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Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to
maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG
factors stand out. Members of this protein family appear to be the only transcription accessory
proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5
associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-
Spt5 complex appears to couple chromatin modification states and RNA processing to
transcription elongation. This review discusses the experimental bases for our current
understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure
of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action.
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1. The Spt4-Spt5 complex, a universally conserved transcription elongation
factor

Transcription elongation by RNA polymerase II (RNAPII) is a dynamic and highly
regulated step in the gene expression cycle. In vitro, RNAPII is capable of transcribing
naked DNA at rates that rival those observed in vivo [1]. However, RNAPII cannot
efficiently transcribe chromatin templates in vitro, suggesting that transcription elongation
accessory factors and/or chromatin remodeling plays an essential role in facilitating
elongation in vivo [1, 2]. Over the past decade, a wealth of work has established that both of
these mechanisms are employed to facilitate transcription elongation (reviewed in [3]).
Furthermore, it is now clear that in addition to being a target for regulation, elongating
RNAPII also serves as an interaction platform for factors that couple elongation to
chromatin remodeling and RNA processing activities.

© 2012 Elsevier B.V. All rights reserved.

Correspondence to: Grant A Hartzog, hartzog@ucsc.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Biochim Biophys Acta. Author manuscript; available in PMC 2014 January 01.

Published in final edited form as:
Biochim Biophys Acta. 2013 January ; 1829(1): 105–115. doi:10.1016/j.bbagrm.2012.08.007.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



The multisubunit RNA polymerases that are responsible for the bulk of transcription across
the three domains of life are conserved at the levels of sequence, structure and mechanism
[4–7]. Genomic analysis suggests that other than RNA polymerase subunits, the only
transcription regulator universally conserved across all domains of life is the Spt5/NusG
family of proteins [8]. Thus, it is likely that the function encoded by these proteins is
ancient, i.e., that it was already present prior to divergence of the eukaryotic, archaeal and
bacterial lineages. Consistent with the idea that they play a central role in transcription,
Spt5/NusG proteins are essential for life and they regulate transcription elongation in all 3
domains of life. Furthermore, in eukaryotes they also coordinate elongation with chromatin
states and pre-mRNA processing.

In the past several years, a confluence of structural, biochemical, genetic and genome-wide
approaches have considerably expanded our understanding of Spt4-Spt5 function. This
review will describe the experimental bases for our current conception of Spt4-Spt5 function
and will also point out outstanding issues regarding the structure and mechanisms of Spt4-
Spt5 in transcription elongation.

2. Discovery of Spt4-Spt5 in yeast and humans
SPT4 and SPT5 were originally discovered in a genetic screen, performed in S. cerevisiae,
for mutations that suppressed the transcriptional defects caused by particular set of
insertions in the promoter of the HIS4 gene [9]. Subsequent analysis showed that spt4 and
spt5 mutations shared this phenotype with several histone mutations, that the spt4 and spt5
mutations affected transcription, and that spt5 mutations could genetically suppress
mutations affecting the Snf/Swi complex [10–12]. Collectively, these observations
suggested that Spt4 and Spt5 might influence chromatin and promoter function.

