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Candida albicans is a major fungal pathogen of humans, causing mucosal infections that are difficult to eliminate and
systemic infections that are often lethal primarily due to defects in the host’s innate status. Here we demonstrate the
utility of Caenorhabditis elegans, a model host to study innate immunity, by exploring the role of reactive oxygen species
(ROS) as a critical innate response against C. albicans infections. Much like a human host, the nematode’s innate immune
response is activated to produce ROS in response to fungal infection. We use the C. albicans cap1 mutant, which is
susceptible to ROS, as a tool to dissect this physiological innate immune response and show that cap1 mutants fail to
cause disease and death, except in bli-3 mutant worms that are unable to produce ROS because of a defective NADPH
oxidase. We further validate the ROS-mediated host defense mechanism in mammalian phagocytes by demonstrating
that chemical inhibition of the NADPH oxidase in cultured macrophages enables the otherwise susceptible cap1 mutant
to resists ROS-mediated phagolysis. Loss of CAP1 confers minimal attenuation of virulence in a disseminated mouse
model, suggesting that CAP1-independent mechanisms contribute to pathogen survival in vivo. Our findings underscore
a central theme in the process of infection—the intricate balance between the virulence strategies employed by
C. albicans and the host’s innate immune system and validates C. elegans as a simple model host to dissect this balance
at the molecular level.

Introduction

The incidence of invasive fungal infections has escalated in recent
years, primarily in hospital settings;1 90% of these infections are
caused by various Candida species,2 50% of which are fatal.3 The
estimated annual cost of treating nosocomial Candida infections
exceeds $1 billion per year and has an attributable mortality of
about 5,000 deaths per year in the United States.4-6 Candida
species are the fourth leading cause of bloodstream infections
(BSI), with C. albicans responsible for about half the cases.
C. albicans form robust biofilms on medical implants, such as
intravenous catheters, prosthetic joints, or artificial heart valves,
which can seed potentially lethal disseminated infections.7-9

Approximately 75% of women have at least one episode of
vaginitis caused by Candida in their lifetime10 and oropharyngeal
thrush and esophagitis are common in both infants and in
patients with AIDS.11 Candida species also cause superficial
infections on mucosal surfaces in the body, including the mouth,
upper gastrointestinal (GI) and urogenital tract. The frequency of
these superficial infections combined with the treatment
challenges posed by disseminated infections make C. albicans an
important pathogen for further study.

A variety of in vitro, ex vivo and in vivo models have been
employed to study the interaction between the host and this
fungal pathogen. In vitro studies of hyphal morphogenesis and
biofilm formation, among many others, have yielded important
insights into virulence.12,13 Ex vivo models, such as co-culturing
C. albicans with isolated macrophages, neutrophils, epithelial or
endothelial cells, and even intact, perfused organs, have
demonstrated that C. albicans has very complex responses to host
cell contact, which can differ dramatically between cell types.14-19

A murine model of disseminated candidiasis has been frequently
used to validate the role of specific genes on overall virulence.
There is a general appreciation that each of these models has
provided important insights into fungal pathogenesis. Recently,
invertebrate models have become additional tools to dissect the
roles of components of the antifungal host defense system,
including flies (Drosophila melanogaster), wax moth larvae
(Galleria mellonella) and the nematode Caenorhabditis elegans.20-22

C. elegans has emerged as a useful model to study infectious
disease for several reasons. First, facets of its innate immune
system are conserved in humans23,24 and the nematode reacts to
pathogens in a manner similar to mammals, such as activation of
specific signal transduction pathways.23-26 A rich body of literature
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demonstrates that human pathogens, both bacteria and fungi, also
infect C. elegans in ways that are mechanistically similar to
humans. For example the opportunistic human pathogens
Pseudomonas aeruginosa23,27-30 and Serratia marcescens24,31 produce
toxins that are required for pathogenesis in disparate eukaryotic
hosts. Mutant studies in Salmonella Typhimurium, typically
thought to have a narrow host range, shows a direct correlation in
virulence between humans and C. elegans.32,33 More recently a
comparative study in C. elegans using fungal pathogens of the
genus Cryptococcus34,35 showed that only the human pathogen
C. neoformans, but not other related yeasts (C. kurtzingii or
C. laurentii), killed the nematode. These studies further
demonstrated that a virulence factor such as Kin1, first identified
in nematodes, was also important in mammals.36 More recent
whole genome analyses of C. elegans infected with C. albicans
reveal that the nematode induces immune defenses with known
antifungal properties.26

