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Laminins are large molecular weight glycoproteins consti-
tuted by the assembly of three disulfide-linked polypeptides,
the a, b and c chains. The human genome encodes 11
genetically distinct laminin chains. Structurally, laminin
chains differ by the number, size and organization of a few
constitutive domains, endowing the various members of the
laminin family with common and unique important func-
tions. In particular, laminins are indispensable building
blocks for cellular networks physically bridging the intracel-
lular and extracellular compartments and relaying signals
critical for cellular behavior, and for extracellular polymers
determining the architecture and the physiology of base-
ment membranes.

Introduction

Basement membranes are specialized extracellular matrices
holding cells and tissues together, a property largely due to
their content in laminins. Laminins are glycoproteins with
both common and specific functions. One common and most
important function of laminins is to interact with receptors
anchored in the plasma membrane of cells adjacent to
basement membranes. In doing so laminins regulate multiple
cellular activities and signaling pathways. Structurally, lami-
nins are composed of a few independently folded, distinct
domains, which number, location and size, as well as the
interactions that they develop with other molecular compo-
nents of the basement membranes, vary from one laminin
member to another. Every basement membrane contains at
least one, sometimes several, members of the laminin family,
which structural diversity determines, to a large extent, the
unique physiological functions of the various basement
membranes of the body.

This review summarizes the structural and molecular basis for
both common and unique functions of laminins.

The Oldest Member in the Laminin Family
is in Its Thirties

In 1979, a large molecular weight (about 850 kDa) non-collagenous
glycoprotein was isolated from both a basement membrane-rich
tumor transplantable to mouse [the Engelbreth-Holm-Swarm (EHS)
sarcoma] and basement membrane-producing cells.1,2 This new
glycoprotein was purified in quantities sufficient for biochemical,
structural and immunological characterization and it was given the
name laminin.1,3 Biochemical analysis showed that the glycoprotein
laminin is constituted by three disulfide-linked polypeptides, initially
called A, B1 and B2, with electrophoretic migration mobilities
corresponding to 220 and 440 kDa.1,2 Observation of purified
laminin molecules by electron microscopy after rotary shadowing
indicated that the three chains assemble to form an asymmetrical
cross-shaped structure, with a long arm of about 77 nm carrying a
large globule at its end, and three short arms, two of 34 nm and one
of 48 nm, each being terminated by a globular domain.4,5 Between
the center of the cross and the ends of the 34 and 48 nm-short arms,
there are one and two additional globules, respectively.4,5

Following the discovery of related but not identical material from
various cells and tissues,6,7 it was realized that the molecule isolated
from the EHS sarcoma was not unique, and likely to be the first
member of a new protein family. To distinguish between the
diverse members, they were first given various names,6,7 and then
numbered in the order of their discovery.8 The three constitutive
subunits initially designated with A, B1 and B2 were renamed with
the Greek letters a, β and c. Sequencing of the subunits provided
evidence for distinct polypeptides at the amino acid level. Following
the chronological order of their identification, the polypeptides
were designated by adding numbers to the Greek letters a, β and c
(a1, a2, … β1, β2, ... c1, c2, …). Finally to avoid confusion and
facilitate transfer of information, there was a consensus to simplify
the laminin nomenclature.9 Now each laminin isoform is designed
by its chain composition, i.e., the heterotrimer composed of a1, β1
and c1 chains is known as laminin 111. It is the prototype of the
family and the best characterized laminin isoform.

Eleven Genetically Distinct Laminin Chains

The development of cloning and automated sequencing techniques
permitted to identify rapidly genetically different laminin subunits
in human9 and many other species (for review see ref. 10). In the
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human genome, 11 genes distributed on chromosomes 1, 3, 6, 7, 9,
18 and 20, code for five a, three β and three c laminin subunits
(Table 1). At the protein level, laminin subunits have different
sizes, with predicted molecular masses ranging from 129,572 Da
for the smallest laminin β3 chain to 399,737 Da for the largest
laminin a5 chain (Table 1). The laminin a3 chain exists as two
polypeptides of different sizes, a3A and a3B, with predicted masses
of 189,335 and 366,649 Da, respectively (Table 1). The actual
sizes of laminin subunits are, however, larger due to post-
translational modifications of the polypeptides, essentially by
glycosylation.11-13 For instance molecular masses deduced from
the electrophoretic migration mobility are approximately 400 kDa
for the laminin a1 chain and 140 kDa for the laminin β3 chain.

