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A matter of life and death
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Reorganization of the cytoskeleton is necessary for apoptosis,
proliferation, migration, development and tissue repair.
However, it is well established that mutations or overexpres-
sion of key regulators contribute to the phenotype and
progression of several pathologies such as cancer. For
instance, c-src mutations and the overexpression of FAK have
been implicated in the invasive and metastatic process,
suggesting that components of the motility system may
represent a new class of therapeutic targets. Over the last
several years, we and others have established distinct roles for
the Ste20-like kinase SLK, encompassing apoptosis, growth,
motility and development. Here, we review the SLK field from
its initial cloning to the most recent findings from our
laboratory. We summarize the various roles of SLK and the
biochemical mechanisms that regulate its activity. These
various findings reveal very complex functions and pattern
of regulation for SLK in development and cancer, making it a
potential therapeutic target.

Introduction

There are over 1,000 different mammalian members of the
protein kinase family1,2 which can be divided into four categories:
receptor tyrosine kinases (RTKs), non-receptor tyrosine kinases,
receptor serine/threonine kinases, and non-receptor serine/
threonine kinases.3-5 The catalytic domain of most protein kinases
is highly conserved and may reflect evolution from a common

precursor.6,7 The Ste20 family of serine/threonine protein kinases
represents one important subset of protein kinases involved in
cellular proliferation, migration and terminal differentiation.8,9

The Ste20 serine/threonine protein kinase archetype is an
important signaling molecule that has been well studied in yeast
as a regulator of a MAPK (mitogen-activated protein kinase)-
dependent pathway involved in the control of mating response.10

Consistent with the activation of all G-protein coupled receptors,
a factor binding results in the release and activation of the βc
complex. The βc complex activates Ste20 and results in its
translocation to Ste5, a scaffolding protein. This translocation
results in the subsequent activation of Ste11, Ste7 and Fus3/
Kss1.11 In studying the Ste20 kinase in yeast, a group of similar
Ste20-like kinases (SLKs) were identified. These SLKs can be
divided into three major families based on structure: p21-activated
kinases (PAKs), pleckstrin-homology domain-containing PAKs
(PH-PAKs) and germinal center kinases (GCKs).12

The Ste20-Like Kinase SLK

The mammalian Ste20-like kinase SLK was first isolated from
guinea pig liver.13 In 1999 the mouse homolog was successfully
cloned, followed by human SLK.14,15 The kinase was shown to be
ubiquitously expressed in adult tissues and cell lines, as well as
muscle and neuronal lineages in the developing embryo.14,16 SLK
was first identified and characterized as a caspase3-activated kinase
which played a role in the induction of apoptosis.14,17-19 SLK is
classified as a GCK-related kinase that shares extensive sequence
similarity with lymphocyte oriented kinase (LOK).20 SLK is
comprised of an N-terminal Ste20 catalytic kinase domain (amino
acids 1–338) and predicted coil regions between amino acids
339–788 and residues 825–1,180, respectively (Fig. 1). The
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carboxy-terminus of SLK shares a high degree of identity with
AT1–46 at amino acids 788–936 (63%) and 957–1171 (71%) as
well as with LOK (56%) between amino acids 867 and
1178.14,17,21,22 This C-terminal coil motif was termed the ATH
domain, for AT1–46 homology domain.14,23 A putative caspase 3
consensus cleavage site (DXXD) is also contained within the
central domain at amino acid residue 436 of the mouse sequence
and is loosely conserved in several other species.17 Mutation of the
putative cleavage site did not however affect the ability of SLK to
be cleaved by caspase3 in vitro, suggesting the presence of
additional sites and more complex regulation17

The N-terminal catalytic domain is most similar to LOK
(74%) and mammalian sterile 20 1 (MST1) (26%) from amino
acids 40–307 (Fig. 1). The characteristic Ste20 kinase signature
sequence (TPYWMAPE) is located in the kinase subdomain VIII
at amino acid position 193. SLK contains an activation segment
characterized by a DFG motif at the beginning of the segment
and an aEF/aF loop at the end.24 The activation segment of SLK,
mapped to amino acids 173–222, has been shown to contain
short helices located at the C-terminal end of the DFG motif.24

