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Abstract

Dose-finding in clinical studies is typically formulated as a quantile estimation problem, for which
a correct specification of the variance function of the outcomes is important. This is especially true
for sequential study where the variance assumption directly involves in the generation of the
design points and hence sensitivity analysis may not be performed after the data are collected. In
this light, there is a strong reason for avoiding parametric assumptions on the variance function,
although this may incur efficiency loss. In this article, we investigate how much information one
may retrieve by making additional parametric assumptions on the variance in the context of a
sequential least squares recursion. By asymptotic comparison, we demonstrate that assuming
homoscedasticity achieves only a modest efficiency gain when compared to nonparametric
variance estimation: when homoscedasticity in truth holds, the latter is at worst 88% as efficient as
the former in the limiting case, and often achieves well over 90% efficiency for most practical
situations. Extensive simulation studies concur with this observation under a wide range of
scenarios.
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1. Introduction

We consider quantile estimation in the context of dose-finding study where patients are
tested in successive groups of size m. Precisely, let Xjdenote the dose given to the patients
in the th group, and Yj;denote a continuous biomarker from the jth patient in the group. A
response is said to occur if the outcome Yj;exceeds a threshold %. The objective is to
estimate the dose 6 such that n(6) = p for some pre-specified p, where r(x) = pr(Yj;> & |
X;j= X). This clinical setting is not uncommon, and there is also a wide range of applications
in other areas such as reliability testing and bioassay. However, quantile estimation based on
continuous data has received relatively little attention in the literature. In practice, this
problem is often dealt with by using sequential methods based on the dichotomised data Vj;
= I(Y};> L), where /(A) is indicator of the event A, such as the logit-MLE (Wu, 1985) or
the continual reassessment method (O’Quigley et al., 1990). These methods, using the
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binary data to estimate 8, provide general solutions without imposing strong assumptions on
the characteristics of ;. On the other hand, this approach can result in substantial
information loss due to dichotomisation. Cheung (2010) demonstrates that, with group size
m= 3 and normal data, the asymptotic efficiency of an optimal logit-MLE using the
dichotomised data V/j;is at most 80% of a corresponding Robbins-Monro (1951) procedure
using the continuous data Y7; and the efficiency loss becomes more substantial with a larger
mor a more extreme target p. Having said this, we acknowledge that there is an ongoing
need for designs and models for clinical situations with truly binary outcomes that are not
results of dichotomisation of continuous outcomes. This paper, however, focuses on the
relative efficiency of a least squares recursion using the continuous data under various
assumptions on Yj; Generally, we consider the regression model

Yi=MX)+o(X)Zi, ()

where the noise Zj;is standard normal. Among the earliest proposals to address this
problem, Eichhorn and Zacks (1973) study sequential search procedures for © under the
assumptions that the mean function M(X) is linear in xand the standard deviation is known
and is constant, i.e., o(x) = o. Recently, Cheung and Elkind (2010) describe a novel
application of the stochastic approximation method that leaves both M(x) and a(x)
unspecified subject to the constraint that © is uniquely defined, and propose to estimate o(x)
nonparametrically. These two sets of assumptions represent two extreme approaches, and
raise the question whether there is a reasonable middle ground. Specifically, this article
focuses on the estimation of the standard deviation function, and investigates how much
efficiency may be retrieved by imposing stronger assumptions on o(x) than that in Cheung
and Elkind (2010) while keeping the mean M(x) unspecified. Our investigation will be
conducted in the context of a sequential least squares recursion described in Section 2.
Section 3 derives the asymptotic distribution of an proposed estimator for 6. Section 4
reviews Wu’s (1985) logit-MLE as a comparison method of the least squares recursion.
Efficiency comparison is given in Section 5, and concluding remarks in Section 6. Technical
details are put in the Appendix.

