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Laminins, one of the major functional components of
basement membranes, are found underlying endothelium,
and encasing pericytes and smooth muscle cells in the vessel
wall. Depending on the type of blood vessel (capillary, venule,
postcapillary venule, vein or artery) and their maturation state,
both the endothelial and mural cell phenotype vary, with
associated changes in laminin isoform expression. Laminins
containing the a4 and a5 chains are the major isoforms found
in the vessel wall, with the added contribution of laminin a2 in
larger vessels. We here summarize current data on the precise
localization of these laminin isoforms and their receptors in
the different layers of the vessel wall, and their potential
contribution to vascular homeostasis.

The blood vasculature consists of different vessel types that vary in
cellular and extracellular matrix (ECM) composition that can
impact on vessel structural and functional integrity. Although
considerable attention has been given to the cells comprising the
vessel wall and their contribution to vessel function/physiology,
comparatively little is known about the biochemical nature of the
ECM of different vessel types and how it influences their
function. This review summarizes current knowledge on the
structure and function of the ECM of the vessel wall, with focus
on capillaries, post-capillary venules and arterioles, and on the
laminins, one of the major constituents of vascular basement
membranes (BMs).

Cellular and Extracellular Matrix Layers Comprising
the Vessel Wall

The blood vessel wall is composed of a luminal monolayer of
endothelial cells that is surrounded by mural cells, the latter of
which vary in phenotype and number, depending on blood vessel

type and possibly also tissue,1 and are referred to as pericytes or
vascular smooth muscle cells (vSMC). At the level of capillaries,
post-capillary venules and venules, endothelial cells also express
different marker molecules in different tissues.2 This suggests that
the tissue milieu can impact on the phenotype of various cell types
in the vessel wall.

In some tissues, pericytes and smooth muscle cells can share
several marker molecules including platelet-derived growth factor
(PDGF) receptor-β, desmin, NG2 and a-smooth muscle actin,
depending on developmental stage and tissue type.3 However, the
clearest distinction between pericytes and vascular smooth muscle
cells is their localization, with pericytes being embedded within
the endothelial BM, while smooth muscle cells secrete a BM that
is independent and morphologically distinguishable from the
endothelial BM. Pericytes and their processes ensheath the
endothelial tube of capillaries and post-capillary venules, whereas
in arterioles the vessel is surrounded by both pericytes and vSMC
(Fig. 1). Only larger arteries/veins have several layers of vascular
smooth muscle, which form the media. These large arteries
additionally contain an outer fibrous coat, the adventitia, and have
prominent elastin layers throughout the vessel wall to provide
elasticity and resilience.

The ECM of vessel walls consists of BMs that underlie
endothelium and encase pericytes, and ensheath individual
smooth muscle cells, plus the fibrillar interstitial matrix that
interconnects the endothelial and smooth muscle layers (Fig. 1)
and forms the outer fibrous adventitial layer. As in all tissues, BMs
of blood vessels contain collagen type IV isoforms, laminin
isoforms, heparan sulfate proteoglycans (perlecan or agrin) and
nidogen-1 and/or nidogen-2. Collagen type IV and laminins are
the two major BM components that self-assemble to form
independent networks that confer structural stability4 and
biological activity,5 respectively. Based on intermolecular interac-
tions identified mainly in in vitro studies, these two networks are
considered to be cross-linked by perlecan6,7 or the nidogens.8,9

However, more recent data from BM networks isolated from the
skin suggest that perlecan may have a dominant role in this cross-
linking function in vivo.10 In addition to these four major ECM
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classes, many other glycoproteins, including netrin-4,11 fibulin-1
and -2,12 BM-40/osteonectin/SPARC,13 collagen types VII, VIII,
XV and XVIII,14 are minor components of some vascular BMs
that, nevertheless, contribute to their diversity.