Studies of C. elegans infected with bacterial pathogens reveal
that the generation of reactive oxygen species (ROS) is an
important part of the nematode’s defense response,25,37 a hallmark
shared with mammalian innate immune responses. We previously
reported a C. elegans-based assay to study several aspects of disease
progression, namely Dar (deformity in the anal region), an early
marker of infection; intestinal distension, resulting from coloniza-
tion of the intestine; swelling in the vulva, representing infection
of other epithelial layers; and ultimately death of the host worm.25

This assay mimics an infection, because a small amount of the
pathogen is introduced along with the food. Furthermore the
assay is amenable to unbiased, high-throughput screens because it
does not require manual handling of individual animals.
Developed initially using Saccharomyces cerevisiae, here we have
adapted the assay for C. albicans.

We use genetic and pharmacological tools to alter the intricate
balance between the host and the pathogen and demonstrate that
ablating either the ability of the worm to produce ROS or
C. albicans to detoxify it (via mutation of the Cap1 transcription
factor) has dramatic effects on the outcome of this infection.
Results in the worm were recapitulated in macrophage co-
cultures, validating this model. Surprisingly, the C. albicans cap1D
mutant retained limited virulence in the disseminated murine
bloodstream model, suggesting that additional layers of regulation
of antioxidant defense exist in the context of a mammal. This
work thus provides an avenue to investigate fungal pathogenesis
and has allowed us to identify further complexity in the
pathogenic C. albicans-host interaction.

Results

Generation of CAP1 homozygous and complemented strains.
The original cap1D/D mutant strain CJD21 was generated by
Raymond and colleagues38 using an approach that was subse-
quently shown to be inappropriate for animal experiments due to
the variability of expression of the URA3 selectable marker. We
selected a ura3-derivative of the cap1D/D strain CJD21 on 5-
FOA, then integrated either URA3 or URA3-CAP1 at the RPS10
locus using plasmid CIp10, a strategy shown to stably express

URA3 during infection.39 This generated a cap1D/D mutant strain
(AGC2) and a complemented strain (AGC4); the mutant strain is
phenotypically identical to the original CJD21 during in vitro
challenge with ROS (data not shown).

In vivo virulence assay for Candida infection. Here we report a
pathogenesis assay to test various fungal pathogens of the Candida
genus, including C. albicans, C. dubliniensis, C. krusei, C. tropicalis
and C. glabrata. We adapted a previously described pathogenesis
assay where a small quantity of S. cerevisiae, was introduced with
the nematode’s standard diet of E. coli OP50. E. coli was
attenuated to avoid interactions with the fungal species under
investigation.25 We decreased the concentration of Candida in the
feeding mixture by 30-fold because of the increased pathogenicity
of Candida species, and even at this lower fungal burden, most
species induced Dar in 100% worms, compared with S. cerevisiae,
which induced 0% Dar at the same concentration of inoculum
(Table 1). We uncovered molecular mechanisms of fungal
virulence and the reciprocal innate immune response of
nematodes, which is also conserved in mammals.40,41

Disease phenotypes of C. elegans upon C. albicans infection.
Subsequent studies focused on C. albicans because it is the most
prevalent infectious species in this genus3 and adequate genomic
and molecular tools have been developed. To visualize infection,
disease progression and death, we exposed nematodes to
C. albicans and observed them daily over a 6 d period. The Dar
phenotype was clearly visible in every worm on Day 4 (Fig. 1 and
Table 1). Swelling in the vulvar region was also noted in the
worms infected with C. albicans (Fig. 2B). The worm succumbed
to the infection following these phenotypic observations. To
observe colonization of the intestinal lumen, worms were exposed
to mCherry-labeled C. albicans (mCherry labeled SC5314, gift
from Dr. Robert Wheeler, Univ. of Maine). Time-series
micrographs of worms infected with C. albicans indicated that
the intestinal lumen was colonized 2 d post-exposure compared
with uninfected worms. Considerable intestinal distension was
observed in infected worms on subsequent days (Fig. 2A)
compared with the uninfected control population. In general,
the disease phenotypes were more robust with C. albicans
compared with S. cerevisiae, even with lower inoculum for
infection. To further validate our assay we tested known mutants
efg1D/D and cph1D/D—previously documented virulence factors