There are more than 50 theoretically possible heterotrimeric
associations between all the a, β and c chains; however, 16 only
have been suggested (Fig. 1) and even a smaller number have been
definitively proven to exist and purified.9 The laminin chains show
tissue and cell specific distribution, with variations between
development and pathological states14-16. The laminin a1 chain is
expressed already at the 2-cell embryonic stage, and it disappears
progressively from most basement membranes during development
to the adult organism. It commonly associates with the β1 and c1
chain, so that the laminin 111 heterotrimer is rather ubiquitous in
the embryo, while it is restricted to a small subset of basement
membranes in the adult. In contrast, heterotrimers containing the
a5 chain, especially laminins 511 and 521, are the most ubiquitous
isoforms in the adult organism14 (and in this issue). Besides a5
chain-containing isoforms, laminins 211 and 221 are present in
basement membranes of skeletal and cardiac muscles15,16 and
Holmberg and Durbeej, this issue), while laminins 411 and 421 are
abundant in endothelial basement membranes (Yousif et al., this
issue). Laminin 332 is specific for the basal lamina underlying
epithelial cells (Rousselle and Beck, this issue).

The diverse patterns of laminin a chain expression endow
basement membranes with molecular heterogeneity, likely
contributing common and unique functions. At this point it
should be noted that the notion evolving from initial immuno-
logical studies suggesting that the new component isolated from
the EHS sarcoma was ubiquitous of basement membranes3 had to
be revised. It is now definitely established that although all
basement membranes contain laminin, most of the laminin
molecules present in the adult human organism are not identical
to laminin 111 isolated from the EHS sarcoma. Except for
laminin 332, most other laminin isoforms are immunologically
related to laminin 111 because they contain either the β1 or the
c1 chains, or both (Fig. 1). It explains why antisera raised against
laminin 111 purified from the EHS sarcoma stain all basement
membranes, even if laminin a1 chain is absent.

An Organized Patchwork of a Few Structurally
Distinct Domains Forms Laminins

Although laminin chains differ at the level of the amino acid
sequences, the polypeptide chains fold into several kind of unique
or multiple copies of independent structural domains whose
overall arrangement in a cross-shaped pattern is conserved among
laminin isoforms. The laminin short arms of the cross are
contributed by the separately folded N-terminal regions of every
a, β and c chains, while all three chains form the stem of the long
arm.

The long arm of laminins: a coiled-coil stem and a globular
domain. In each laminin heterotrimer, the long arm is formed by
amino acid stretches of similar lengths (561 to 591 residues
depending on the chain) located at the C-terminus of the β and c
chains and the adjacent portion of the a chain. These stretches
are rich in heptad repeats of non-polar amino acids and fold in an

Table 1. Chromosome location of human laminin genes and sizes of the corresponding polypeptides

Gene name Chromosome localization Chain name Amino acids number* Molar mass (predicted)

