
Quantitative analysis of chromosomal CGH in human
breast tumors associates copy number abnormalities
with p53 status and patient survival
Ajay N. Jain*†, Koei Chin*†, Anne-Lise Børresen-Dale‡, Bjorn K. Erikstein‡, Per Eystein Lonning§, Rolf Kaaresen¶,
and Joe W. Gray*i

*UCSF Cancer Center, University of California, San Francisco, Box 0128, San Francisco, CA 94143-0128; ‡Departments of Genetics and Oncology, Institute for
Cancer Research, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway; §Department of Oncology, Haukeland Hospital, 5021 Haukeland Sykehus,
Norway; and ¶Department of Surgery, Ullev Hospital, 0407 Oslo, Norway

Communicated by James E. Cleaver, University of California, San Francisco, CA, May 15, 2001 (received for review February 5, 2001)

We present a general method for rigorously identifying correla-
tions between variations in large-scale molecular profiles and
outcomes and apply it to chromosomal comparative genomic
hybridization data from a set of 52 breast tumors. We identify two
loci where copy number abnormalities are correlated with poor
survival outcome (gain at 8q24 and loss at 9q13). We also identify
a relationship between abnormalities at two loci and the muta-
tional status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked
with mutant p53. The 9q and 5q losses suggest the possibility of
gene products involved in breast cancer progression. The analytical
techniques are general and also are applicable to the analysis of
array-based expression data.

Techniques for in vitro genomic and proteomic analysis are
generating vast amounts of quantitative biological data. As

an example, high-density DNA microarrays are capable of
producing 30,000 measurements from a single sample of RNA
(1). In the area of cancer, such data offer fertile ground for
systematic computational analyses to help identify new cancer
targets or potential therapeutics. Chromosomal comparative
genomic hybridization (CGH) has been applied extensively to
human tumor specimens, and array-based CGH methods are
beginning to generate higher-density data (2, 3). For such
techniques to be most useful, computational methods must
generate conclusions that are supportable quantitatively in a
rigorous statistical sense, and not provide just a means of
visualization.

The challenge arises when the ratio between the number of
measurements to the number of experimental samples is high. In
this case, false patterns often emerge. For example, suppose we
measure expression levels for several thousand mRNAs in 10 cell
lines, 5 of which exhibit phenotype A and 5 that exhibit pheno-
type B. The expression ratios for each gene will show some
variation regardless of correlation with phenotype. The apparent
correlation to cell-line phenotype resulting from a naı̈ve com-
putation of correlation over all genes will be distributed approx-
imately normally, and some genes may show an apparently
significant correlation. In fact, because there are only 252
[10!y(5!(10-5)!)] ways of labeling 10 cell lines with 5 each of
phenotypes A and B, it is extremely likely that many genes of the
several thousand will show an apparently perfect correlation
with phenotype, even if there is no true relationship between any
observed genes’ expression and phenotype.

We present a method for rigorously identifying correlations
between large-scale multivariate measurements and outcomes
and apply it to chromosomal CGH data from a set of 52 human
breast tumors. We identify two loci (8q24 and 9q13) where copy
number abnormalities are correlated with poor survival outcome
and also identify a relationship between two loci (8q24 and
5q15-5q21) and the mutational status of p53. The techniques are
applicable generally and also are used easily in the analysis of
array-based expression data.

Materials and Methods
Tumor Specimens. Fifty-two samples from breast tumors were
obtained from three series of surgical specimens (35, 6, and 11
from refs. 4–6, respectively). Material was frozen promptly at
270°C until DNA isolation. Samples were trimmed to avoid
normal cell contamination, and DNA was isolated by standard
phenolychloroform extraction. The tumors had been analyzed
previously for TP53 gene mutation by using constant denaturant
gel electrophoresis (CDGE) followed by sequencing as described
(7). The 52 samples were selected from the 3 series based on the
TP53 status—25 tumors with missense mutation, 3 tumors with
deletions, and 24 tumors without mutation.