SLK has also been shown to be phosphorylated at T183 and
S189, resulting in the auto-activation of kinase activity.
Supporting this, T183 and S189 are located within the activation
segment; subdomains VII and VIII, respectively.24,25 Albeit not
well conserved,17,26 a putative consensus SH3 binding site
(PXXPX) is found at position 735 of the murine SLK sequence,
suggesting that SLK may interact with SH3 domain containing
proteins that have yet to be identified.17,26

A number of protein kinases regulate themselves by autopho-
sphorylation on at least one key residue within the activation
segment, usually contained within the kinase lobe of the protein.27

Autophosphorylation sites on SLK have been mapped to T183
and S189 through electron density map analysis obtained from
mass spectrometry, however neither site appeared to be
completely phosphorylated.24 Phosphorylation of residues T183
and S189 are the important post-translational modifications
required for the activation of SLK. In an SLK T183A mutant,
kinase activity dropped by 60% compared with wild-type, while
the S189A mutant and T183A/S189A double mutant showed an
80% reduction in catalytic activity.25 For kinases like SLK that
require phosphorylation in order to become activated, the
phosphate group often confers a conformational change in the
activation segment that promotes substrate binding, compared
with the unphosphorylated activation segment which would
remain unstructured.28,29 As both T183 and S189 are never fully
phosphorylated, it may be possible that both are phosphorylated
in a primary and secondary manner. The role of the secondary
phosphorylation site has been suggested to be involved in
substrate recruitment after the first phosphorylation event has
stabilized the activation segment.30 Emphasizing the importance
of T183 in SLK activation, this residue is a highly conserved
phosphorylation site, also present in DAPK3 (death-associated
protein kinase-3) and CHK2 (checkpoint kinase-2).24

The mechanism of SLK activation is under ongoing investigation,
however it has been demonstrated that SLK is able to self-associate in
a trans orientation and autophosphorylate.24 An SLK point-mutant

Figure1. SLK structure and homologies. Schematic representation of murine SLK structure showing the Ste20 kinase domain at the N-terminus and the
AT1–46 homology region at the C-terminal end. Amino acid numbers are shown above the structure and homologies to related kinases are shown in
percentage. The Ste20 signature sequence (TPYWMAPE), the consensus caspase cleavage site (DXXD) and a putative SH3-binding domain (PXXPX) are shown.
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Q185P exists as a monomer in solution and is unable to
autophosphorylate, suggesting that dimerization of the kinase is
critical for activity.24 The C-terminus of SLK contains a coiled-coil
region, which may facilitate dimerization allowing the catalytic site to
come into proximity of the activation segment on the trans molecule
and phosphorylate it.22 The consensus target sequence of SLK appears
to differ from its activation sequence, but the kinase is still able to
recognize and phosphorylate both.24 The GCK-related kinases have
been shown to contain C-terminal auto-regulatory regions.31,32 It was
then hypothesized that the ATH domain could regulate SLK kinase
activity. Indeed, a C-terminal truncation deleting the C-terminal two-
thirds of the ATH domain (SLKD950–1202) dramatically increases SLK
kinase activity.17 Further truncation of the kinase up to residue 373
(SLK1–373) demonstrates a 10- to 15-fold increase in kinase activity,
suggesting that kinase activity may be regulated by multiple
domains.17 Interestingly, other studies have shown that a smaller
deletion of SLK (SLK1–592) has no effect on its activity when
compared with the full length kinase.15 Similarly, we have shown that
an SLK1–551 construct results in a reduction in kinase activity
compared with the SLK1–373 truncation.17 These data suggest that an
important region required for the regulation of SLK kinase activity
may lay within amino acids 373 to 592. Interestingly, different effects
have been reported on the role of the ATH domain in SLK
regulation. It was reported that complete deletion (SLK1–373) or
addition of the c-terminus has no effect of SLK kinase activity.21,22