LAMA1 18p11.31 a1 3,075 337,084

LAMA2 6q22-q23 a2 3,122 343,905

LAMA3** 18q11.2
a3A 1,713 189,335

a3B 3,333 366,649

LAMA4 6q21 a4 1,823 202,524

LAMA5 20q13.2-q13.3 a5 3,695 399,737

LAMB1 7q22 b1 1,786 198,038

LAMB2 3p21 b2 1,798 195,981

LAMB3 1q32 b3 1,172 129,572

LAMB4*** 7q22-q31.2 b4 1,161 193,540

LAMC1 1q31 c1 1,609 177,603

LAMC2 1q25.31 c2 1,193 130,976

LAMC3 9q31-q34 c3 1,575 171,227

See http://uniprot.org for more detailed information and relevant references providing sequence data and analysis. *The number of amino acids includes
the signal peptide. **The LAMA3 gene encodes two transcripts, the short a3A and the long a3B, sharing identical C-terminus. ***Presumably a pseudogene.
Transcripts have not been found.
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a-helical coiled-coil structure.17,18 An extra 31–33 residues insert
between the heptad repeats of all three β chains to form a knob,
the β knob, popping out of the long arm. Sequences within the
coiled-coil domains of laminin chains contain information for
selective chain recognition, and ionic interactions between these
domains determine the specificity of chain assembly.19-22 The
coiled-coil stretches direct intracellular assembly of a, β and c
chains together, processing through different steps. First,
dimerization between β and c chains takes place, followed by
incorporation of an a chain by folding a large C-terminal portion
of the three subunits in a triple-stranded a-helical coiled-coil
structure stabilized by disulfide bridges.

The C-terminus of the laminin a chains is 865–900 residues
longer than that of the β and c chains and it forms the large
laminin globular or LG domain at the end of the long arm.23 This
C-terminal extension of the a chain is folded into five sub-
domains, LG1 to LG5, of about 160 to 200 residues each. The
LG1 to LG3 trio is separated by a short stretch of amino acids
from the LG4-LG5 pair. The crystal structure has been
determined for recombinant LG1 to LG3 trio of the laminin
a2 chain24 and LG4-LG5 pair of the laminin a1 and a2
chains.25,26 It indicates that LG domains adopt β-sandwich folds,
with canonical calcium binding sites. Moreover, LG2 and LG3
interact through a substantial interface.24

The laminin short arms: divergent mosaics of globular
domains and rod-like arrays. In contrast to the highly conserved
structure of the long arm of laminins, the short arms considerably
diverge (Fig. 2). They are contributed by the N-terminus of a, β
and c chains folding separately into three types of structural
domains: the laminin N-terminal (LN), the laminin-type
epidermal growth (EGF) factor-like (LE) and the laminin IV
(L4/LF) domains.9

Except for the a3A, a4 and c2 chains, laminin subunits have
one globular LN domain at the N-terminal end. Depending on
the chain, LN domains are 228 to 259 residues long and they
adopt a globular fold. The crystal structure of recombinant LN
domain of the a5, β1 and c1 chains have been recently
resolved.27,28 It shows that the respective polypeptides are similarly

arranged in a β-sandwich with elaborate loop regions that differ
between laminin chains, and that, together with adjacent LE
domains, the shape resembles the head and stalk of a flower.27,28

The LE domains comprise 41 to 70 residues each, containing 8
cysteine residues, except in a few cases. Disulfide bonds between
cysteine pairs 1 and 3, 2 and 4, and 5 and 6, determine the
formation of loops a to c like in EGF.29 An additional loop d
between cysteine pair 7 and 8, specific for laminin, provides
distinct contact with loop b of the next LE domain.29 This
characteristic is thought to be important for the limited flexibility
of the arrays typically formed by repetitive LE domains. In
addition, the a3, a4, a5, β1, β2 and c2 chains contain one
truncated LE domain each (15 to 35 residues) besides the classical
LE domains. Finally, the arrays of LE domains determine spacers
of various lengths between other type of domains, and it can be
highly divergent from one chain to another, with 3 LE domains
only in a3A, and up to 22 in a5 (Fig. 2).

One or two globular domains interrupt the rod-like arrays of
repeating LE domains in some of the laminin chains (Fig. 2).
These globular domains, known as domain IV in an older
nomenclature,8 were recently renamed L4 and LF for laminin 4
and laminin four, respectively.9 The L4 and LF globular domains
delimit two or three stretches in the LE arrays, referred to as LEa,
LEb and LEc.9 The L4 domain consists of an extra-long stretch of
residues (169 to 204) inserted between cysteine residues 3 and 4
in one LE domain, thereby considerably enlarging loop b, and the
LE domain itself. This is the case for the L4a domain between
LEa4 and LEb1, and the L4b domain between LEb8 and LEc1 in
the a1 and a2 chain; for the L4 domains between LEb4 and LEc1
in the a3B chain and between LEb4 and LEc1 in the a5 chain, as
well as for the L4 domains of the c chains (Fig. 2). In early time,
the second kind of domain IV was recognized in the β chains as an
independent globular domain intercalated between two LE units.
It is now called LF to differentiate it from the L4 domain inserted
in loop b of one LE unit. A single copy of this domain is present
in β1 and β2 chains (219 and 217 amino acid residues,
respectively). Interestingly, the a3B and a5 chains contain also
one independent LF globular domain intercalated between two