2. Least squares recursion

Under model (1), Cheung and Elkind (2010) show that solving w(0) = pis equivalent to
solving AB) = &, where fx) = M(X) + z,0(X) and Z, is the upper pth percentile of standard
normal. For brevity in discussion, we may assume here that the objective function fis
continuous and strictly increasing so that the solution © exists uniquely. An important class
of models that satisfies this assumption is models with increasing mean M(x) and constant
coefficient of variation across doses. Conditions 1-3 below make precise statements of the
assumptions that are much less restrictive.

Now, pretend that x) = § + H(x — ©) for some 4> 0, and suppose also that we can observe
an asymptotically unbiased variable U; , of A.X)) for group /. A least squares estimate 8, of
0 based on the first 77 groups of observations can be obtained by solving

%Z;A [Ui»" — {to+b(Xi — é’n)}] =0. (2

Then we may set the next dose

Xn+1=0,.  (3)
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The least squares recursion formed by (2) and (3) in essence is identical to the adaptive
design proposed by Lai and Robbins (1979). A subtle difference is that the unbiased variable
U, pis chosen based on the assumption about the variance function o(x).

Case 1 (known variance): When a(x) is completely known, a natural choice is to define U;,
— v -1\ . . .
= Yj+ z0(X)), where Yi=m Z,-ZIYU is the average of the measurements in group /.

Case 2 (heteroscedasticity): When o(x) is unknown and unspecified, we may define
Uin=Y+2,*s;, where s? is the sample variance of the measurements in group /,

_(m—DI'*{(m - 1)/2}
- 22(m/2)

m

Q]

and I'(") is the gamma function. Note that the form of A, in (4) ensures E(1)/s,)=c(X;) SO
that U; ,is unbiased for 7.X)).

Under both Cases 1 and 2, the observed variable U; , is unbiased for A.X)), and U;,and U;
are mutually independent for 7# j. Therefore, using the same techniques as in Lai and
Robbins (1979), we can then verify that the least squares recursion formed by (2) and (3) is
identical to the nonparametric Robbins-Monro procedure under these two cases: X1 = Xj,
- (/717)‘1(U,7,,7 - fy), where 6> 0 is the same as the assumed slope used in the least squares
estimation (2). Hence, the standard convergence results of stochastic approximation apply so
that X, — © with probability one; for example, see Sacks (1958). In addition, if 6< 27 (8),
the distribution of (X, — ) will converge weakly to a mean zero normal with variance
equal to a102(8) under Case 1 and aqa,02(0) under Case 2, where ay = [mb{2f (6) — b}]72

and az=1+mzf,(/l,,, — 1). In other words, the asymptotic relative efficiency due to the
knowledge of o(X) is equal to a,. To illustrate the magnitude, the efficiency a., = 2.87, 2.35,
2.17 for m=2, 3, 4 and p=0.10. The efficiency gain is quite substantial, and is not
surprising because Cases 1 and 2 in a sense represent two extremities of assumptions.

Case 3 (homoscedasticity): When o(X) is identical to an unknown constant o for all x; we
may choose U;,= Y+ 20, where Op=n! Zi:] s,

Under Case 3, we can rewrite the least squares recursion as follows:
n+l—ni:1 i b ni:l i Hnls (5)

where L, = & = 2,0,

We note that homoscedasticity may not be a viable assumption in many practical situations,
and it is arguably the strongest parametric assumption one can impose on o(x) besides
complete knowledge assumed under Case 1. The consideration of Case 3 is intended to serve
as a reference for Case 2, so as to shed light on how much efficiency one may lose due to
nonparametric estimation of o(X).

3. Asymptotic normality under homoscedasticity

Convergence for the recursion formed by (2) and (3) does not trivially follow the standard
results of stochastic approximation under Case 3, because the summands are correlated in a
complex way via U; , The following lemma is a key result that transforms the least squares
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recursion (5) into a Robbins-Monro-type recursion with a target p == £ — z,o. Note that the
estimand © also solves M(B8) = . under homoscedasticity.