Table 1. Percentage Dar observed for different clinical isolates

Strains % Dar n =

C. albicans (SC 5314) 100 114

C. albicans 100 111

C. dubliniensis 100 122

C. glabrata 59.7 ± 1.1 119

C. parapsilosis 4.9 ± 0.3 133

C. krusei 100 115

C. tropicalis 100 134

S. cerevisiae (BY4741) 0 76

± standard error
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that regulate hyphal transition of C. albicans42 and have been
shown to be important in in vivo infections of mice and
nematodes.26,43 The efg1D/D and cph1D/D single mutants
showed decreased Dar 10% and 50%, respectively, compared
with the cognate wild type, while the efg1D/D cph1D/D double
mutant failed to induce any Dar (0% Dar). These results
recapitulate the pattern of virulence in mice, where the cph1D/D
mutant is slightly attenuated, the efg1D/D mutant is significantly
attenuated, and the double mutant is completely avirulent.42

Accordingly, our assay is suitable for exploring virulence
strategies of C. albicans and the reciprocal host defenses that
may be correlated with aspects of innate immunity that is
conserved in mammals.23,24

CAP1 is required to establish and sustain infection in
nematodes. We compared the Dar response of worms exposed
to null mutant (cap1D/D) and wild-type strain (CAP1/CAP1) as
well as a CAP1-complemented strain (cap1D/D + CAP1), where a
single wild-type copy of CAP1 has been re-introduced. The wild-
type strain was able to induce Dar in 100% of the worms while
the cap1D/D homozygous mutant showed a significant reduction
in Dar induction (Fig. 3A). The CAP1-complemented strain
showed an intermediate Dar response that is commonly observed
for complemented strains. This result indicates that Cap1
function is required for full virulence in the nematode model.

To test whether the mechanism by which Cap1 promotes
virulence is related to the production of ROS by the host, we

Figure 1. C. albicans induces deformed anal region (Dar) in wild-type worms. Worms were exposed to E. coli as control (uninfected) and C. albicans
(shown are two examples of infected worms) and pictures were taken on Day 4 (arrow indicates the Dar region). Scale = 20 mm.

Figure 2. Different phenotypes are observed due to Candida infection. (A) Exposure to C. albicans causes intestinal distention in the worms over time
(Days 2, 3 and 4). DIC (Nomarski) pictures of worms feeding on E. coli was taken as control and the DIC, RFP and merged pictures of worms infected with
C. albicans are shown over 3 d. (B) Vulva swelling is observed (arrow points to the vulvar region) by Day 4 when worms are exposed to Candida
compared with worms exposed E. coli as control (uninfected). Scale = 20 mm.
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tested mutants in the bli-3 gene which contains the only NADPH
oxidase moiety in C. elegans genome.47 We and others previously
reported that Bli-3 produces ROS in response to pathogenic
insult.25,37 To test the hypothesis that Cap1 is responsible for
counteracting this oxidative environment upon C. albicans
infection, we exposed bli-3 mutant worms to cap1D/D, CAP1-
complemented and wild-type CAP1/CAP1 strains. As shown in
Figure 3B, the Dar phenotype of bli-3 mutant worms infected
with the cap1D/D null mutant is indistinguishable from that of
the wild type and complemented counterparts, suggesting that
Cap1 function is not required for infection if the host cannot
produce ROS. Thus, Cap1 is dispensable when the ROS
production part of the host’s defense repertoire has been
compromised, as in the bli-3 mutant.

We and others previously showed that Dar is an early
indicator25,48 of an eventually lethal infection. To test the
hypothesis that cap1D/D mutants are avirulent, we measured
the life span of worms infected with the cap1D/D null mutant,
complemented and wild-type strains relative to uninfected worms.
The average lifespan of C. elegans infected with wild-type

C. albicans (CAP1/CAP1) or a CAP1-complemented strain was
significantly shorter (median survival = 6 d) than those infected
with the cap1D/D null mutant (median survival = 13 d) (Fig. 3C).
These data indicate that Cap1 is required for the infection to
persist and ultimately kill the host. To test the hypothesis that
Cap1 is required to neutralize host ROS, we challenged an ROS-
deficient bli-3 mutant host with the C. albicans cap1D/D mutant.
Lifespan plots reveal that the kinetics of killing are indistinguish-
able between the cap1D/D mutant and the wild type or
complemented strains (Fig. 3D), suggesting that ROS is the
primary defense of nematodes against C. albicans and that
C. albicans requires Cap1 for a lethal infection to persist. The
lifespan of uninfected bli-3 mutants is the same as their wild-type
counterparts (Fig. 3), eliminating confounding factors other than
ROS production as a likely cause of death of infected worms.