A pair of studies published in 1998 indicated that Spt4 and Spt5 form a protein complex that
regulates transcription elongation. In the first, selection for genetic suppressors of a cold-
sensitive spt5 allele yielded S. cerevisiae strains with mutations in catalytic subunits of
RNAPII [13]. One of these polymerase mutations was known to decrease the rate of
elongation by RNA polymerase II and several others were predicted to do so, suggesting that
Spt5’s function is related to the rate of elongation. Consistent with this, spt4 and spt5
mutations exhibited growth defects when combined with deletions in elongation factor
TFIIS, which functions to rescue RNAPII from transcription arrest [14], suggesting that spt4
and spt5 mutations increase the probability that RNAPII will undergo transcription arrest.
Treatment of cells with 6-azauracil or mycophenolic acid, inhibitors of nucleotide
biosynthesis that may interfere with elongation rate and processivity of RNA polymerase II
[15, 16], suppressed the growth defects of the cold-sensitive spt5 mutant. The suppression of
the spt5 cold-sensitive defects in RNAPII or inhibitors of elongation was allele-specific;
although other spt4 and spt5 mutants display enhanced growth defects when combined with
deletions of the gene for TFIIS, 6-azauracil and mycophenolic acid enhances rather than
suppresses their growth defects and they are not phenotypically suppressed by elongation
defective mutations in RNAPII ([13]; GAH, unpublished). Mutations that cause cold-
sensitivity have been implicated in defective assembly of protein complexes, defects in
protein activity and in defects in proteins that interact with RNA [17]. Thus, in the spt5 cold
sensitive mutant, a decreased rate of transcription elongation may allow the defective Spt5
protein more time to execute its function or to associate with an interaction partner. Overall,
these observations suggest that Spt4-Spt5 acts during transcription elongation, that it may
prevent pausing or arrest of the elongating RNAPII, and that Spt4-Spt5 function and RNA
polymerase II elongation rate must be coordinated for normal growth.
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The second study examined the mechanism of action of 5,6-dichloro-1-β-D-
ribofuranosylbenzimidazole (DRB), which inhibits transcription elongation, but not
initiation [18]. Wada and colleagues identified a fraction of a HeLa cell nuclear extract
which supported RNAPII transcription in vitro, but that was insensitive to DRB[19]. They
then purified a protein complex which, when added back to their in vitro transcription
reactions, restored DRB sensitivity. This complex, DRB Sensitivity Inducing Factor (DSIF),
was composed of the human homologs of Spt4 and Spt5. Interestingly, although DSIF was
purified as an inhibitor of elongation, it was also found to stimulate elongation over the body
of a gene in vitro, although only when nucleotides were present at limiting concentrations
[19, 20]. As will be discussed in more detail below, Spt4-Spt5’s inhibitory activity has only
been demonstrated in a few organisms. Thus, the term DSIF will be used here only in
reference to systems in which this negative activity is known to occur.

3. Organization of Spt4 and Spt5 proteins
Spt5 is a large, highly conserved, multi-domain protein consisting of an N-terminal acidic
domain, a NusG N-terminal (NGN) domain, multiple Kyprides, Ouzounis, Woese (KOW)
domains and a set of short repeats at its C-terminus (CTR) (Figure 1A;[21]). Some metazoan
and plant Spt5 proteins include an additional stretch of ~100 amino-acids at their extreme C-
terminus which may include a poorly conserved KOW domain. Although the NGN domain
appears to be unique, KOW domains are a subset of a larger family of domains called Tudor
(Figure 1B), which are thought to mediate protein-protein and protein-nucleic acid
recognitions [22–24]. Sequences of the repeats within the CTR vary across species, but
typically contain residues that can be phosphorylated (tyrosine, serine, threonine). Archaeal
Spt5 proteins and their bacterial homologs, NusG proteins, are much smaller than eukaryotic
Spt5, consisting of an NGN and single KOW domain. SPT5/NusG genes appear to be
essential for life in bacteria, yeasts, Drosophila, Zebra fish and mammalian cells [11, 25–
29].

In contrast to Spt5, Spt4 is a small zinc finger protein [10]. Spt4 proteins are conserved
across the eukaryotic and archaeal lineages, but are not found in bacteria [21]. Mutation of
any one of the 4 cysteines of the zinc finger of Spt4 causes severe phenotypes similar to
those of null alleles [10, 30, 31]. Although spt4 null mutants of S. cerevisiae are viable [10],
SPT4 may be essential in Drosophila [32]. As discussed in a section below, crystallographic
studies have shown that Spt4 interacts intimately with the NGN domain of Spt5 in forming
the Spt4-Spt5 heterodimeric complex. Consistent with its sequence conservation [33],
human SPT4 can complement spt4 null mutation in yeast, attesting to functional
conservation and probably structural conservation as well [34].