Another study has shown that deletion of the ATH increased SLK
kinase activity.17 One explanation is the fact that different cell lines
(COS-1 and 293) and kinase assay protocols were used in the
different studies. Nevertheless, these findings suggest that SLK is
under complex regulation and that additional studies are required to

fully understand the role of its various domains. During the
investigation of the auto-inhibitory role of the ATH domain, a yeast
two-hybrid screen identified the LIM domain binding transcriptional
cofactor proteins (Ldb1 and Ldb2) as SLK-binding factors. The Ldbs
were found to bind preferentially within the central 86 amino acids
(a.a. 981–1,067) of the ATH domain (SLK950–1202).33 Further study
demonstrated that the dimerization and nuclear localization signal
(NLS) within Ldb1/2 were required for the interaction with SLK.33 In
vitro, the ATH domain of SLK inhibited the kinase activity of the
SLK1–373 fragment and the addition of either Ldb1 or -2 further
reduced activity.33 In vivo experiments demonstrated that the kinase
and ATH domain fragments were more readily co-immunoprecipi-
tated in the presence of Ldb1/2, suggesting that Ldb1/2 aid in the
stabilization of the auto-inhibitory function of the kinase domain by
the ATH domain.33 A reduction in the expression of Ldb1 caused a
reduction in the amount of Ldb2 associated with the SLK complex
and increased SLK activity. Conversely, the overexpression of Ldb1/2
resulted in a titration effect whereby less Ldb1/2 was bound in the
SLK complex and instead, heterodimerized with each other. Again,
this action increased SLK kinase activity and as such, it was suggested
that the stoichiometry of the Ldb-SLK complex is highly
sensitive and thus, kinase activity is very tightly controlled.33 It is
currently unknown whether there is another scaffolding-type
protein facilitating the recruitment of various components to this
complex (Fig. 2).

The Multiple Roles of SLK

Apoptosis. SLK was first characterized by Sabourin and Rudnicki
in 1999 as a mediator of apoptosis. Stable overexpression of SLK in

Figure 2. The SLK Ldb complex. The SLK dimer may be held in a “closed” conformation through bridging of the ATH region to the catalytic domain by
Ldb dimers bound to the SLK C-terminus. Upon activation, SLK or Ldb post-translational modifications result in “opening” of the kinase and substrate
access. Alternatively, changes in the Ldb stoichiometry can also result in SLK activation.
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C2C12 myoblasts induced apoptosis via a c-Jun N-terminal kinase-
1 (JNK1)-dependent pathway, similar to the Ste20 kinase homolog
recently characterized in the helminth parasite Schistosoma mansoni,
SmSLK.14,34 It was found that fibroblasts expressing a kinase
inactive SLK1–373 (SLK1–373 K63R) were Annexin V negative,
suggesting that SLK kinase activity was required for the induction
of apoptosis.14 Interestingly, the expression of full length SLKK63R

also induced an apoptotic response albeit delayed, implying that
perhaps SLK has the ability to induce programmed cell death
independently of its kinase activity.14 In a follow-up study, the
authors found that preceding apoptosis, SLK overexpression caused
the dissolution of actin stress fibers, the redistribution of actin to
the cell periphery, membrane blebbing and loss of substrate
adhesion.17 The stress fiber dissolution and actin reorganization
observed was similar to that seen by overexpression of activated
Rac1 and PAK3.17 It was established that expression of the kinase
domain of SLK rapidly induced apoptosis due to its unregulated
activity, whereas expression of the auto-regulatory ATH domain
induced a delayed apoptotic response, preceded by actin stress fiber
dissolution, cellular retraction and loss of adhesion.17 Interestingly,
incubation of SLK with recombinant caspase 3 or apoptotic lysates
(Rat1-Myc/ER) resulted in the release of the kinase and ATH
domains and the induction of apoptosis. Supporting this, exposure
of cell lines to various apoptotic stimuli, including myc expression,
UV radiation and tumor necrosis factor (TNF)-a resulted in
caspase 3-mediated SLK cleavage.17