Lemma 1. The design sequence { X} generated by (5) under homoscedasticity can be
represented as

1 (-
X1 =Xy — — {Yn+—z" (202 - u} & 6)
nb 200

where anlEﬂfn”fn—l)@o a.s. and & -1 denotes the o-field generated by (X;, Zu, Zp, ...,
Zim) fori=1, ...,n-1.

In words, the recursion (6) is generated by the mean function M(x) and independent errors

5 2, 2 5 _ -1\ " .
é,5 with bias & ,, where 2= {Zn*'O'SZP(Sn/“ - 1)} and Z,=m ijlzn.i. It is also easy to

verify that £(é,) = 0 and var(é,) = azo2/m, where a3=1+mz,2,{2(m — 1)}7".. Hence, if the bias
€ ,is adequately small, we expect the convergence properties of (6) will be similar to that of
the Robbins-Monro procedure without the bias term.

Condition 1. The mean function M(x) is weakly increasing in that (x — 0){M(x) - n} >0
for all x# 6.

Condition 2. There exists a constant C; > 0 such that [M(x) — n| < Ci|x — 6] for all x.

Theorem 1. Suppose Conditions 1 and 2 hold and o(X) = o. The sequence { X} generated
by the least squares recursion (5) converges to © with probability one.

Condition 1 is weaker than requiring an increasing mean M(x), and is often reasonable in
dose-finding study. Condition 2 puts a bound on the tails of M(x) and requires it to be flat on
the tails. Particularly, while lab measurements of a bioassay in theory take on values from
the real line (after taking log), they are typically confined to a finite range in practice. This
implies that the mean function is bounded, which in turn satisfies Condition 2. Thus, the
conditions for the consistency of the least squares recursion are quite mild and can often be
verified from the clinicians. To obtain asymptotic normality of X}, we also need:

Condition 3. The mean function can be expressed as M(x) = . + B(x— 6) + t(x, ) for all x
such that > 0 and t(x, ©) = o(|x— 6]) as x — 6.

Condition 3 ensures that the local slope of M(x) around © is equal to B, while allows very
flexible form of functions via ©(x, ©). Note that under homoscedasticity, B = M (6) = £ (0)
because o’ (X) = 0.

Theorem 2. Suppose Conditions 1-3 hold and o(0) = o. If b< 2P, the distribution of
Vn(X,, — §) converges weakly to a mean zero normal with variance a.ja.3o?.

4. Dosing finding with dichotomised data

Instead of using the continuous data Y7; a convenient alternative using the dichotomised
data Vj;by the logit-MLE recursion that solves

n m

exp{b(X; — 8,
Z ZVU— mp exp{ (~ . )~ S0
i=1 | j=1 1 — p+p exp{b(X; — 6)
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and sets X1 = 6,, In practice, we need to consider a two-stage approach (Cheung, 2005)
that assigns doses initially via the stochastic approximation based on the dichotomised data:

X =% e A . . . .
Xn1=Xy = (nb) ~(m ZFIVU = P) and switches to logit-MLE when a unique solution to
(7) exists, i.e., when Vj;# V- for some j# 7 or j# /.

Using the results in Ying and Wu (1997), we can show that .X,, — © with probability 1, and
that if &< 2B¢(zp){op(1 - 0y, Vn(X, — 6) converges weakly to a mean zero normal
distribution with variance

o
mb{284(z,) — obp(1 — p)}  ©

where ¢(2) is the standard normal pdf. The asymptotic variance (8) achieves its minimum

when b= = B¢ (z){op(1 - P}

5. Efficiency comparisons

As a consequence of Theorem 2, the asymptotic efficiency of the least squares recursion
assuming heteroscedasticity (Case 2) relative to that assuming homoscedasticity (Case 3)
equals a.3/ay, when homoscedasticity in truth holds. As shown in the left panel of Fig. 1, the
ratio as/a is uniformly less than 1. Such efficiency loss is not surprising because no
parametric assumption on o(x) is made under Case 2, whereas homoscedasticity amounts to
a single-parameter model. Generally, the efficiency worsens as p becomes extreme, and
converges to {2(/m - 1)(A,, — 1)} 1 in the limiting case p — 0 or 1 where the ratio reaches a
minimum of 0.88 when m = 2. The efficiency improves as the group size m increases, and
always stays above 0.90 with m= 3.