Comparative Genomic Hybridization. Genome copy number was
assessed by using CGH as described (8). Briefly, DNA samples
isolated from normal human lymphocytes and tumor samples
were labeled by nick translation with fluorescein-12-dUTP and
Texas red-dUTP, respectively. DNA probes (200 ng) were mixed
with 20 mg of unlabeled Cot-1 DNA and were hybridized with
normal lymphocyte metaphase spreads for 3 days. The prepa-
rations were washed to remove nonspecific bound DNA and
counterstained with 49,6-diamidoino-2-phenylindol (DAPI) for
chromosome identification.

Digital Image Analysis. Fluorescein, 49,6-diamidoino-2-phenylin-
dol (DAPI), and Texas red images were acquired from several
metaphases for each hybridization by using a Quantitative Image
Processing System (QUIPS) as described (9). Chromosomes
were segmented based on the DAPI image, and green–red ratio
profiles along the segmented images were calculated for each
chromosome. The results from 8–10 chromosomes of each type
for each hybridization were combined to determine a mean
(61s) for each chromosome type. Mean profiles for the 23
chromosome types (results were not calculated for the Y chro-
mosomes because all samples were female) were arranged from
short arm to long arm and from chromosome 1 to 22 and then
X to produce a genome profile comprised of 1,225 bins.

Our expectation when comparing two normal samples is that
all ratios should be 1 and that deviations from 1 are the result of
experimental noise or experimental artifact. The distribution of
values when logarithm (log)-transformed is very close to normal,
with untransformed data exhibiting skew to the left (data not
shown). This skew is expected in ratio measurements where the
numerator and denominator both have normally distributed
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noise, as is the case here. We have used log-transformed data
uniformly in our analyses.

Statistical Analyses. We used Kendall’s Tau in our analyses, a
rank-based nonparametric statistic that compares all pairs of
observations within two data series, assigning a score of 1 to pairs

with the same rank relationship (i.e., item 1 is greater than item
2 in each pair), a score of 0 to ties, and a score of 21 to pairs that
are mismatched. Kendall’s Tau is normalized for the number of
comparisons, yielding values from 21 to 1 with 1 indicating
perfect correlation of ranks, 21 indicating perfect anti-
correlation, and 0 indicating no correlation. The choice of

Fig. 1. Full CGH profile for a normal (dashed line) and a tumor (solid line). The tumor shows marked abnormalities on chromosomes 1, 8, and 9 in addition to
several other significant deviations.

Fig. 2. VMRL display of 52 CGH profiles and 8 normal profiles. Each CGH profile is displayed along the x axis, with the y axis being log (relative copy number),
z being overall patient survival, and the color of the lines encoding patient status (purple is deceased, orange is alive, and white indicates a normal control). The
top view shows all profiles, with the lowest survival furthest from the viewer. The bottom view shows the data thresholded by using the gray plane, to eliminate
the variation caused by noise, and highlights a region on chromosome 9 that appears to be linked with poor survival.
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Kendall’s Tau is not critical to the analyses; many statistics work
well.

To assess statistical significance given our unfavorable ratio of
variables (1,225) to samples (52), we use permutation analysis.
The procedure is simple.

I. Do 10,000 times:
A. Randomly permute the index of tumor outcome to

CGH profile.
B. Compute the correlation between copy number and

survival.
C. Record the maximum magnitude correlation across

the entire profile.
II. Accumulate the maximum magnitude correlations into a

cumulative histogram.
III. Plot the histogram and determine the correlation thresh-

old corresponding to a selected P value.

The correlation threshold selected in this manner is conserva-
tive. Suppose we select a P value of 0.05 and find the corre-
sponding threshold. If any locus in our data shows a better
correlation, we can be confident that we would not have ob-
served such a correlation more often than 1 in 20 times. Note
that it is safe to ascribe significance to any locus (say the Mth
best) that exceeds the threshold, because recomputation of the
threshold using the Mth highest magnitude correlation for each
permutation would result in a more permissive threshold than
using the maximum magnitude correlation. This method has the
advantage of being nonparametric and applicable to any corre-
lation metric. Further, the method accounts for distributional
irregularities in the data, because the permutation happens in
the indexing of outcomes to CGH data. If, for example, there are
strong crosscorrelations between different parts of our data, the

correlation threshold we select will not be ‘‘penalized’’ by
redundant information in the profiles.