In both endothelial and smooth muscle BMs of mature
tissues, the major collagen type IV isoform is composed of a1
and a2 chains [(a1)2(a2)].15,16 However, there has been no
detailed analysis of different vessel types and whether other
isoforms composed of collagen IV a3, a4, a5 or a6 chains can
also exist in vascular BMs is not clear. Laminins are composed
of an a, β and c chain that assemble to form an approximately
crossed-shaped or Y-shaped molecule.17 Five a, four β and three
c chains have been identified that can combine to form up to
18 laminin isoforms18-20 that are named according to the three
chain composition; i.e., laminin 211 is composed of a2, β1 and

c1 chains (Fig. 2).21 In general, the N-terminal domains of
laminin chains mediate laminin self-assembly into the BM
network, while their C-terminal domains (that are composed
entirely of a chain sequences) carry the major receptor binding
sites, making the a chains important for the transduction of
specific cellular signals via defined receptors. Laminins contain-
ing laminin a4 and a5 chains are the predominant isoforms
found in endothelial cell BMs,22-24 while those with a2, a4 and
a5 chains occur in the vascular smooth muscle BMs24,25

(Fig. 3).
The fibrillar interstitial matrix underlies the endothelial BM

and acts to interconnect the endothelial and smooth muscle BMs.
It is composed largely of the fibrillar collagen types I and III
(. 90%), together with chondroitin sulfate and dermatan sulfate
proteoglycans such as decorin and biglycan,26 and multi-adhesive

Figure 1. Schematic representation of the cellular and extracellular matrix layers that constitute the vessel wall of arterioles, capillaries, postcapillary
venules and venules. Basement membranes underlie the endothelial cell monolayer and ensheath pericytes and smooth muscle cells, and vary in their
laminin a chain expression and localization (summarized in the top panel). In arterioles and venules the interstitial matrix interconnects the different
cellular and BM layers. *Laminin a2 has not been systematically studied in vascular smooth muscle BMs, but has been reported to occur in smooth
muscle of the aorta and carotid arteries.
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glycoproteins including fibronectin, osteopontin, thrombospon-
din,27 tenascin-C28,29 and vitronectin.30

Laminin a2, a4 and a5 in the Vessel Wall

Vascular endothelial cells and pericytes. Vascular endothelial cells
express laminin a4 and a5 chains that combine with laminin β1
and c1 chains to form laminins 411 and 511,22-24 respectively
(Fig. 2). Laminin a chain distribution and expression depends on
endothelial cell type, state of vessel growth and activation
state.22,31-33 Laminin a4 is ubiquitously localized in endothelial
BMs throughout the length of different vessel types independent
of their stage of development, while laminin a5 appears
postnatally, approximately at the time of pericyte recruitment,
and its distribution varies with vessel type24 (Fig. 1). Laminin a5
chain is strongly expressed in most capillary BMs, except those of
the fenestrated endothelium of some glands and the peri-tubular
capillaries in the kidney. In postcapillary venules and venules, the
distribution of laminin a5 is patchy, resulting in BM regions
containing only laminin a4 or both laminin a4 and a5.34,35

Laminin a5 expression in endothelial cell BM of arteries has not
been systematically studied but current data suggest that this too
varies with tissue type (unpublished data from our laboratory). In
addition, the expression of laminin a4 and a5 is differentially
controlled by cytokines and growth factors; in vitro expression of

laminin a4 by endothelial cells is strongly upregulated by
proinflammatory cytokines such as TNF-a and IL-1, while
laminin a5 is upregulated by progesterone and angiostatic
factors.22,36 This differential expression of laminin a4 and a5
suggests functional distinction, which is being deciphered in our
laboratory through the use of endothelial cell-specific knockout
mice.

Pericytes are considered to contribute to the endothelial BM;
however, the level of contribution is not yet clear. The reason for
this is that it is difficult to isolate pericytes and to culture them
in vitro without dedifferentiation, suggesting that the in vivo
milieu impacts on their phenotype, which probably includes the
ECM molecules they secrete. In vitro pericyte-endothelial cell
co-cultures suggest that pericytes can secrete some BM
components such as laminin and collagen IV37 and that this is
a cooperative process.38 However, whether pericytes can express
both of the endothelial cell laminin isoforms and thereby
contribute to the differential expression of laminin a5 in
endothelial BMs of different vessel types, described above, is not
clear. Studies concerning the brain, which is particularly rich in
pericytes, propose that pericytes can secrete laminin a2, an
indication that pericyte ECM secretion may also vary with tissue
type.39