4. Spt4-Spt5 plays pervasive role in transcription elongation
The initial indications that Spt4 and Spt5 form a complex that regulates elongation are now
supported by an abundance of other data. The overwhelming majority of Spt4 and Spt5
proteins are found in the Spt4-Spt5 complex [35], and Spt4-Spt5 tightly associates with
RNAPII in a transcription-dependent manner [36]. In vitro transcription experiments [37,
38] show that this association begins just downstream of the transcription start site. Multi-
gene and genome-wide ChIP studies also show that association of Spt4-Spt5 with genes
begins downstream of transcription start sites, that it persists until around the site of
termination and that it largely mirrors the distribution of RNAPII [39–44]. Consistent with
this, staining of Drosophila polytene chromosomes shows that Spt5 extensively co-localizes
with the elongating, Ser2-phosphorylated form of RNAPII [45, 46]. Furthermore, using a
ChIP assay to follow the migration of RNAPII elongation complexes across a long (~8kb)
gene in yeast [16], several groups have shown that spt4 and spt5 mutations affect the
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translocation rate and processivity of the elongating RNAPII in vivo [16, 47, 48]. An in vitro
transcription assay with spt4-null yeast whole cell extracts also found a positive role for the
yeast factor in RNAPII transcription [49]. More recently, Spt4-Spt5 has been shown to
required for normal transcription of a variety of long homopolymeric sequences including
the expanded poly-CAG repeats which are found in disease associated variants of the
Huntington’s gene and several other neurological disease genes [50].

Although genome-wide studies suggest that Spt4-Spt5 likely acts at all genes, in some cases
it may also act in a gene-specific manner. DSIF appears to play a role in TAT-mediated
regulation of transcription elongation across the HIV genome [37, 38, 51]. In addition, DSIF
represses transcription of the NF-κB-responsive A20 gene in an activator and core
promoter-dependent fashion [52, 53].

Consistent with the idea that Spt5’s function arose early in evolution, Spt4-Spt5 also
associates with and appears to regulate transcription elongation by RNA polymerase I [54–
56], suggesting that Spt4-Spt5 existed prior to divergence of the nuclear RNA polymerases
of eukaryotes. In contrast to RNAPII and RNAPI, there is no evidence that Spt4-Spt5
associates with or regulates RNA polymerase III. In addition, the bacterial homolog of Spt5,
NusG, also regulates transcription elongation [57–59]. Like Spt5, NusG associates with
elongating polymerases in vitro [60] and ChIP analysis suggest that NusG associates with
the majority of transcription units in vivo, joining polymerase downstream of the initiation
site [61]. Finally, in vitro transcription assays show that the archaeal Spt4-Spt5 complex also
associates with RNA polymerase and can stimulate elongation of a 10 subunit (rather than
the normal 12) form of RNA polymerase that is less processive than the complete complex
under low-nucleotide conditions [62], demonstrating that Spt5 functions are universally
conserved.

5. What mechanisms underlie Spt4-Spt5’s function?
As is the case for several other elongation factors (reviewed in [63]), including NusG and
RfaH [64, 65], Spt4-Spt5 appears to promote elongation by reducing the frequency of
transcription pausing or arrest [37, 66]. This may explain the multiple observations that
Spt4-Spt5 only promotes transcription elongation in vitro when nucleotides are limiting, a
condition that increases the frequency of pausing and arrest. These in vitro results are
consistent with the genetic interactions of mutations affecting both Spt4-Spt5 and TFIIS
described above. Although nucleotide concentrations are not generally limiting in vivo,
Spt4-Spt5 may protect elongation complexes from other triggers of pausing and arrest, such
as nucleosomes (see below). Spt4-Spt5 may also facilitate elongation indirectly by
interacting with the nascent transcript and by assisting cotranscriptional RNA processing
events including 5′ capping (discussed below), which has been suggested to have a positive
role in early elongation [67].

Further work on DSIF has yielded new insights into the mechanism of its inhibitory activity
in human cells. First, a second multisubunit complex, Negative Elongation Factor (NELF),
is also required for DSIF activity [68]. Curiously, although Spt4-Spt5 is found in all
eukaryotes, NELF is not found in plant, yeast or nematode genomes [69]. Whether or not
Spt4-Spt5 inhibits early elongation in organisms that lack NELF is an open question.