In vitro, Cap1 regulates the response to oxidative stress,38,44-46

which is a key component of the human innate immune response
to fungal infections by neutrophils.15 To correlate these studies,
performed at 30°C and 37°C, with our in vivo infection,
performed at 20°C, we compared the ROS sensitivity profiles of

Figure 3. Cap1 is a virulence factor that is required for counteracting oxidative stress created by the host during fungal pathogenesis. The Dar phenotype
is observed for both (A) wild-type and (B) bli-3 mutant worms (which lack the ability to produce ROS) exposed to CAP1/CAP1, cap1D/D + CAP1 and
cap1D/D strains (* denotes p , 0.001; n denotes the number of worms exposed to a particular strain). Experiment was done in triplicate. (C) Survival
curves for wild-type worms when exposed to CAP1/CAP1, cap1 D/D + CAP1 and cap1 D/D with E. coli OP50 as control (p , 0.01 for CAP1/CAP1 and the
cap1D/D mutant) show that worms exposed to cap1 D/D survive longer than worms exposed to wild type, while (D) bli-3 mutant worms exposed to
Candida strains show no difference in survival between exposure to wild-type CAP1/CAP1 and the cap1D/D mutant.
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cap1D/D, CAP1-complemented and the cognate wild-type strain
at all three temperatures using hydrogen peroxide. The results
indicate that ROS sensitivity of the cap1D/D strain is independent
of temperature and that all C. albicans strains used in this study
show the same phenotype at all temperatures (data not shown).

Cap1 is responsible for neutralizing ROS produced by
phagocytes. Part of the mammalian host defense against
Candida infection is production of ROS within phagosomes that
have engulfed the fungal pathogen.49 Wild-type C. albicans can
effectively neutralize ROS to survive14,50-53 and eventually cause
macrophages to lyse. To test whether Cap1 is important in
surviving phagocytosis, we co-cultured macrophages with either
wild type or cap1D/D strains. Our data indicates that cap1D/D
strains are significantly more likely to be killed by macrophages
than the wild-type or complemented strains (Fig. 4). This effect
was eliminated when the co-cultures were treated with dipheny-
leneiodonium chloride (DPI), an inhibitor of the phagocyte
oxidase that generates ROS, thus demonstrating that host-derived
ROS kills C. albicans (Fig. 4). These results mimic our genetic
studies in nematodes and suggest that C. albicans relies on Cap1
to neutralize the oxidative environment within the phagosome,
and that eliminating the source of ROS in phagosomes eliminates
the need for Cap1.

CAP1 has a limited effect during mammalian infection. The
cap1D/D mutant is clearly attenuated in the nematode model and
during contact with macrophage, and has previously been
reported to be hypersensitive to several sources of oxidative
stress.38 We tested it in the standard mouse model of disseminated
candidiasis, in which C. albicans is introduced directly into the
circulatory system via the tail vein. We injected outbred ICR mice
with 106 C. albicans cells and monitored for signs of infection
(Fig. 5; see Materials and Methods). Mice inoculated with the
cap1D/D strain had a statistically significant increase in median
survival times relative to wild type (from 6.0 to 8.5 d, p =

0.0003). However, the CAP1-complemented strain showed
roughly the same virulence (median survival 8.0 d). A second
set of cap1D/D strains, generated using the SAT1-flipper method54

also showed little difference from the wild-type in the mouse
model (data not shown). Thus, despite the worm and macrophage
data, in vitro cap1D/D phenotypes and the general assumption
that the oxidative burst is a key part of the anti-fungal innate
immune response, we show that loss of CAP1 alters virulence only
slightly.

Discussion

Mammalian biology has been effectively modeled using a variety
of species that present substantial advantages in complexity,
genetic tractability, ethical considerations and cost. The last
decade has seen the acceptance of invertebrates, such as C. elegans,
as relevant hosts that can contribute to the molecular under-
standing of microbial pathogenesis. C. elegans has proven an
effective model for several systemic pathogens such as
Cryptococcus, Pseudomonas and Enterococcus, among
others,32,55 even though it differs from mammalian infections in
several respects, including the site of infection (gut vs.
bloodstream), growth temperature (25–30°C vs. 37°C) and the
absence of an adaptive immune response. We previously
demonstrated that the model yeast S. cerevisiae can cause
pathology in the nematode.25 In this work we show that this
assay is far more robust when using pathogenic Candida species
and that the virulence of these species in the worm roughly
correlates with virulence in humans.