In contrast, the efficiency of the least squares recursion assuming homoscedasticity (Case 3)
against that assuming a known o (Case 1) is plotted in the right panel of Fig. 1, which shows
a great efficiency loss. The efficiency is about 0.40 for p=0.10 and becomes arbitrarily
close to 0 as p— 0 or 1. These comparisons demonstrate that efficiency loss due to
incomplete knowledge about o is far more substantial than that due to relaxing the
parametric assumptions on the variance function.

We conducted a series of simulation studies to compare efficiency in finite-sample settings.
The outcomes are generated with mean

M(x)=2{1+exp(® - 0} {~c,+2 log(x — 6+ 1)+1.5(x - )’} (9)

where ¢, is the upper pth percentile of the cdf of Zj. We note that all methods in the
simulation make the working assumption that Zj; arises from a standard normal, even though
we may generate noise from other distributions (see details below). This allows us to
evaluate the impact of violation of the normality assumption. In the simulation, we set the
variance o2(x) = 1 for x € [0, 1] and £ = 0 so that © as specified in (9) is the target pth
percentile that we want to estimate under model (1). We consider p=0.1, 0.2 and 6 = 0.25,
0.50, 0.75.

The simulation include the least squares recursion procedures described in Section 2 and the
logit-MLE in Section 4. For the least squares recursion, we consider = 3, which
corresponds to the optimal choice in terms of asymptotic variance, and = p/2 in order to
investigate the relative performance of the methods when we fail to choose a good b. For the
logit-MLE, we set 5= 8 and /2 respectively.
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In the first set of simulations, we ran the four procedures with m= 3 and 7= 15, and also
considered the fully sequential version of the logit-MLE, i.e., m=1and n=45. Each
simulated trial will have a starting dose X7 = 0.25 or 0.50. We apply truncation to the
subsequent doses and set the next dose at Xj,»1 = max{min(6,, 1), 0} instead of (3) for the
least squares recursion. Likewise, for the logit-MLE, we set X; = 0.25 or 0.50, and set X1
= max{min(8,, 1), 0}. Such truncation does not affect the asymptotic property of the
recursion (see appendix), and is often done in practice.

Table 1 summarizes the results of the first simulation study. Overall, the biases are small
when compared to the variances for all methods. In line with the asymptotic comparison in
Fig. 1, the efficiency against assuming known o is quite low for the other procedures,
especially when the target percentile is extreme, i.e., p=0.1. Also as expected, assuming
heteroscedasticity instead of homoscedasticity yields further drop in efficiency—but the
drop is slight. In contrast, the logit-MLE shows a marked efficiency loss when compared to
the least squares recursion procedures that use the continuous data. The fully sequential
logit-MLE retrieves some information loss from the small-group logit-MLE, but the gain in
efficiency does not completely recover the loss due to the use of dichotomised data.

Also in line with the asymptotic theory, setting &= and &= f respectively for the least
squares recursion and the logit-MLE generally yields better results than 6= p/2 and 5= f/2.
The only exception is when p=0.1 and © = 0.75, the logit-MLE with a low starting dose (X1
= 0.25) has worse mean squared error when 4= 8 than when 5= /2. It is known that logit-
MLE with a large 4 corresponds to small changes in subsequent doses; therefore, with a
finite sample size, it will have difficulty climbing to a high © if the starting dose is low, and
can be improved with the use of a smaller 4.

The impact of the starting dose X3 on the operating characteristics is comparatively
nuanced, although the logit-MLE tends to have smaller variance when the starting dose Xj is
closer to the target dose 6.