Vascular smooth muscle cells. In comparison to endothelium,
limited data exist for laminin isoform expression in vascular

Figure 2. Model of laminin isoforms found in vascular BMs. Potential integrin and non-integrin receptors for each laminin isoform and their approximate
interaction sites on the laminin a chains are shown.
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smooth muscle BMs. There is good evidence that laminin a440-42

and a5 chains24,32,43 occur at this site both during embryogenesis
and in mature tissues, while vascular smooth muscle of larger
vessels, such as aorta or the carotid arteries, has been reported to
additionally express laminin a2,44 the major laminin a chain of
myogenic tissues.45-47 In addition, the laminin β1 chain has been
reported to be expressed in smooth muscle BMs of developing
vessels and to be supplemented by laminin β2 in the mature
vasculature,48 suggesting the existence of laminins 411, 511 and in
some cases laminin 211 during development, and laminins 421,
521 and possibly 221 in mature vascular smooth muscle BMs.

Although limited, data suggest differential expression of
laminin isoforms in vascular smooth muscle BMs during
development and in different vessel types in mature tissues.
Such variations are likely as fate mapping has revealed up to seven
different cellular origins for vSMC, ranging from neural crest,
splanchnic mesoderm, mesothelium and epicardium, or pericytes
and adventitial myofibroblasts in mature vessels undergoing
remodeling.49,50 Such diversity may also be reflected in their ECM
secretion. To elucidate the contribution of laminins to vSMC
function, smooth muscle specific laminin knockout mice are
being generated in our laboratory.

Laminin Receptors on Endothelium
and Perivascular Cells

Laminins are considered to be the major BM component
responsible for the biological functions of BMs; i.e., for
transducing signals that control cell migration, survival,
proliferation and differentiation.5,20 These biological roles are
largely due to the interaction of the laminin a chains with cell
surface receptors. Three major classes of transmembrane
receptors have been reported to interact with the vascular
laminin a2, a4 and a5 chains, β1 and β3 integrins, a-
dystroglycan of the dystrophin glycoprotein complex, best
known from studies of dystrophic muscle, and lutheran blood
group glycoprotein, a long-known blood group glycoprotein
present on most cells but only recently identified as a laminin
receptor.51-55 Figure 2 illustrates the potential interactions
between these receptors and the vascular laminin isoforms. All
receptors, except integrin a7β1, which is expressed predomi-
nantly on muscle, and a-dystroglycan for which contradictory
data exits,56-59 have been reported to be expressed on
endothelium and smooth muscle (although not specifically
vascular smooth muscle).60,61

Figure 3. Immunofluorescence staining for laminin a5, as a BM marker, in capillaries and arterioles. Staining for laminin a5 together with (A) desmin, to
mark pericytes, or (B) PECAM-1, to mark the endothelium, reveals pericyte cell bodies (arrows) and their extensive processes embedded in the
endothelial cell BM. Double staining for laminin a5 and a-smooth muscle actin (a-SMA) (C) reveals the BM of the individual smooth muscle cells
(arrowhead) enwrapping arterioles. Scale bars are 20 mm and 5 mm in the insets.
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In vitro, integrin a6β1 can interact with both laminin a4 and
a5 chains.52,53,62-65 In addition, a recombinant fragment from the
N-terminus of the laminin a5 which carries potentially two
exposed RGD sequences (not present in other isoforms) has been
shown to bind to avβ3,54 a receptor that is better known for
vitronectin and fibronectin binding (Fig. 2).54 Antibody inhibi-
tion studies suggest that β1 integrins, probably avβ1 and a5β1,
the latter of which is a well-known fibronectin receptor, can also
interact with laminin a5 via the same RGD-site.54 Data suggests
that integrin a5β1 acts cooperatively with the av integrins during
vascular remodeling.66 Integrin a3β1 has been reported to bind to
laminin a552 and to laminin a2.67-69

Integrin a7β1 is a myogenic integrin that reacts primarily with
laminin a2, but has also been shown in in vitro assays to interact
with laminin a4 and a5 containing isoforms.51 It has been
reported to occur on vSMC but not on endothelium and to play
an important role in vascular integrity and development.70