Figure 4. Cap1 is required for survival in macrophages. Macrophages
were exposed to different strains of Candida in a ratio of 1:15
macrophages with and without DPI. Percentage survival was calculated
by dividing the CFUs obtained for Candida grown with macrophages to
Candida alone. Data were then normalized to the wild type. Percent
survival of cap1D/D mutant is significantly less (**p , 0.05) than the wild
type and the complemented Cap1 strain.

Figure 5. Candida virulence is reduced when Cap1 is deleted. Ten mice/
strain were injected in the tail vein with 106 cells of the respective
Candida strain. Survival curves of mice when infected with CAP1/CAP1,
cap1D/D + CAP1 and cap1 D/D strains show that mice infected with the
cap1D/D mutant were able to survive significantly longer than those
injected with the wild type (p , 0.01 for CAP1/CAP1 and the cap1D/D
mutant).
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A common feature of the innate immune response across
metazoans is the generation of ROS via an NADPH-dependent
oxidase, the phagocyte oxidase (a complex of gp47phox and
gp91phox) in mammals and bli-3 in the worm.37,56,57 In humans,
chronic granulomatous disease is caused by mutations in genes
encoding different subunits of NADPH-oxidase and 60% of these
patients, show loss of gp91phox expression.58 Interestingly these
patients are more susceptible to fungal infections mainly
Aspergillus and Candida and have a high mortality rate.59 Mice
lacking the gp91phox subunit are more susceptible to disseminated
infection with C. albicans60 and knocking down gp47phox in
zebrafish increases the severity of infection.61 We show here that
host-generated ROS is also protective against C. albicans infection
in the invertebrate C. elegans. Moreover, Cap1, a fungal-specific
transcription factor that regulates oxidative stress responses38,45

and drug resistance pumps62 in vitro is required for virulence of
C. albicans in nematodes and survival in cultured macrophages.
Specifically, strains lacking CAP1 induce Dar phenotype less
frequently and attenuate virulence in a worm-killing assay relative
to the wild-type strain. This is a direct consequence of increased
sensitivity of this mutant to ROS. Worms that cannot produce
ROS due to a mutation in the host oxidase show early signs of
disease, and succumb to an infection with the cap1D/D null
mutant. Furthermore when the NADPH oxidase is chemically
inactivated in cultured macrophages, cap1D/D null mutants are
able to survive just as well as their wild-type counterpart.

Given the data above and the known in vitro functions of
CAP1 in responding to ROS, the results of the murine model are
surprising, as we cannot conclude that loss of CAP1 alters
virulence. Since some other antioxidant proteins, such as the
secreted superoxide dismutase SOD5 and catalase CAT1, are
attenuated in this same model,36,53,63 it seems clear that anti-
oxidant defenses are important in vivo. A more intriguing
possibility is that there may be Cap1-independent mechanisms for
their induction in the context of the mammalian host. Indeed, the
superoxide dismutases SOD4 and SOD5 are both more highly
expressed in hyphal cells, which can be induced in response to
several host-associated cues.51,63 Thus, our C. elegans model may
allow analysis of critical fungal responses to the innate immune
system that could be masked by phenotypic redundancy in the
context of the intact mammal. In conclusion, host-generated ROS
is a critical component of the ancient innate immune response
against C. albicans in a variety of species and proper regulation of
anti-oxidant defenses is an important virulence factor in many
species including, as we show here, in C. albicans.