The second simulation study further studies the effects of group sizes. Specifically, we
consider designs with a bigger group size, namely, m=5 and =9, so that the total sample
size remains 45. Using bigger group sizes can be appealing in practice because it reduces the
study duration and administrative burdens. We also consider random group sizes generated
by permuting {2, 2, 2, 3, 3, 3,4, 4, 5, 5, 6, 6} so that there are n= 12 groups and a total of
45 subjects in each simulated trial.

A bigger group size seems to have a slightly negative effect on the logit-MLE when
comparing the results in Table 1 (m =1, 3) and Table 2 (m=15). Specifically, the fully
sequential logit-MLE seems to outperform the small-group logit-MLE in finite sample size.
Note that the asymptotic variance of the logit-MLE does not depend on group as long as the
total sample size nmis the same. In contrast, the impact of group size on least squares
recursion is relatively small. There is in fact slight improvement in relative efficiency of
Case 2 and Case 3 against Case 1 when /m = 5: this is in line with the fact that bigger group
size improves asymptotic efficiency of the least squares recursion with unknown variance;
cf. Fig. 1. The relative performance of the four procedures follows the same pattern under
varying group sizes.

The third simulation study aims to examine the robustness of the least squares recursion
when Zj;is non-normal. While the methods use normality as the working assumption, we
generated noises from other distributions with mean 0 and unit variance. Table 3
summarizes the results under the logistic distribution with mean 0 and scale 0.55, and the #
distribution with 6 degrees of freedom (scaled to have unit variance).

J Stat Plan Inference. Author manuscript; available in PMC 2014 March 01.
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Overall, the least squares recursion procedures induce larger biases under misspecified
distribution (cf. Table 1). However, the biases are generally small when compared to the
variances. Interestingly, assuming heteroscedasticity (Case 2) seems to mitigate the increase
in bias due to misspecification, and as a result, leads to smaller mean squared error than the
procedure assuming homoscedasticity (Case 3). It is also important to note that the least
squares recursion procedures are generally superior to the logit-MLE in terms of mean
squared error, even though the latter did not require normality to be valid. This suggests that
variability, rather than bias, is the limiting factor of performance when sample size ranges
from small to moderate. In other words, the information retrieved via the use of continuous
data outweighs the potential bias induced by misspecification. Having said this, we
recommend using pilot data to assess the noise distribution in the planning stage; see
Cheung and Elkind (2010) for example.

6. Concluding remarks

The contribution of this paper is two-fold. First, it provides a unified least squares recursion
approach (2) for sequential quantile estimation using continuous data. Second, and
importantly, in the context of this least squares recursion (2), we investigate the issue of
variance modeling in the context of an important biomedical application in dose finding. By
asymptotic comparison and simulation studies, we show that the efficiency loss due to
nonparametric variance estimation is small when compared to parametric estimation under
the correct model (i.e. variance is an identity function of dose). Furthermore, the simulation
study suggests that nonparametric variance estimation leads to improved robustness when
the normality assumption is violated.

For the non-sequential settings, Fedorov and Leonov (2004) give a detailed and insightful
discussion on parameter estimation for normal data with unknown variance, and study the
behaviors of an iterated estimator under a parametric model. They show that the iterated
least squares estimators may not be efficient without adjustment; this may bear implications
on the use of nonparametric variance estimation for which no adjustment is needed. Having
said this, the focus of this paper differ from that of Fedorov and Leonov (2004) in two ways.
First, we avoid parametric assumptions on the mean M(x). Second, we focus on situations
with sequential accrual of the data. The sequential nature of our problem renders the
correctness of the parametric assumptions all the more crucial for the validity of statistical
inference: in reality where modeling the variance function is difficult, the working
assumption on o(x) has a direct impact on the design { X} so that it is not possible to
perform sensitivity analysis after the data are collected. As such, a misspecified o(x) will
affect the final estimate of © in an irreconcilable way, and thus parametric structure on the
variance function should be avoided unless there are compelling reasons—and, as we show
in this paper, the advantage of parametric estimation is very modest even when the
assumption is correct.
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Appendix A. Proofs

This section provides the proofs of Lemma 1, Theorems 1 and 2.

