apoptosis is a precisely programmed procedure of cell death, which is controlled by
multiple complicated signaling networks [88]. Apoptosis signal-regulating kinase 1 (ASK1)
is one of the most important stress kinases regulating dual specificity mitogen-activated
protein kinase kinase 4 (MKK4)-c-Jun N-terminal kinases (JNK) cascade [89-90], and p38
mitogen-activated protein kinase (MAPK) [90]. The activation of JNK pathway affects a
serious of apoptosis-related proteins such as p53, Bax, and c-Jun [91, 92], and leads to
apoptosis [93]. Similarly, activated p38 causes apoptosis by regulating various factors such
as NFκB, p53, and BimEL, a Bcl-2 family member [93-95].

Generally, ASK1 is activated by dissociating from the complex with thioredoxin in response
to oxidative stress [96]. Zou et al. found that cytoplasmic Cdc25A inhibits ASK1 activity
and increases the resistance to oxidative stress-induced apoptosis [89]. The inhibitory effect
of Cdc25A on ASK1 activity was demonstrated to be independent of its phosphatase
activity, but dependent of interaction between Cdc25A and ASK1, which disrupts homo-
oligomer formation of ASK1 [89]. Another report showed that nitrosative stress inhibits
Cdc25A expression causing reduced interaction between Cdc25A and ASK1, which
activates ASK1 [32] (Fig. (4)). Consistently, in vivo studies showed that a human cancer-
predisposing polymorphism, Cdc25A S88F, causes mouse embryonic lethality and induces
apoptosis due to being incapable of binding to and inhibiting ASK1 [97], implying that the
DSG motif might be critical for interaction between Cdc25A and ASK1. Furthermore,
ectopic expression of Cdc25A was found to result in suppressing serum starvation-induced
apoptosis by activating AKT [98].

On the contrary, Cdc25A was also found to be required for Myc-dependent apoptosis [31].
This striking finding is supported by another report that Cdc25A mediates Myc-dependent
apoptosis in vascular smooth muscle cells [99]. Cdc25A-associated apoptosis was thought to
be related to deregulation of Cdc25A, which facilitates cells with damaged DNA to bypass
the G2/M checkpoint leading to cell apoptosis [64]. Recent studies have also revealed that
caspase-mediated cleavage of Cdc25A produces a C-terminal fragment, which has elevated
phosphatase activity and nuclear localization sequence, but has no nuclear exportation
sequence [100]. Consequently, this fragment is restricted exclusively in nuclei, where it
activates CDK2 and induces apoptosis [100]. The role of C-terminal Cdc25A in apoptosis is
further supported by the finding that C-terminal Cdc25A promotes apoptosis by activating
CDK1 [101].

The discrepancy of the role of Cdc25A in apoptosis is associated with the subcellular
distribution of Cdc25A [102]. Cdc25A functions as an apoptosis suppressor only when it is
in the cytoplasm, whereas nuclear-accumulation of Cdc25A leads to cell apoptosis [102].
However, the observation that Cdc25A is predominantly settled in the cytoplasm [102]
suggests that the major role of Cdc25A in apoptosis can be considered as a suppressor.

4. Effect of overexpression of Cdc25A on tumorigenesis
As Cdc25A is critical for both cell proliferation and apoptosis, it is not surprising that
overexpression of Cdc25A has been observed frequently in various types of cancer, and
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found to be correlated to poor prognosis in patients [10, 15, 103]. The mechanisms of
Cdc25A overexpression are complicated and need to be further investigated. However, some
previous studies have provided valuable clues, indicating that overexpression of Cdc25A in
cancer cells is at least partially due to transcriptional and post-translational deregulation
[10].

One of the major causes for deregulation of Cdc25A transcription is dysfunction of some
transcription repressors, particularly p53 [64]. Studies have revealed that mutation in p53
gene occurs frequently in a variety of cancers, including lung [104], breast [105], colorectal
[106], head and neck [107], and gastric cancer [108], in which Cdc25A is also deregulated
[109-113], indicating a close correlation between p53 mutation and Cdc25A overexpression
in cancer cells. Demidova et al. found that p53-induced transcription repression of Cdc25A
is mediated by ATF3 [64], suggesting that cancer-associated overexpression of Cdc25A
might be a consequence of p53 gene mutation. Another cause for cancer-associated
elevation of Cdc25A transcription is disruption of E2F1-Rb complex by human
papillomavirus type 16 E7 oncoprotein [35], resulting in cell cycle deregulation [114]. As
E7 oncoprotein is known for its ability to promote cancer development [115, 116], it is
possible that overexpression of Cdc25A mediates E7-induced transformation and
immortalization.