However, the viability of mice lacking a7β1 suggests that other
receptors may also act as laminin binding molecules in vSMC.71

Such an alternative receptor is likely to be a-dystroglycan, which
has been shown to have high affinity binding for the laminin a2
chain (as well as the heparin sulfate proteoglycans, perlecan and
agrin).72 There is no strong evidence for high affinity binding of
a-dystroglycan to either laminin a4 or a5 chains,73 although weak
binding to laminin a5 may occur.74

The lutheran blood group glycoprotein, also known as Lu/
BCAM, and a spliced variant of the basal cell adhesion molecule
(B-CAM), has been described to specifically bind laminin a5.55,75

Although reported to have a broad in vivo distribution,76 mice
lacking this molecule have no overt phenotype,77 which contrasts
with the early embryonic lethal phenotype of mice lacking
laminin a5.78 Its role as a laminin a5 receptor in vivo therefore
remains to be fully understood.

The precise in vivo contribution of these receptors to laminin
binding in the vessel wall and the extent of cooperation between
the different integrin and/or non-integrin receptors in vivo is not
clear. In addition, there are increasing data that suggest that
integrins are involved in functions independent of ECM binding,
as recently shown for a3β1, which acts as a regulator of vascular
endothelial growth factor (VEGF) expression by endothelium.79

Such studies raise the question of whether binding interactions
identified in vitro are relevant to the in vivo situation, in particular
in the vasculature where mechanical force and shear stress are
likely to affect which adhesion structures are employed and which
signals are transduced to the bound cells.

Laminin Functions in the Vasculature

Development. The in vivo expression pattern of laminin a4 and
a522-24 and the absence of an overt phenotype in the laminin a4
knockout mouse41 suggest that laminin a4 and a5 are not crucial
for angiogenesis during development. One exception is the retina
where laminin a4 has recently been reported to regulate tip cell
numbers and vascular density by inducing endothelial Delta-like 4
(Dll4)/Notch signaling. Laminin a4 was shown to be expressed
exclusively at the growing vascular front in the postnatal retina,

with most abundant expression in the leading tip cells; while
laminin a5 was expressed by endothelial cells in more distal
portions of the vascular tree, as well as by surrounding astrocytes.
This is in contrast to the brain, where laminin a5 is expressed
only by endothelium and not by astrocytes.36 Laminin a4
knockout mice have excessive filopodia and tip cell formation in
the retina, similar to the phenotype observed when Notch is
inhibited in vivo, which leads to aberrant sprouting angiogenesis
and branching.80 It is hypothesized that laminin a4 directly
induces Dll4 expression on the tip cells via an integrin β1-
mediated mechanism.80,81

Barrier function. The best studied aspect of laminin function
in the endothelial cell BM is that of permeability to extravasating
immune cells. At the level of postcapillary venules, the patchy
distribution of laminin a5 coincides with sites of preferred
extravasation by T-cells35,36 and neutrophils.34 The ablation of
laminin a4 in mice results in a ubiquitous expression of laminin
a5 in all endothelial BMs and an associated severely reduced
extravasation of T-cells in a neuroinflammation model,35 and also
of monocytes and neutrophils in other inflammatory models.82

There are data demonstrating that laminin a5 acts to inhibit
leukocyte transmigration.35 However, whether laminin a5 also
impacts on the endothelium and affects the “tightness” of
endothelial cell junctions and thereby reduces leukocyte trans-
migration is a possibility that has not been investigated (Fig. 4A).

It has been proposed that pericyte coverage of vessels also
defines sites of neutrophil extravasation with areas of less coverage
providing exit sites for leukocytes.83 The question that therefore
arises is whether pericyte secretion of laminin a5 to the
endothelial BM could account for the patchy laminin a5 in
postcapillary venules.35 The fact that pericytes appear to secrete
different laminins in different tissues argues against this
possibility. However, pericytes are also considered to be
oligopotential due to their ability to differentiate into several
cells types (i.e., fibroblasts, osteoblasts, chondrocytes and
adipocytes),84 suggesting high plasticity. Hence, factors such as
proinflammatory cytokines released at sites of leukocyte extra-
vasation may impact on pericyte mobility but also local ECM
production. The latter is impossible to address; given that
pericytes are small with extensive cytoplasmic processes (Fig. 3),
focal changes in their ECM synthesis at sites of inflammation
would therefore be beyond detection by northern blot or in situ
hybridization.