Proof of Lemma 1. Applying Taylor’s expansion in o, about o gives
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where ¢, is between o and . Therefore, we can rewrite (5) as

Xo1=~ ZX— {ZY Z”(Az—az)—u}w (A1)

where

3
ip a N 2
M= 0_1 {1 — Py *5(0' —0'2)} (0'31—0'2) .

Next, consider the design {X } generated with X1 =X;and

1

Xin=X; — b

[P 25 - o) - | &
20

where Y;=M(X;)+O-Z,-. Multiplying /7on both sides then gives

. S N S PR 2 .
X, — (- DX;=X; - E{Yﬁ%(si -0°) —,u} +i&;.

Iterating the above equation, we get
_1 " ’ 1 1 < =/ Zp A2
X+1_;;Xi_z{;;Yz e (e B H}

Matching the last terms in (A1) and (A2) gives

1 0 - 0 &1 m
1 2 0 0 || & | |2
1 2 -+ n-1 n é':n m]n

and inverting (A3), we have X, = X, and ¥,, = }"; with 7€ ,= m, - (1= 1)mp-1. TO
complete the proof and show ZHZIE(IntIﬁn—l)@O a.s., it suffices to show that

D E(€D=E {ZEG&,,H%_Q} <eo.
n=1 n=1

Let D,=62 — o Thus, nD,=(n — 1)D,_,+(s> — o*) and
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niy — (n - l)nn—]

3

n—1)z, 2 — o)’ 3 (n—1)\? 3 3
SR S B W i Ay (” )— z nDZ_l—f;s (n = DDZ_ (52 = 0*)+D,

20_*5

8no3b n—1 205\ n -

n

Thus, E(fnm, — (n = D)t Fn-1) < KolDuo11+K1 D2 +KonlD,—1 *+0(n™") for some Ko, K,
K> > 0. Since

E(DD)=0(n"), E(D,) < [E(DH]*=0(n™"2), and E(D,) < [EDHT*=0(?),

iEugnD:iom‘”z)@o.
n=1 n=1

Proof of Theorem 1. Following from Condition 2 and recursion (6) in Lemma 1, there exist
Kz, Ky > 0 such that E{(Xju1 — 0)? | Fp1} <

2
X, — ) - = (X = O)(M(Xy) = i)+ K3 E (I | Z0-1)+K4E(Ex| Fne1)+O(n™2).

It is easy to show that anlE(§r2¢|=an—l)<°° a.s. by verifying =, E(£2)<co. Therefore,
Theorem 1 of Robbins and Siegmund (1971) implies that lim,, eo( X1 — ©)2 exists and

anln_l(xn — M (X,) — ul<e0 g 5. Since (X;~0){ M(X)—L} > 0 under Condition 1, we
conclude that X, — 6 a.s.

Proof of Theorem 2. We will follow the approach of Sacks (1958). First, define
n n -1/2
Y= | [ (1-pj7") and hn=[szi‘2ﬁn] . (A%)
j=i+l i=1
where p = B/ b, with the following properties:

Property 1. (1+&;) ’n™ < yi, < (l+8;~) ’n™* where g;, s; —0asi— oo.
Property 2. 1im ;.o hyyin= 0 for fixed 7and p > 1/2.
Property 3. h,~ {b(2p - b)Y2p~1A12,

Properties 1-3 are respectively Equation (2.3), Lemma 2, and Lemma 5 of Sacks (1958).
Now, under Condition 3, we can rewrite (6) as

Xn1 —0=(X,, - 0) - %{IB(XVZ - 0)+71(X,, 9)+En}+§n

B

nb

71Xy, 0) &y
b nb+§" (A5)

= x,,+1—0=(1— )(Xn—G)—
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n n n

I IR
= Xu+1 — 0=you(X1 —0) — Ezl YYinT(Xi, 0) — Zzl 1)’m6i+2)’m§i- (A6)
i=1 i=1 i=1