In a study of renal ischemia-reperfusion injury, the mechanism
of SLK-mediated apoptosis was established. SLK activity
attenuated the endoplasmic reticulum (ER) stress response and
induced p38 MAPK via the apoptosis signal-regulating kinase-1
(ASK1).18 SLK activity released cytochrome C and activated
caspases-8 and -9 (Fig. 3). The lack of JNK activation was
attributed to cell line specificity as COS-1 only weakly express
MAPK kinase (MKK) 4 and MKK7.18 SLK overexpression in
glomerular epithelial cells also stimulated p53 transactivational
activity via the JNK pathway.19 SLK-induced apoptosis was
attenuated with the use of the p53 inhibitor, pifithrin-a.19 This
was confirmed in vivo using a transgenic mouse line over-
expressing SLK in the kidney glomerular podocytes.35

Overexpression of the kinase in these cells resulted in injury
and loss of these podocytes, accompanied by an increase in
phosphorylation of p38.35The multi-faceted role of SLK in
mediating the apoptotic response suggests that it may play a
significant role in apoptosis-dependent physiological processes
such as development and tumorigenesis.

The cell cycle. Initial characterization of SLK centered on the
apoptotic response. However, the presence of active kinase in
healthy exponentially growing cells suggested that the function of
SLK was much more complex. Indeed, stable expression of kinase
inactive SLK in fibroblasts cannot be achieved.36 The lack of an
apoptotic response in cells transiently expressing kinase dead SLK
lacking the ATH suggests that it interferes with proliferation,
supporting a role for SLK in cell cycle progression.36 In the search
for an upstream kinase to activate the polo-like kinase homolog
(Plk1), SLK emerged as a candidate due to its high homology to the
Xenopus polo-like kinase kinase 1 (xPLKK1).37 Plk1 was identified

as a novel substrate of SLK, which phosphorylates and activates
Plk1 during progression through the G2/M transition, at which
point the kinase activity of SLK is highest.37 This phosphorylation
by SLK is enhanced by the presence of the polo-box binding
domain of Plk1.38 SLK was subsequently found to be required
upstream of Cdc2 and depletion of SLK caused cells to arrest in
early G2 (Fig. 3). This arrest was accompanied by an inability to
downregulate cyclin A and progress through mitosis.39 Confirming
a link between SLK and the microtubule network, the kinase co-
localized with a-tubulin at the mitotic spindle and overexpression
of the kinase caused ectopic spindle assembly.39,40 Further study
revealed that SLK was required for radial microtubule organization
during interphase as depletion of the kinase resulted in the inability
of centrosomes to anchor or cap microtubules.21 Interestingly,
overexpression of SLK induced cell cycle re-entry of Xenopus
oocytes.39 These observations offer a possible mechanism by which
overexpression of SLK leads to apoptosis. Overexpression of the
kinase may force cells to prematurely enter mitosis leading to their
death through mitotic catastrophe.

Cytoskeletal Dynamics and Cell Migration

The recurrent theme in the characterization of SLK is its
association with the cytoskeleton and the microtubule network.

Figure 3. SLK signaling in apoptosis and cell cycle. (Left) As cells go
through the cell cycle, SLK can act upstream of Plk1 and Cdc2 to allow
progression through G2/M. Phosphorylation of Plk1 may be a direct
event whereas the effect on Cdc2 remains to be tested. (Right) During
apoptosis, active SLK can stimulate the p38 pathway through ASK1. This
results in cytochrome C release and caspase 8 and 9 activation. Whether
this occurs through direct phosphorylation, remains to be elucidated. For
clarity, the apoptotic cascade is shown in the G1 phase but the insult
could be received at any point.
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Initial work has shown that SLK localizes to the cell periphery.
Furthermore, SLK overexpression induces the disassembly of actin
stress fibers, cellular retraction and the re-localization of actin to
the cell periphery.14,17 Interestingly, disassembly of actin stress
fibers induced by the overexpression of SLK can be attenuated by
the expression of a dominant-negative mutant of Rac1.40