The discovery that aberrantly elongated half life of Cdc25A contributes to high cellular level
of Cdc25A in breast cancer provides important evidence that links overexpression of
Cdc25A to post-translational regulation [117]. Recent studies have revealed that ubiquitin
hydrolase Dub3 can reduce Cdc25A turnover by removing ubiquitin chains from Cdc25A
protein [118]. Consequently, overexpression of Cdc25A was observed to be correlated with
high level of Dub3 in 9 of 12 breast cancer cell lines [118]. Besides, dysfunction of β-TRCP
was also found to be associated with overexpression of Cdc25A in lung cancer [119].

The in vivo studies provided more evidence on how overexpression of Cdc25A affects
cancer development. Ray et al. demonstrated that double transgenic expression of Cdc25A
and ras/neu under mouse mammary tumor virus (MMTV) promoter causes mammary
tumorigensis in mice much faster than single transgenic expression of MMTV-H-ras/neu
[120]. More importantly, cells from double transgenic mice are much more capable of
proliferation and invasion than from MMTV-H-ras/neu single transgenic mice [120].
However, transgenic expression of Cdc25A alone is not sufficient to induce tumorigensis,
suggesting that overexpression of Cdc25A assists ras/neu-induced mammary tumorigensis in
vivo [120]. Transgenic overexpression of Cdc25A causes damage of telomeric region of
chromosome 4 [120], implying that overexpression of Cdc25A promotes tumorigensis
partially by inducing certain DNA damage. Consistently, further studies revealed that the
mouse with heterozygous Cdc25A+/− is more resistant to ras/neu-induced tumorigensis than
that with homozygous Cdc25A+/+, which is a consequence of difference in proliferation
capability between the cells from heterozygous and homozygous Cdc25A tissue [121].
Therefore, Cd25A plays a rate-limiting role in ras/neu-induced tumorigensis [122].

Since overexpression of Cdc25A is involved in tumor initiation and progression, and
correlated with poor prognosis, Cdc25A has been considered as a potential target for cancer
therapy [123-125]. Several categories of compounds have been explored for this purpose,
including natural products, lipophilic acids, vitamin K analogues, electrophiles, and
phosphate mimics [123]. Moreover, as mild heat shock (42°C) was found to destabilize
Cdc25A, hyperthermia therapy is thought to have great potential to treat cancer patients
[126].
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Fig. (1).
Promotion of G1/S transition by Cdc25A. Cdc25A activates cyclin D-CDK4 complex and
cyclin E-CDK2 complex, which phosphorylate Rb and dissociate Rb from complex with
E2F1, releasing inhibition on E2F1, whose activity is essential for G1/S transition.

Shen and Huang Page 16

Anticancer Agents Med Chem. Author manuscript; available in PMC 2013 July 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. (2).
Regulation of Cdc25A in response of genotoxic stress. Upon DNA damage, p53 and ATR/
ATM machinery are activated individually. Activated p53 inhibits Cdc25A transcription
through ATF3 activation, and activated ATR/ATM promotes Cdc25A turnover through
checkpoint activation.
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Fig. (3).
Regulation of G2/M transition by Cdc25A. Cdc25B initiates CDK1 activity by
dephosphorylating p-T14/Y15 on CDK1. Activated CDK1 stabilizes Cdc25A by
phosphorylating at S17/S115 on Cdc25A, which can feedforwardly elevate CDK1 activity
by removing inhibitory phosphorylation on CDK1. The feedforward loop between CDK1
and Cdc25A is critical for G2/M transition.
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Fig. (4).
Inhibition of ASK1 activation and apoptosis by Cdc25A. Cdc25A inhibits ASK1 activity by
binding to ASK1 and interrupting ASK1 oligomer formation, thus preventing cell apoptosis.
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