Materials and Methods

Strains, media and growth conditions. The C. albicans strains
used are listed in Table 2 and are based on SC5314 and its
auxotrophic derivative CAI4-F2. C. albicans transformations were
performed via electroporation.54 Fungal growth medium was

Table 2. Strains used in this study

Strains Relevant genotype Complete genotype Source

C. elegans strains

N2 Bristol Wild type Wild type 65

CB767 bli-3 bli-3(e767)I 65

S. cerevisiae strains

BY4741 Wild type MATa; his3D1; leu2D0; met15D0; ura3D0 72

C. albicans strains

SC 5314 Wild type Wild type 73

Caf 2–1 URA3/ura3D URA3/ura3D::imm434 73

CJD21 cap1D/D cap1D::hisG/cap1D::hisG-URA3-hisG ura3D/ura3D 38

AGC2 cap1D/D cap1D::hisG/cap1D::hisG ura3D/ura3D RPS10/rps1::URA3-CIP10 This study

AGC4
cap1D/D

complement
cap1D::hisG/cap1D::hisG ura3D/ura3D RPS10/rps1::CAP1-URA3-

CIP10
This study

efg1D/D efg1D::hisG/efg1D::hisG-URA3-hisG ura3D/ura3D 42

cph1D/D cph1D::hisG/cph1D::hisG-URA3-hisG ura3D/ura3D 42

efg1D/D cph1D/D
efg1D::hisG/efg1D::hisG-URA3-hisG cph1D::hisG/ cph1D::hisG ura3D/

ura3D
42

Other Candida strains

C. albicans Wild type Clinical isolates 74

C. dubliniensis Wild type Clinical isolates 75

C. krusei Wild type Clinical isolates A.B. Onderdonk

C. tropicalis Wild type Clinical isolates A.B. Onderdonk

C. parapsilosis Wild type Clinical isolates 76,77

C. glabrata Wild type Clinical isolates 78
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prepared as described previously64 and strains were grown
overnight in yeast extract-peptone-dextrose (YPD) at 37°C. The
C. elegans strains were grown at 20°C on nematode growth agar
medium (NGM), spotted with Escherichia coli OP50 and
maintained as described previously.65 E. coli OP50 was grown
overnight in Luria broth at 37°C.

Generation of cap1 mutant strains. The existing cap1D/D
strain CJD2138 expresses URA3 from the disrupted cap1 locus, a
strategy that has been subsequently demonstrated to potentially
affect virulence through mis-expression of the URA3 marker;66,67

this can be overcome through ectopic integration of URA3 at the
RPS10 locus using plasmid CIp10.39,68 To generate the cap1D/D
mutant and complemented strains with URA3 at RPS10, we grew
CJD21 on YPD for two overnight passages in YPD, then plated
to media containing 5-fluororotic acid (5-FOA) to select for ura3
auxotrophs.69 PCR amplified the CAP1 open reading frame from
genomic DNA of strain SC5314, plus ~1,000 bp of 5' UTR and
~350 bp of 3' UTR. This fragment was ligated between the XhoI
and HinDIII sites in CIp10. This plasmid was digested with StuI
and used to transform the 5-FOA-selected cap1D/D strain. In
parallel, the empty CIp10 plasmid was digested with StuI and
used to transform the same strain. After selection on SD-Ura,
correct integration at RPS10 was confirmed by PCR to generate
cap1D/D strains with either URA3 or CAP1–URA3 expressed
from the same genomic site as the mutant (AGC2) and
complemented (AGC4) strains, respectively.

Microscopic analysis of C. elegans. A 2% agarose pad
containing 0.01 M sodium azide as anesthetic was prepared on
a slide. A 5 ml drop of M9 buffer was added to the pad. Worms
exposed to wild-type Candida or RFP-labeled Candida were
picked and transferred to the drop on the slide. Mounted worms
were then covered with a coverslip and observed at 200� and
400� magnifications using an Axiovision Zeiss microscope under
differential interference contrast (Nomarski) and epifluorescence
optics. An ApoTome attachment was used to enhance the
fluorescence images.

Egg preparation. Three worms each in the L3/L4 stage were
transferred to two NGM agar plates containing E. coli OP50 and
grown at 20°C for 4 d. On the day of the experiment, worms were
washed off the plates with M9 buffer and centrifuged at 900 � g
for 2 min. The supernatant was removed and the worms were
then re-suspended in a bleach solution [1:4 dilution of
commercial bleach (5.25%) containing 0.25 M sodium hydrox-
ide]. The worm suspension was mixed gently by inversion for
3 min and centrifuged for 2 min at 2,000 � g. The pellet was
washed and centrifuged with M9 buffer at 2,000 � g for 2 min
and then finally re-suspended in 500 ml M9 buffer. The egg
suspension was diluted or concentrated with M9 buffer as
required to obtain approximately 30–40 eggs/5 ml.