Accordingly, SLK co-localizes with Rac1 and the microtubule
network in fibroblasts actively spreading on fibronectin.40 RhoA
activation is known to promote stress fiber and focal adhesion
(FA) complex assembly, downstream of Rac1.41,42 In a study of
vasodilation induced by angiotensin II type 2 receptor (AT2R)
activation, it was reported that AT2R signals through SLK which
in turn phosphorylates Ser188 of RhoA, thus inhibiting its
activity, preventing vascular smooth muscle cell contraction.43

This interpretation supports a mechanism by which SLK mediates
cytoskeletal reorganization and stress fiber breakdown through a
Rho/Rac pathway.

Actin fibers are anchored at FAs through protein complexes
composed of a-actinin, vinculin, talin and zyxin.44 The FAs
control adhesion dynamics and contain focal adhesion kinase
(FAK), paxillin and vinculin. In response to cell adhesion or
migration stimuli, cells form integrin/FAK/src complexes which
recruit and activate numerous other adaptor molecules leading to
FA turnover.45,46 The formation of a functional FAK/src complex
is critical for efficient cell migration by modulating FA turnover,
while disruption of this complex results in reduced cell
migration.45-56 Following fibronectin stimulation, it was observed
that SLK co-localized with vinculin at large podosome-like
adhesions.40 SLK ablation resulted in an increase in the size and
density of vinculin-positive adhesions, indicative of stable FAs in
non-migrating cells.57 These results suggest that SLK may play a
role in adhesion dynamics. Supporting this, SLK kinase assays
from cells induced to migrate by scratch-wounding show an
upregulation in kinase activity.57,58 This activation was found to
be dependent on c-src and the MAPK kinase pathway as pre-
treatment with the PP2 and U0126 inhibitors abrogated kinase
activation.57 In addition, expression of src family kinases was
found to be required for SLK recruitment at the leading edge of
migrating cells.57 Interestingly, overexpression of v-src leads to
inhibition of SLK activity through hyper-phosphorylation of the
kinase domain through casein kinase II, suggesting that the src
family kinases can also function to negatively regulate SLK activity
during cell migration, perhaps during focal contact assembly.59

Confirming a role for SLK in cell migration, knockdown
experiments and expression of dominant negative SLK show
marked reductions in migration.57

Scratch wounding of confluent monolayers causes FAK
activation as the cells migrate into the wound.60 FA turnover
during cell migration induces the formation of a functional FAK/
src complex initiated by auto-phosphorylation of FAK at tyrosine
residue 397 (pY397), stable focal adhesion assembly and FA
turnover and migration.41-43,57-60 Similarly, nocodazole treatment
of fibroblasts results in microtubule depolymerization and FA
stabilization as evidenced by high levels of phospho-FAK-Y397.61

Nocodazole wash-out and microtubule regrowth is accompanied
by cyclical changes in the levels of FAK pY397.61 Nocodazole

wash-out in MEF-3T3 fibroblasts that express kinase inactive SLK
or have been siRNA treated show impaired focal adhesion
turnover as demonstrated by stabilization of FAK pY397 levels.57

SLK-deficient cells also displayed enlarged adhesions following the
wash-out, further supporting impaired FA turnover.57 Supporting
a role for SLK in turnover, scratch wounding of a confluent
monolayer of FAK-null fibroblasts results in almost no upregula-
tion in SLK kinase activity, suggesting that SLK activation is
FAK-dependent.57

Further investigation into the mechanisms of SLK activation
and activity during cell migration showed that the regulatory
Ldb1/2 co-factors co-localized with SLK at the leading edge of
migrating cells.33 Both the knockdown and overexpression of
Ldb1/2 caused an increase in the rate of cell migration,
recapitulating the changes in SLK activity seen in the SLK-Ldb
complex studies in vitro.33 Changes in the expression level of
Ldb1 resulted in the loss of either Ldb factor from the SLK
complex, activating the kinase and increasing cell migration.33