Results and Discussion
We performed chromosomal CGH on 52 primary breast tumors
and on 8 samples of normal tissue. Fig. 1 shows an example of
CGH profiles for a normal control and for a tumor. Note that the
magnitudes of some of the CGH ratios in the tumor vastly exceed
the magnitudes of those in the normal control.

We explored the statistical correlation between CGH ratio
measurements and patient outcome (e.g., survival) and tumor
phenotype (e.g., p53 mutational status). Before discussing the
statistical conclusions, it is instructive to inspect the entire
collection of data to look for obvious patterns or problems.
Although it is relatively easy to visualize a single CGH profile,
it becomes difficult to simultaneously visualize many such pro-
files. We have implemented a simple three-dimensional visual-
ization method for real-time inspection of the data and associ-
ated outcomes. The display is made by using VRML (http:yy
www.vrml.orgySpecificationsyVRML97; ref. 10), using
primitives such as colored lines, spheres, and blocks that can be
rendered within a standard Internet browser. Fig. 2 shows two
snapshots from this display.

By manipulating the display through the handles (rotation,
translation, scaling, and y axis motion of the gray plane), we can
explore relationships between CGH ratio variation and the
patient-related outcomes displayed. The view (Lower) in Fig. 2
is oriented such that low-surviving patients are near the viewer.
We have highlighted a region on chromosome 9 that appears to
have a preponderance of deletions in tumors from low-surviving
patients who died during follow-up. The region, 9q13, is high-
lighted in the ideogram. As with all visualization methods, the
appearance of a correlation must be verified by statistical

Fig. 3. (Upper) Correlation magnitude of copy-number variation with survival (Left). Cumulative distribution of correlation magnitudes under the null
hypothesis (Right). None of the loci are significant at P 5 0.05. (Lower) CGH variation energy across the genome (Left). Cumulative distribution of correlation
magnitudes by using energy cutoffs of 0.0, 3.0, and 6.0 (Right). The P 5 0.05 correlation thresholds are 0.35, 0.31, and 0.18, respectively.

7954 u www.pnas.orgycgiydoiy10.1073ypnas.151241198 Jain et al.



examination. The following section explores the genome-wide
correlations between CGH ratio variation and patient outcome
as well as tumor phenotype.

Correlation with Patient Survival. There are many statistical met-
rics that can be used to measure a correlation between copy
number and outcome or phenotype. In this work, we have used
Kendall’s Tau, although the choice is not critical (see Materials
and Methods for details). With this metric, loss at a particular
locus that is correlated with poor survival will show a positive
correlation, gain correlated with poor survival will show a
negative correlation, etc. Any deviation from a random rela-
tionship (i.e., 0.0) at any locus suggests a possible linkage
between local copy number and the outcome under study.

Fig. 3 (Upper Left) shows the magnitude of correlation of CGH
ratio to patient survival for each of the 1,225 bins in the CGH
profiles, ignoring the effects of data censorship. (Kendall’s Tau
can be modified to take censorship into account, but in this case
it does not change the outcome of the analysis. Kaplan–Meier
survival analysis is used to verify the results of the initial
correlation computations.) There is a wide range of apparent
correlation, but recall from the previous discussion that we
expect a wide apparent distribution of correlations even if there
is no true correlation.

To assess statistical significance, we used permutation analysis, as
described previously. Fig. 3 (Upper Right) shows the cumulative
histogram of the maximal correlation magnitudes for the 52 tumor
profiles. For P 5 0.05, we need to observe a correlation of greater
than 0.35. Unfortunately, none of the loci meet that strict criterion
despite the observations highlighted in Fig. 2. However, what this
analysis has ignored is the magnitude of deviation from normalcy
at the loci as well as the frequency with which a significant deviation
is observed. Small, random variations in CGH ratio are almost
certainly noise, but they contribute to the computation of maximal
correlation in the permutation test by virtue of their sheer numbers.
Intuitively, we would like to focus on CGH ratio variations that are
either large in magnitude, and thus not likely to be noise, or that are
moderate in magnitude but seen so often that they are not likely to
be noise.