Equation (A6) is obtained by iteration of (A5). If we show that /,(.X;+1—0) is asymptotically
normal with mean 0 and variance a3o?(/mB2)~1, then the desired result will follow from
Property 3. Corresponding to the terms in (A6), the limiting results

i.  NiyoX1—6) —0as.

ii. -1\ -1
hnb i Yint(Xi,0) = 0 .
Z 4 in probability

1

. hnb_lzi_]YinEi_’fN 0, a30°m™'f7%)

1

can be derived by mimicking the proof of Theorem 1 in Sacks (1958) under an additional
assumption:

Condition 2b. There exists 0 < Gy < Cy such that Gy|x — 8| < [M(x) — u|. Finally, following
from Properties 1-3,

n

hn Y Yinki~b(2B = b)Y 07 0! g — 0

i=1 =1

when p > 1 by Kronecker Lemma; and,

c ] i i —1 i
3t g, $ (B g
i=1 i=1

N

if 1/2 < p < 1, because Zi:lini — (i = Dni-1=n1, The desired result is thus obtained under
Conditions 1-3 and 2b.

Suppose now that M(x) satisfies Condition 1-3 but not 2b. Since b < 2, there exists ¢>0
such that 5< 2(B — ). Let Gy = B — < C;. Then under Condition 3, we can find & > 0 such
that Go|x— 8| < |M(x) — n| < Ci|x - 6| for |x- 0] < &.

Next, define Ms(x) = M(X) if |[x— 06| <6 and Ms(X) = + Co(x - ©) if [x— 6| > §, and let
Xié) =X, . and

Ng+

_ ; 1 - 24N,
X9 _g=(XD — ) - ———(My(XD) =y — 22T
w1 0= )= Gangyp Mo = = G s

where A > 0 is determined such that, for a given ¢, pr(|.X,;~6| < & for all n= Ng) > 1-u. We
can find such an Ajg because X, — 0 a.s. under Conditions 1 and 2. Observing that Mg(X)

satisfies Condition 2b, we can verify '/2(X® — 9)—< N(0, @ a30%). Furthermore,

X,y = X a.s. on the event {IXpng — Ol <& all n>1}. Thus,
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lim sup pr{nl/z(X,, — @)<w}=lim sup pr{(n+N5)1/2(Xn+N§ - O)<w}

n—oo n—o0

< lim sup pr{(n+N5)1/2(X,([5) —O)<w, |Xn+N6 -0l <o6,n>1}4u

n—oo

< lim pr{(n+N;)">(X¥ — g)<w}+u.

Similarly, we obtain

lim inf pr{n'/*(X, — 6)<w} > lim pr{(n+N;)"> (X — )<w} — u.
n—00 n—0o0

Since wis arbitrary, we conclude that /2(X;;-0) and »'/2(x'? - g) have the same limiting
distribution. This completes the proof of Theorem 2.

Appendix B. Asymptotic irrelevance of truncation

This section discusses the asymptotic equivalence of the truncated least squares recursion
and its non-truncated counterpart.

Under Cases 1 and 2, the least squares recursion is identical to the Robbins-Monro
procedure, whose truncated version is known to be asymptotically equivalent to the non-
truncated design; see Lai and Robbins (1981) for example.

Under Case 3, the true standard deviation o is consistently estimated by o, and we can re-
write (2) as

1. N
- Yi+ —{to+b X,' —-0,)}=—- 0, — .
. i; po {to+b( )} Zp(o-n o)

Since 6,,— o — 0 with probability one, by Martingale convergence theorem, we have

%Zf(xo — {to+b(X; — By)} > 0
i=1

with probability one. Therefore, we can use the arguments in the proof of Theorem 2 in
Ying and Wu (1997) to show that X1 = 6, eventually with probability 1. Thus, in view of
asymptotic efficiency, we can focus on the non-truncated design formed by (2) and (3)
recursively.
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Fig. 1.
Asymptotic relative efficiencies under homoscedasticity for 77 = 2 (solid), 3 (dashed), and 4
(dotted).
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