Adding complexity, as SLK kinase activity increased during cell
migration, the amount of Ldb1 associated with the kinase
increased but SLK-associated Ldb2 remained stable, suggesting
that the stoichiometry of the SLK-Ldb complex is crucial for cell
migration.33 These observations also hint that a heretofore
unidentified component of the SLK-Ldb complex initiates a shift
in the stoichiometry of this complex thus allowing the kinase to
activate and signal downstream to the FAs (Fig. 4). Recent
evidence from our lab shows that activated SLK regulates FAK-
mediated FA turnover by phosphorylating paxillin on serine 250,
an integral FA complex component (Quizi et al., in press). A
paxillin serine 250 mutant (S250T) abolished phosphorylation of
paxillin by SLK resulting in stable FAK pY397 levels, stabilized
FAs and impaired cell migration, further supporting a role for
SLK as a modulator of adhesion turnover and cell migration
(Quizi et al., in press). As proposed previously, SLK might
represent part of a microtubule-associated complex that targets
focal adhesions for disassembly (Fig. 4).62,63

Physiological Relevance

HER2/Neu/ErbB2 signaling. Advanced tumors have acquired
the ability to invade surrounding tissues and migrate throughout
the vasculature to colonize distant sites within the body.64 The
process of metastasis is highly dependent on an active migration
system and cross-talk between growth factor receptors and focal
adhesion signaling. HER2/Neu/ErbB2, a transmembrane receptor
belonging to the epidermal growth factor receptor (EGFR) family,
is an oncoprotein that is overexpressed in approximately 30% of
human breast cancers and mediates anchorage-independent
growth.65-68 Patients whose tumors overexpress HER2 receptors
(categorized as HER2-positive cases) present with a more
metastatic and invasive disease with poorer prognosis.66 Specific
docking proteins target trans-phosphorylated receptors and link
activated HER2 to the Ras/MAPK-, PI3K- and src-dependent
signaling cascades, initiating such cellular processes as migration,
survival and apoptosis.69-72 The phosphorylation of tyrosine
residues on the cytoplasmic tail of HER2 (Y1201 or Y1226/7)

www.landesbioscience.com Cell Adhesion & Migration 5
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has been shown to mediate the epithelial-to-mesenchymal
transition (EMT) induced by overexpression of HER2 in
Madin-Darby canine kidney epithelial cells.73 Memo, a mediator
of ErbB2-driven cell motility, has been found to interact with
pY1227 through the Shc adaptor protein, associating HER2 with
the microtubule network.74 Activation of the MAPK, PI3K and
src cascades are critical for HER2-induced motility of breast
carcinoma cells, but stimulation of these signals is not sufficient to
induce migration in the absence of HER2 phosphorylation at
Y1201 or Y1227.74

FAK signaling is also required for HER2-induced transforma-
tion and invasion.75 Chemotaxis and invasion of breast cancer
cells in the HER2 tumor model has been shown to signal through
SLK via the FAK complex.76 SLK has been shown to be
upregulated in cell lines that express high levels of the HER2
receptor, including the T47D and 4T1 lines.76 In cell lines where
basal expression of the HER2 receptor is relatively low (HeLa and
NIH3T3 cells) overexpression of an activated Neu (Neu V64E)
was sufficient to upregulate SLK activity in the absence of
heregulin stimulation.76 Expression of kinase inactive SLK
(SLKK63R) reduced heregulin-induced cell migration by up to
75% as measured in a Boyden chamber assay.76 Similarly,
chemotaxis was inhibited in MCF-7, MDA-MB-231 and Sk-Br-3
cells when SLKK63R was expressed.76 Autophosphorylation of Neu
on tyrosine 1201 and tyrosine 1226/7 has been shown to couple
the Neu receptor to its downstream signaling cascades.74 The
presence of a tyrosine residue at either of the two auto-
phosphorylation sites (Y1202 or Y1226/7), in an otherwise