For each locus, we compute the sum of the absolute value of
the log-transformed CGH ratio over all tumor profiles. In our
data, the deviations of log ratio observed in normal controls is
distributed normally with mean zero, thus this measure of
variability (termed energy) identifies loci that fit the character-
istics discussed previously—loci with frequent andyor large
magnitude copy-number deviations. More generally, we can

define any measure of variability over experimental cases and
use it as a basis for filtering, as long as we do not make use of
data to which we want to test a correlation. With CGH data,
deviation from normality, instead of sample variance at each
locus, is advantageous. With the latter, a very common aberra-
tion may exhibit relatively low variance but it will have high
energy. In spirit, this approach is taking the prior probability of
an observation into account, independently of the observation’s
correlation with outcome.

Fig. 4. Correlation magnitude of copy-number variation with survival (energy greater than 3.0). (Energy greater than 6.0 is marked with a 1.) The 8q24 locus
meets the P 5 0.05 significance test, and the 9q13 locus meets a single-sided test.

Fig. 5. Kaplan–Meier plot of patient survival for those with normal (dashed
lines) vs. increased (solid lines) copy number at 8q24 (Upper), and normal vs.
deleted copy number at 9q13 (Lower). Both aberrations yield statistically
significant survival differences (P , 0.01).
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Fig. 3 (Lower Left) shows the energy for the 52 tumor profiles
across the genome. Chromosomes 8 and 9 show the maximum,
with chromosomes 1, 17, and 20 showing the next highest
energies. Fig. 3 (Lower Right) shows the results of permutation
analysis, as above, with three energy thresholds: 0.0, 3.0, and 6.0.
The permutation procedure is modified: step IB now restricts the
computation of correlation to those loci whose energy exceeds
the threshold selected. By eliminating a great deal of (presum-
ably) random variation from the permutation analysis through
reduction of the number of bins under consideration, we see
lower correlation magnitude thresholds corresponding to P 5
0.05. Fig. 4 shows the correlation magnitude for loci exceeding
energies 3.0 and 6.0. The locus at 8q24 exceeds the threshold for
energy 3.0 at P 5 0.05. The locus previously identified as 9q13
(from Fig. 2) nearly meets the P 5 0.05 threshold for energy 6.0.
Note that the permutation test, as constructed, is performing a
two-tailed significance test. The 9q13 locus passes a single-sided
test at P 5 0.05.

Fig. 5 shows Kaplan–Meier plots of survival for patients with
amplifications at 8q24 (CGH ratio . 1.3) vs. normal at 8q24, and
for patients with deletions at 9q13 (CGH ratio , 0.7) vs. normal
at 9q13. The P values associated with this survival analysis for
each locus are less than 0.01 (with the 8q24 locus slightly more
significant). The locus at 8q24 contains c-myc, which has been
well established in many cancers as an indicator of poor prog-
nosis, when amplified. The locus at 9q13 has not been associated
previously with poor outcome in breast cancer. In chromosomal
CGH, the centromeric region of chromosome 9 is known to yield
variable results. However, there is no reason to expect that
spuriously observed deletions should be correlated with patient
outcome, nor were correlations observed for other ‘‘problem-
atic’’ regions on chromosomes 1, 16, and 22. Of note, the 8q24

gain is correlated with tumor size and disease stage, but the 9q13
loss is correlated with neither in a statistically significant manner.

The tumor samples were taken from patients from three series
(as detailed in Materials and Methods), with the patients having
undergone heterogeneous treatment regimes. In the previous
analysis, the three groups were pooled, and care must be
exercised in interpreting correlations with survival in this cir-
cumstance. In particular, if there is some correlation between
CGH genotype and series, and if there is a correlation between
survival and series, conclusions involving the linkage of CGH
genotype to survival may be suspect. However, in this set of
tumors, although there are survival differences between the
three series, there is no significant correlation between CGH
genotype and series (assessed by using the permutation-based
methods described previously). Further, in the case of the 8q24
locus, there are sufficient samples of both normal and amplified
DNA from the series with the largest number of tumors to
demonstrate a significant correlation with survival (P 5 0.01
based on Kaplan–Meier analysis). The 9q13 locus is observed
only as significant in the pooled analysis.