Figure 1. Known and/or predicted laminin heterotrimers. Eleven genes encode five a, three b and three c chains in the human genome. There are two
transcripts for the laminin a3 chain, one short a3A and one long a3B transcript. In theory, there are more than 50 possible heterotrimeric abc assemblies,
but only those shown in the figure have been isolated or experimentally predicted.
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Figure 2. Schematic representation of the highly diverging N-terminus of laminin chains. Three basic structural domains found in the N-terminus of the
laminin chains are the LN (laminin N-terminal), LE (laminin-type epidermal growth (EGF) factor-like) and L4/LF (laminin IV) domains. The names (in black),
location and size of the various domains are indicated for the different laminin chains. Each L4 domain corresponds to a long stretch of residues inserted
between cysteine residues 3 and 4 of one LE domain. In this case the L4 and LE domains should be considered as one single domain which is
emphasized by using the same color. In contrast the LF domains are located between two LE repeats as in the a3B, a5, b1 and b2 chains. When L4 or LF
globular domains interrupt the arrays of repeating LE domains, they determine stretches named LEa, LEb and LEc. The numbering of the LE domains
starts with 1 for each stretch (LEa1, LEa2,…; LEb1, LEb2, etc…). For example, the N-terminus of the laminin a1 chain starts with one LN domain, followed
by a first array of four LE domains (LEa1 to LEa4), then one globular domain L4a (consisting of a long stretch of residue inserted within one LE domain),
followed by a second array of eight LE domains (LEb1 to LEb8), another globular domain L4b (consisting of a long stretch of residue inserted within one
LE domain), and finally a stretch of three LE domains (LEc1 to LEc3). In contrast the N-terminus of the laminin a3A chain consists of three LE domains
only. This nomenclature adopted in 20059 is indicated to the left of each diagram. It should be noted that in the UniProt (http://uniprot.org) data bank,
numbering of the LE domains is different. It is based on the total number of LE domains as indicated with the small gray lettering right to the various
diagrams.
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LE units, which size (470 and 587 amino acid residues,
respectively) is much larger than that of L4 or LF domains in
other laminin chains.

To summarize, the number and distribution of the LN, LE and
L4/LF domains forming the short arm of laminins substantially
differ between the 11 different chains. A full set of domains (LN,
LE and L4/LF) form the N-terminus of the a1, a2, a3B and a5
chains, while the N-terminus of the a3A and a4 chains are devoid
of LN and L4/LF domains and they solely consist of a very short
stretch of 3 or 4 LE domains. One LN domain is also present at
the N-terminus of the β and c chains, except in c2. The β1 and
β2 chains, but not the β3, contain one globular LF domain, while
all three c chains have one globular L4 domain inserted in loop b
of an LE domain (Fig. 2).

Essential Functions of Laminins

Several of the structurally related laminin domains have nearly
identical or similar functions in every laminin isoform. As a
general rule, the C-terminal ends of laminins interact with
proteins anchored in the plasma membranes of cells or
microorganisms, thereby relaying biochemical and mechanical
signals between intracellular and extracellular molecular networks
(Fig. 3). The N-terminal ends of laminins are involved in
interactions mainly with other extracellular matrix molecules
present in basement membranes (Fig. 3). Thereby, they are an
integral part of the complex extracellular molecular networks
important for the architecture and physiology of basement
membranes. Some not yet well-defined parts of laminins are
thought to interact with small molecules such as growth factors
and cytokines. This function is thought to be important for
sequestration and storage of these small molecules and for
regulating their distribution, activation, and presentation to cells.