Pathogenesis assay. E. coli and Candida strains were grown
overnight at 37°C. Culture aliquots were centrifuged at full speed
for 1 min in a table top microcentrifuge and the supernatant
removed. Pellets were washed twice in sterile deionized water, and
re-suspended to a final concentration of 200 mg/ml and 10 mg/
ml, respectively. Next, a mixture of 10 ml of a 50 mg/ml
streptomycin sulfate stock to inhibit E. coli growth, 7 ml of

distilled water, 2.5 ml of E. coli and 0.5 ml of Candida was spotted
on to each NGM plate. E. coli spotted plates were used as control.
Finally, 5 ml of C. elegans egg suspension was transferred to each
plate. Plates were then kept in a 20°C incubator and were
observed for 5 d. All the experiments were done in triplicate.
Student’s t-test was used to check the statistical significance of the
differences observed between wild type and other Candida strains.

C. elegans survival analysis. Survival analysis was done on the
CAP1/CAP1, cap1D/D + CAP1 and cap1D/D strains and plates
were prepared as described under egg preparation and pathogen-
esis assay. Starting on Day 3 following the initial assay, the
number of worms alive, dead and dead on the rim was recorded
each day. In order to differentiate between the first-generation
worms and their offspring, worms were transferred every two days
to new plates that were prepared the day before as previously
discussed and incubated overnight at 20°C.

For data analysis, SPSS (IBM, Inc.) was used to generate
Kaplan-Meier survival curves. In this experiment, each worm that
died on the plate was entered as a “1,” indicating the event of
death due to fungal disease took place. Worms that were found
dead on the rim of the plate were censored and entered as a “0,”
since death occurred for a non-related reason. Significance, as
defined as a p value , 0.05, was assessed using the Gehan-
Breslow test. This test assumes that data from earlier survival
times are more accurate than later times and weights these data
accordingly. Data were combined from three plates and another
independent experiment gave the same results.

Macrophage growth inhibition assay. Macrophage cell line
RAW 264.7 (ATCC) was used in the assay. The cell line was
maintained in DMEM supplemented with 10% fetal bovine
serum (FBS). The protocol was slightly modified from the
original.70 Briefly, macrophages, on reaching 80–90% confluence,
were scraped and brought up in DMEM supplemented with 10%
FBS, 100 U/ml penicillin and 100 mg/ml streptomycin, then 2 �
106 macrophage cells were plated on 35 mm2 plates and allowed
to adhere for 5 h. Candida strains were grown overnight at 37°C
and diluted 1:10 and allowed to grow for another 5 h. Candida
cells were then washed with supplemented DMEM and were
added to the plates containing macrophages in a ratio 1:15
macrophage and to a final volume of 2 ml. The yeast strain was
grown in parallel without macrophages to calculate percent
survival. Plates were incubated overnight at 37°C and 5% CO2.
Cells were then brought up to 24 ml in a tube using 0.05%
Triton X-100 (v/v) in water to osmotically lyse the macrophage
cells. Dilutions were prepared and plated on YPD plates and
grown overnight at 37°C. Colony forming units (CFUs) were
counted and percent survival was calculated by taking the ratio of
CFU from co-culture of Candida and macrophage to the CFU
obtained for Candida alone.

Experiments involving diphenyleneiodium chloride (DPI) were
performed as mentioned above but with the addition of 0.05 mM
DPI from a 31.8 mM stock solution in DMSO. Controls without
DPI had the same concentration of DMSO. Statistical analysis
was done using Student’s t-test.

Mouse virulence assay. Mouse virulence assays were
performed as described previously.71 Female, adult (21–25 g)

www.landesbioscience.com Virulence 73



ICR mice (Harlan) were maintained on a normal laboratory
diet. C. albicans strains were passaged twice in overnight cultures
in YPD, then diluted into fresh YPD and grown for 3 h at 30°C.
Cell were collected by centrifugation, washed with water and re-
suspended in PBS, then diluted and counted with a hemocyt-
ometer. Cells were diluted to 1 � 108 cells/ml in PBS. Mice
were injected with 100 ml of this suspension via the tail vein,
with groups of 10 mice/strain. Animals were monitored 2–3
times daily for signs of infection and were euthanized when
moribund. Survival data were analyzed with Prism5 (Graphpad
Software) using the log rank test. All animal experiments were

conducted in accordance with protocols approved by the
University of Texas Health Science Center Animal Welfare
Committee.
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