Correlation with P53 Status. Fig. 6 shows a hierarchical clustering
of the copy-number data for chromosomes 8 and 9 (both
implicated as predictors of patient survival). Patient survival and
the p53 status of each tumor are shown also. The top block,
subordinate to node 31, is characterized by largely normal CGH
ratios with a group of tumors having deletions in the 9q13 region.
The bottom block, subordinate to node 49, is characterized by
amplifications in 8q (particularly distal) and deletions centered
on the 9q13 locus. The block subordinate to node 45 shows a
mixture of 8q gains with some 9p losses.

The clustering shows an interesting pattern. The top block of

Fig. 6. Hierarchical clustering of tumors based on copy number across chromosomes 8 and 9. The CGH data are presented on a red to green (deletion to
amplification) color scale. Patient survival also is displayed (black is low survival and green is high on a linear scale), and the p53 status of each tumor also is shown
[black is wild type (WT) and green is mutant]. Centromeres are indicated with arrows. Both patient survival and p53 status appear to be related to the clustering.
The clustering was single-linkage agglomerative clustering, using all 1,225 bins of log-transformed CGH data in computing distances.
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patients have relatively long survival and also show a prepon-
derance of wild-type p53. The bottom two blocks show the
reverse. Although we expect that clustering based on copy
number for chromosomes 8 and 9 will show an enrichment of
similar survival in clusters, it is not clear that there should be a
strong enrichment for similar p53 status. This observation may
be explained by a correlation between p53 status and survival,
which has been shown elsewhere (e.g., refs. 11 and 12), but in
these data, the correlation between p53 status and survival is not
statistically significant.

Fig. 7 shows the direct correlation between copy number and p53
mutational status for loci exceeding energy level 3.0. Copy number
at two loci (5q15-5q21 and 8q24) show sufficiently strong correla-
tions to exceed the appropriate thresholds for P 5 0.05 (the 5q locus
exceeds P 5 0.01). We also assessed correlations between copy
number and estrogen and progesterone receptor status for these
tumors, but no correlation was found with copy numbers that
exceeded significance thresholds estimated by permutation
analysis.

The correlation of copy-number gain at 8q24 with poor
survival is not surprising given what is known about the c-myc
gene product and its effects on breast cancer (13, 14). The
correlation between loss at 9q13 and poor survival is more
interesting. This region of chromosome 9 has few identified
genes, and none that suggest a significant tumor-suppressor
function. We propose that this may be an interesting area for
gene discovery, pending prospective validation of the correlative
observation on a larger set of matched tumor specimens.

The correlation of copy-number variations on 5q and 8q with
genetic alterations in p53 status are also potentially interesting.

The probability that the correlations are not real is low, given the
permutation analyses, particularly for the 5q13-21 locus. There
are, of course, many potential explanations of such correlations
that do not involve direct causal effects between the loci and the
p53 pathway. However, in the case of the 8q24 locus, it is known,
for example, that the p53 promoter is transactivated by c-myc
(15). Thus, in a tumor that has amplified c-myc genomically,
there is potentially disproportionate advantage to losing p53 vs.
tumors that have no such amplification.

In the case of the 5q deletion, for the p53 mutant tumors,
18y28 have a significant copy-number loss (based on a cutpoint
estimated from the normalynormal distribution), and for the p53
wild-type tumors, only 1y24 have a significant copy-number loss.
We hypothesize that further characterization of this region may
elucidate a link to the p53 pathway.

The computational methods used in this work are applicable
to many types of data, including gene expression quantitated by
DNA microarrays. Permutation analysis over any data analysis
procedure may be used to estimate statistical significance of an
observation. Permutation-based procedures require no assump-
tions about the underlying distributional characteristics of the
data. By coupling permutation analysis with systematic data
reduction based on prior probabilities of observations, it is
possible to identify significant correlations where the number of
measurements vastly exceeds the number of experimental sam-
ples. In this case, the ratio of measurements to samples was about
20, but we have successfully used the methods on preliminary
data where the ratio exceeds 1,500.
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Fig. 7. Correlation of p53 status with copy number. There is a significant association between mutations in p53 and both 5q15-21 loss and 8q24 gain.
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