Endothelial cells: shear sensing and mechanotransduction.
Newer aspects of laminin function include whether endothelial cell
anchorage to the laminins in the BM impacts on shear sensing and
transduction of signals from the vessel lumen to other layers in the
vessel wall. Shear sensing is crucial for hemodynamic control and
occurs at the level of small arterioles, also referred to as resistance
arterioles. The luminal location of the endothelium makes it
perfectly positioned to sense changes in blood flow within vessels.
In addition, endothelium can relay signals throughout the vessel
wall by rapidly releasing vasodilating and vasoconstricting factors
that regulate vascular tone in response to changes in hemody-
namics. One such vasodilating molecule is nitric oxide (NO),
produced by the endothelial nitric oxide synthase (eNOS), in

www.landesbioscience.com Cell Adhesion & Migration 105



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

106 Cell Adhesion & Migration Volume 7 Issue 1



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

response to increased shear stress,85 which diffuses to underlying
vSMC or pericytes to induce relaxation. Endothelial cells can also
induce vSMC contraction by producing vasoconstricting factors,
including prostaglandins and thromboxane A2.86

Several mechanisms have been proposed to be involved in
endothelial shear sensing and mechanotransduction (reviewed in
ref. 87), all of which require firm anchorage of endothelial cells to
their BM and to their neighboring cells.88,89 As described above,
interaction of endothelial cells with the BM requires integrins that
can aggregate to form “focal adhesions,” sites of multiple
interconnection between the extracellular matrix and the actin
cytoskeleton but also platforms containing molecules such as focal
adhesion kinase (FAK) where intracellular signaling cascades are
initiated90 (Fig. 4B and C). At present there is only indirect
evidence that laminins may be involved in such mechanosensing
and mechanotransduction functions; for example, shear induced
eNOS synthesis in porcine endothelial cells has been shown to be
RGD-dependent91 and several publications support a role for the
RGD-binding integrins, a5β1 or avβ3, in shear induced
intracellular signaling in cultured endothelial cells.89,92,93 These
studies focus on fibronectin and vitronection as ligands for a5β1
and avβ3, which are interstitial matrix components and, therefore,
not in direct contact with intact endothelium in vivo in the non-
pathological situation (Fig. 1). Given that laminin a5 is the only
BM molecule carrying an exposed RGD site that occurs in close
proximity to endothelial cells and binds both a5β1 and av series
integrins, it may be that laminin a5 is the in vivo ligand of these
integrins and thereby contributes to mechanosensing and transduc-
tion. Whether endothelial cell anchorage to laminins or any other
component of the BM could influence the expression or function of
junctional molecules has not been considered to date.

Functions of the vascular smooth muscle laminins. The
maintenance of vascular tone and generation of contractile force
against an increasing intraluminal pressure are independent of the
endothelium and are functions inherent to the vascular smooth
muscle. As discussed above for the shear sensing and mechan-
otransduction functions of endothelium, also the “mechano-
response” of the vascular smooth muscle requires the intercon-
nection of vSMC with each other and with their BM (Fig. 4C).
While mechanisms of interconnections between vSMC have been
investigated, revealing a role for N-cadherin,94 very little is known
about vSMC interactions with their BM and how this influences
contractility/phenotype.

Vascular smooth muscle differentiation: contractile (differ-
entiated) vs. non-contractile (dedifferentiated) phenotype. Like
endothelial cells, vSMC can interact with their surrounding BM
via integrin and non-integrin receptors, which is considered to
contribute to mechanical stability of the vessel and also permits

the transduction of specific intracellular information to the
smooth muscle cells that can influence vSMC proliferation,
migration and differentiation state (Fig. 4C).