Laminins and Cell Adhesion-Promoting Activity

Very early on multiple biological activities were described for
laminin isolated from the EHS sarcoma, in particular it was
shown to be a cell adhesion molecule.30 Enzymatic dissection of
laminin 111 from the EHS sarcoma into fragments identified
several cell binding sites (see ref. 9 for the nomenclature of
laminin fragments). The first fragment identified having cell
adhesion-promoting activity is fragment P1 obtained by pepsin
treatment of EHS laminin, and it originates from the center of the
cross.9,31-34 The activity is due to an RGD sequence in the LEb8
domain of the laminin a1 chain, which is not accessible to cells in
the intact chain because it is masked by domain L4b.35 Additional
non-cryptic cell binding sites exist on the intact laminin short
arms of at least some isoforms.36,37 They are ligands for the a1β1
and a2β1 integrins, which are classical collagen receptors, and
they have been mapped to the LN domain of the laminin a1 and
a2 chains.38-41 The biological relevance of these interactions
remains to be elucidated.

Two other fragments from the long arm have either heparin-
dependent (fragment E3) or -independent (fragment E8) cell
binding activity.42-44 Fragment E3 with high affinity for heparin
corresponds to the LG4–5 pair and it contains the binding sites
for a-dystroglycan, syndecans and galactosylsulfatides.25,26,43,44

The crystal structure of the laminin a2 LG4-LG5 domain
localizes a basic surface region between calcium sites suitable for
binding a-dystroglycan and heparin.25 Fragment E8 consists of
the LG1-LG3 domains attached to the end of the long arm
(Fig. 4), and it interacts with integrins expressed by a large variety
of cells.42,45 All newly identified laminin isoforms, either purified
from tissues or cells or expressed as recombinant proteins, display
integrin-mediated cell adhesion to the LG domains.46-55

Depending on the laminin isoform, the interactions are mediated
by one of the four different, so-called laminin-binding integrins,
a3β1, a6β1, a7β1 and a6β4.42-55 The specificity of the integrin-
laminin interaction is determined by the laminin a chain.56 For
example a6β1 has variable affinity for all laminin isofoms, a3β1
and a6β4 bind nearly exclusively to laminins containing the a3
and a5 chains, and a7β1 has preference for isoforms with the a2
and a5 chains.56

Integrin binding to the C-terminus of laminins requires both
an intact LG1-LG3 trio and the coiled-coil fold of the laminin a,
β, and c chains. Separation of the LG1-LG3 trio from the long
arm stem57 or unfolding of the coiled-coil structure abolishes cell
adhesion-promoting activity.57,58 The molecular basis of this
feature involves a glutamic acid residue (Fig. 4) at the third
position from the carboxyl termini of the laminin c1 and c2
chain,59 which is absent in the shorter laminin c3 chain.60

Interestingly, a recombinant laminin heterotrimer containing the
c3 chain has no integrin binding activity.60 It suggests that the c
chain either binds directly to the integrin, or it is required for
maintaining the spatial organization of the LG1-LG3 trio into a
biologically active conformation, perhaps by stabilizing the
interactions between LG1, LG2 and LG3.24 Recently, a global
analysis of N-linked glycosylation sites shows that the β-sandwich
faces of the LG1 domain are free of carbohydrate modifications in

Figure 3. Mapping of the major functions of laminins. The laminin short
arms (N-terminus) are involved in architectural function within the
basement membrane, while the end of the long arm (C-terminus) is
typically involved in cellular interactions.
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all five laminin a chains, indicating that these surfaces may harbor
the integrin binding site.24 The C-terminal region of laminin β
chains may modulate also the integrin binding affinities of
laminins.61

Integrin-mediated interactions with the C-terminus of laminins
are important for several cellular activities by activating specific
signaling networks governing adhesion, migration, differentiation,
survival and many other aspects of cell behavior reviewed in the
other papers of this special focus of Cell Adhesion & Migration.