phosphorylation-deficient mutant (NYPD), is sufficient to
activate SLK downstream of heregulin stimulation.76 As pre-
viously noted, both MEK1 and src family kinase inhibitors are
sufficient for the attenuation of SLK-mediated cell migration.
Similarly, they were also shown to inhibit Neu-mediated SLK
activation.57,76 The use of inhibitors for both PI3K and PLCc
results in a partial inhibition of SLK activation in cells expressing
activated Neu.76 In cells expressing Neu with only Y1201
available for phosphorylation, inhibition of PLCc prevented SLK
activation, but inhibition of PI3K had no effect on SLK activity.76

In cells expressing Neu with only Y1226/7 available for
phosphorylation, the opposite effects are observed.76 These results
suggest that multiple signaling pathways contribute to SLK
activation downstream of HER2/Neu/ErbB2. Overexpression of
activated Neu in a FAK-null fibroblast cell line is not sufficient to
induce SLK activity upon heregulin stimulation, suggesting that
FAK is required for Neu-mediated SLK activation.76 Although it
is unclear how SLK is directly activated downstream of the Neu-
FAK cross-talk, it appears to be an important downstream
mediator of the Neu receptor (Fig. 4). Albeit much remains to be
deciphered, the kinase presents itself as a potential therapeutic
target in HER2-positive breast cancer patients. Specific inhibition
of SLK activity may abrogate the progression of early-stage
HER2-positive tumors or stabilize disease in advanced-stage cases
and may achieve favorable responses in a combinatorial
therapeutic approach.

Role in development. SLK is ubiquitously expressed in adult
tissues and preferentially expressed in neuronal and muscle

Figure 4. Upstream signals and SLK activation. Upon integrin engagement, the FAK/src complex is activated and focal contacts are assembled while SLK
is held inactive. Further signaling activates and recruits SLK through the microtubule network, along the actin fibers.57 SLK can phosphorylate paxillin in
the vicinity of adhesions to induce adhesion turnover (Quizi et al., in press). Alternatively, microtubule-bound paxillin could be phosphorylated and
recruited to newly formed adhesion and induce destabilization. Stimulation of growth factor receptor such as ErbB2 can also activate SLK through
receptor-integrin cross talk.76
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Figure 5. Effects of SLK levels on development. SLK gene trap knockouts do not express SLK protein (A) and do not give rise to viable SLK(−/−) pups. (B)
Mendelian ratios are shown above the histogram boxes (n = 106). (C) SLK-null embryos (−/−) show marked developmental defects at embryonic day
14.5. All SLK-null embryos are reabsorbed with no viable pups at birth. (D and E) Primary myoblast cultures were established from 4–6 week old mice and
induced to differentiate by serum withdrawal. After 3 d the cultures were stained for myosin heavy chain (MHC) and DAPI to establish the fusion index.
(F) Quantitation of the fusion index from MHC-stained myotubes cultures. The fusion index was established from myotubes bearing 3 or more nuclei
using the following calculations: (# nuclei in myotubes/total # nuclei) � 100. The fusion indices were obtained from triplicate cultures of two independent
animals from two transgenic lines. At least 200 nuclei were counted. (*p , 0.008 Tg654 vs WT, **p , 0.05 Tg3405 vs WT). (G) Total lysates from anterior
hind leg muscles were immunoprecipitated with anti-HA antibodies (12CA5). Subsequent probing for SLK shows expression of HA-tagged kinase in the
654 and 3405 transgenic lines. Kinases assays showed that total SLK activity was markedly reduced in both transgenic lines (not shown).

www.landesbioscience.com Cell Adhesion & Migration 7
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lineages during embryonic development.14,16 Supporting this,
SLK has been shown to be activated during myoblast
differentiation and the expression of SLKK63R impaired C2C12
myoblast fusion in vitro.77 Expression of the kinase is
upregulated in activated satellite cells during muscle regeneration
supporting a key role for the kinase in muscle differentiation.77