Vessel maturation is characterized by differentiation of the
vSMC toward an enhanced contractile phenotype with associated
increases in cytoskeletal proteins and an elongated morphology.95

Like the pericytes discussed above, vSMC also maintain their
plasticity in the mature vasculature, thereby allowing them to
undergo phenotypic changes in response to local stresses. In
healthy vessels, vSMC in the contractile state contribute to the
overall resistance of the vessel to hemodynamic changes. In
response to vessel injury or neointima formation, vSMC
dedifferentiate to a non-contractile phenotype, changing their
expression of adhesion receptors and motility, which allows them
to move into the affected tissue.96 Both the contractile and the
non-contractile migratory phenotype are likely to be influenced by
the interaction of the cells with their surrounding BM, but may
also contribute to changes in the subjacent interstitial matrix.

There are no studies to date on the in vivo expression/
distribution of smooth muscle BM components in vessels under-
going remodeling processes and how such changes impact on
smooth muscle function (dilation or contraction of the vessel).
However, there are some in vitro studies involving isolated arterial
smooth muscle cells that suggest that laminins promote a
contractile, differentiated phenotype while fibronectin, which is
upregulated around vSMC after arterial injury, induces a switch to a
synthetic, dedifferentiated state.97-99 While these studies implicate
laminins in maintenance of the contractile vascular smooth muscle
phenotype, all were performed with laminin isoforms that do not
occur in the vasculature in vivo; namely laminin 111, which is
commercially available and although highly adhesive for many cell
types, has an extremely limited distribution in vivo.5,19

The potential involvement of laminins in the contractile
phenotype of vascular smooth muscle is substantiated by more
recent studies involving integrin a7β1 that is expressed on vSMC
and can bind to laminins a2, a4 and a5.51 Ablation of integrin
a7β1 in vivo results in reduced expression of contractile vSMC
proteins and increased proliferation via a Ras-MAPK-mediated
pathway,100 suggesting that a7β1-mediated interaction with one
or more of the smooth muscle laminins inhibits smooth muscle
cell growth in healthy arteries and that disturbances in this
interaction removes this inhibition, thereby promoting a
synthetic, proliferative vSMC phenotype.101 Similarly, integrins
avβ3 and a5β1, which can act as laminin a5 receptors,54 have
been implicated in arterial myogenic constriction of healthy
vessels.102 In isolated resistance arterioles with spontaneous tone,
inhibition of integrin a5β1 using function-blocking antibodies (to
integrin β1 and a5 subunits), and inhibition of avβ3 (with RGD-

Figure 4 (See opposite page). Schematic representation of laminin functions in the endothelial and smooth muscle layers of the vessel wall. (A) In
postcapillary venules, the absence of laminin a5 in the endothelial BM defines sites of leukocyte extravasation. Small (resistance) arterioles (B and C) are
responsible for controlling vessel diameter in response to hemodynamics, where integrin-mediated anchorage to laminins in the endothelial BM via focal
adhesions are implicated in shear sensing and transduction of signals to the underlying smooth muscle cells (B). (C) Vascular smooth muscle responds to
shear and intraluminal pressure changes by contraction or relaxation, which requires firm anchorage between the individual vSMC and their BM. Vessel
injury can induce changes in vSMC phenotype from a contractile to a dedifferentiated non-contractile phenotype, which is associated with changes in
the surrounding BM and interstitial matrix.
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sequences and anti-integrin β3 antibodies) impeded constriction
in response to increased luminal pressure. While all these studies
suggest a role for laminins in vSMC differentiation, they do not
address the roles of specific laminin isoforms in phenotypic
switching or vasoconstriction. It is therefore necessary to re-visit
these questions and decipher which laminin isoforms and
integrins are responsible.

Conclusion

Information on laminin isoform function in the different layers of
the blood vessel wall remains limited and fragmented. However,
the data to date support a role mainly for laminin a5 in inhibiting
cell migration through or in the vessel wall and in promoting
mural cell differentiation, and potentially also in mechanosensing
and mechanotransduction. These processes are fundamental to
vascular homeostasis and are altered in pathologies such as

hypertension and arthrosclerosis where vascular remodeling
occurs. To understand the molecular information imparted by
the laminins to the endothelium and the mural cells of the vessel
wall will aid in our understanding of vessel physiology and
remodeling processes associated with vascular pathologies.
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