The Short Arms of Laminins Guide Basement
Membrane Assembly and Organization

The major task of laminins’ short arms is to participate in
basement membrane assembly and organization by interacting
with other components of the basement membranes, including
laminins themselves. As it should be anticipated from the
differences and similarities in size, number and layout of structural
domains in the laminin short arms, both highly divergent and
common interactions have been recognized for the diverse
isoforms of laminins. For instance isoforms such as laminins
111, 211 and 511 form the classical network of laminin polymers,
following a process involving the LN domains at each end of three
full length short arms (ref. 62 and Hohenester and Yurchenco,
this issue). These laminin polymers are connected by the heparan
sulfate proteoglycan perlecan63-65 and by nidogen (entactin)66,67 to
collagen IV polymers, forming supramolecular networks import-
ant for basement membrane stability. Nidogen, which has been
isolated from the EHS sarcoma as a stable complex with laminin
111,68 has affinity for a specific LE domain in the laminin c169-72

and laminin c3 chains.73 It has affinity also for the laminin c2
chain L4-LEb1 domains, part of which is enzymatically removed
in mature laminin 332.74 It may explain why in transgenic mice
deficient in nidogen, basement membranes containing the
laminin c2 chain, such as that at the epidermal-dermal junction,
are apparently normal, while those underlying, for instance,
endothelial cells and containing the laminin c1 chain are
defective.75 It could be that at the dermal-epidermal junction,
an interaction between nidogen and the laminin c2 chain is
needed, but dispensable for targeting newly synthesized proteins
at the correct anatomical location, but it is not needed for the
architectural and mechanical integrity of mature basement
membranes.

In contrast to progress made in defining the interactions of
classical laminins with other extracellular matrix components,
the knowledge is missing or fragmentary concerning the
mechanism(s) how laminin isoforms lacking a full set of LN
domains, such as those containing the a3A and a4 chains, are
integrated in the basement membrane framework. Laminin 332
with rudimentary N-terminus and only one copy of the LN domain
on the β3 chain provides the core of a unique and biologically
important network anchoring the epidermis to the dermis.76

Although truncated, the N-terminal region of laminin 332
associates with other extracellular components, including at least
laminin 311,77 collagen VII,78-80 collagen XVII81 and fibulin.74,82 It
is not known whether these interactions are sufficient to maintain

anchorage of the N-terminal regions of laminin 332 within the
extracellular matrix of the epidermal-dermal basement membrane,
or whether additional interactions are required.

Finally, interactions of fibulins with the L4 domain of c chains
have been reported74,82 and the knowledge about potential
functions of the L4/LF domains is very limited.

Conclusion and Open Questions

Over the past 30 years the knowledge on laminins has expanded
tremendously. The cell adhesion-promoting activity of laminin
isoforms is now well characterized, also at the structural level.
However, the specificity, if any, of the signaling pathways
activated by the different laminin-binding integrins is not known.
Integration of classical laminins in the basement membrane
framework is documented into details, but information is missing
for laminins having truncated short arms. Furthermore, it remains
to be determined whether the diverse interactions described in
vitro for LN domains—i.e., with other laminin LN domain for
polymerization, with heparan sulfate-containing domains of
perlecan, and with collagen-binding a2β1 and a1β1 integrins—
also occur in vivo, whether they are simultaneous or mutually
exclusive and what is their biological significance. Also, it would
be important in future studies to determine how the diverse
oligosaccharides present on laminin chains modify laminin
interactions and functions, and whether glycosylation of laminin
chains adds a further degree of specificity to the different
basement membranes.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Figure 4. The integrin binding site at the C-terminus of the laminin long
arm. (A) The major integrin binding site on laminins is formed by the LG1
to LG3 domains and the extremity of coiled-coil fold formed by the a, b
and c chains. It is thought that the C-terminus of the c chain is needed to
stabilize a conformation of the LG1-LG3 trio compatible with integrin
binding. (B) Representation of the amino acid sequences at the C-
terminus of the three laminin c chains. The c1 and c2 chains contains a
glutamic acid residue (E, highlighted green) at the third position from
the carboxyl termini. The residue is thought to be important for
maintaining integrin binding activity of the structure shown in (A).59 The
laminin c3 chain is shorter and lacks the glutamic acid residue at the
same position. Recombinant fragment engineered as shown in A and
containing the c3 chain have no integrin binding activity.60
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