Recently, we have characterized transgenic mice expressing
SLKK63R from the human skeletal actin promoter. SLKK63R

expression negatively affects litter sizes, muscle development
and muscle fatigue in the transgenic animals (Storbeck et al.,
unpublished). Counter-intuitively, despite decreased kinase
activity in the muscle fibers of transgenic animals, muscle
regeneration was enhanced in vivo and myoblast fusion was
increased in vitro (Fig. 5; Storbeck et al., unpublished). These
results demonstrate the complexity of SLK functions in vivo and
will require further investigation to fully delineate the role of
SLK in adult muscle function. An investigation into the rat
ortholog of SLK, SK2, showed increased expression and activity
within renal tissues in the developing embryo and adult renal
tissues suffering from acute renal failure.78 Ischemia-reperfusion
and acute renal failure stimulated tubular epithelial cell
regeneration which emulates kidney developmental processes.
Tubular epithelial cells are the primary location of increased
expression of SLK during both renal development and renal
tissue injury.18,19,78 Further study presented SLK as a mediator of
apoptosis in response to acute renal failure and ischemia-
reperfusion injury via ASK1 and p38 as well as p53, and thus as a
rational therapeutic target to prevent excessive renal tissue
damage.18,19 Further highlighting the importance of this kinase in
development, a gene trap-mediated knockout of SLK is
embryonic lethal with affected embryos displaying severe
patterning defects and impaired organogenesis (Fig. 5; Al-
Zahrani, unpublished). These results strongly suggest that SLK
represents a component of a highly complex signaling system
with a prominent role in various essential physiological and
pathological processes, including embryonic development, cancer
and metastasis, hypertension, and tissue injury.

Perspectives and Future Directions

Over the last few years, it has become apparent that SLK plays
multiple roles under normal physiological conditions. However,
to our knowledge, other than sequence variants, no human
mutations have been identified in the slk gene. Although, its
regulation appears to be quite complex, it is likely to be dependent
on the biological context, whether it is apoptosis, motility or
proliferation (Fig. 6). In addition, SLK responds to oncogenic
signals such as activated HER2/Neu/ErbB2 to drive chemotaxis of
breast cancer cells, suggesting that SLK inhibition might suppress
the invasive and metastatic process. Whether SLK is required at
any other levels during cancer progression remains to be
elucidated. Similarly, interfering with SLK function may also
halt the cell cycle, inducing a proliferation block. However, these
possibilities will have to be tested in animal models. As the global
SLK knockout is embryonic lethal, the establishment of a
conditional SLK allele in a cancer model will allow for the testing

of its therapeutic potential. In addition, a conditional allele will
also allow the dissection of its role in development and in various
models of injury.

As SLK is ubiquitously expressed in adult tissues, the use of
SLK inhibitors might be detrimental to normal tissue function.
Therefore, the identification of additional regulatory pathways or
binding partners that are tissue-specific will be beneficial,
providing an opportunity to target upstream regulators in a
tissue-specific manner. Similarly, the identification of additional
downstream targets may allow for a more specific targeting of
SLK-dependent pathways. As the SLK field is still in its infancy,

Figure 6. Summary of SLK functions. Studies have shown that high levels
of SLK activity induce apoptosis, loss of actin fibers and adhesion, and
ectopic spindle formation. Conversely, knock down experiments or
expression of kinase inactive SLK results in delayed cell death, cell cycle
arrest and inhibition of cell migration. Together, these data suggest a
role for SLK in multiple processes. Whether the role of SLK is restricted to
cytoskeletal remodeling in all cases remains to be verified.
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little is known about its regulation under various biological
contexts and how it transduces the different signals to its
downstream effectors. Our ability to dissect these diverse inputs
and responses awaits the identification of additional regulators,
substrates and genetic models.
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