A second set of insights into Spt4-Spt5 function derives from the observation that DRB
inhibits P-TEFb, the protein kinase that phosphorylates the serine-2 position of the RNAPII
CTD repeats [70]. Consistent with the idea that DRB’s effects on transcription are mediated
through its inhibition of P-TEFb, flavopiridol, an inhibitor of P-TEFb unrelated to DRB,
also inhibits CTD phosphorylation and prevents RNAPII from leaving promoter proximal
locations and entering into productive elongation [71, 72]. Furthermore, In addition to
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modifying the CTD, P-TEFb and its yeast homolog, Bur1, also phosphorylate a conserved
serine (S. cerevisiae; [73]) or threonine (S. Pombe and humans; [29, 74, 75]) in the C-
terminal repeats of Spt5. Deletion analysis of the Spt5 CTR suggests that it is necessary for
Spt5’s ability to both repress and activate transcription [75, 76]. Phosphorylation of Spt5’s
CTR prevents its inhibitory function and stimulates its positive function in elongation [29,
77].

The biochemical mechanisms that underlie the function of Spt5’s CTR remain to be
determined. Genetic interactions suggest a functional overlap between Spt4-Spt5 and the
RNAPII CTD [78, 79], DSIF can bind RNAPII independently of the RNAPII CTD [80]. The
phosphorylation states of the RNAPII CTD and that of the Spt5 CTR by P-TEFb do not
affect RNAPII-DSIF binding [80, 81]. While CTR phosphorylation is critical for DSIF to
exert a positive role on elongation, it is not involved in the repressive activity of DSIF/
NELF as assayed in vitro [29]. Furthermore, in contrast to bur1 and spt5 null mutations,
deletion of the Spt5 CTR is not a lethal mutation in budding and fission yeast [73, 78, 82,
83], and does not prevent association of human Spt5 with RNAPII [75, 76]. Thus, neither
the phosphorylation state of Spt5’s CTR nor that of the RNAPII CTD controls Spt4-Spt5/
RNAPII association.

Our understanding of transcription elongation and its role in transcriptional regulation has
recently been transformed by the discovery that, in at least some eukaryotes, including
Drosophila, mice and humans, RNAPII is frequently found just downstream from the
transcription start site of genes in a transcriptionally engaged, but paused state (reviewed in
[84]). Significantly, this 5′ transcriptional pausing depends upon DSIF and NELF, and
release from the pause appears to be mediated by P-TEFb in a process that, in at least some
cases, involves transcription activators such as c-Myc [43, 85, 86]. In line with such a pause
release mechanism, recent studies have identified associations of P-TEFb and other
elongation factors with components of the RNAPII coactivator complex, Mediator, and
revealed functional involvement of Mediator in the transition of RNAPII from pre-initiation
complex (PIC) into the elongation phase of transcription [87, 88]. This model offers a basis
for understanding a functional interplay between DSIF and Mediator observed in an earlier
biochemical analysis [89]. Yeast genetic data also indicate a role of Mediator in regulating
the post-recruitment RNAPII activity on inducible yeast genes such as CYC1 and HSP82
[90, 91], although it remains to be characterized whether the mechanisms that withhold
RNAPII at these yeast promoters also involves Spt5, the yeast DSIF protein.

Given its inherent structural adaptability [92, 93], the Mediator complex seems well suited
for relaying induction-specific inputs to regulate the early elongation activities of RNAPII,
subsequent to the formation of PIC. As has been shown for NF-κB target genes, induction-
specific regulation of RNAPII elongation can be determined by enhancer sequences in
conjunction with the type of core promoter, TATA-less (e.g. A20 gene) vs. TATA-
containing (e.g. IL-8) [94]. In this case, DSIF inhibits A20 gene elongation in the uninduced
state with the aid of USF1 binding to an upstream DNA sequence [53].

The relationship between Spt5’s positive and negative functions is not clear. Only a few
mutations have been reported to selectively remove either the positive or negative functions
of Spt5, and these have yet to yield insights into the mechanism(s) of Spt4-Spt5 function
[20,29]. Paused polymerases have not been clearly demonstrated in either Saccharomyces
cerevisiae or C. elegans, which lack NELF. However, polymerases do appear to accumulate
over promoters in these organisms under conditions of nutrient limitation [95, 96],
suggesting the potential for an alternative mechanism for 5′ arrest in organisms that lack
NELF. Furthermore, S. cerevisiae clearly possesses promoters that constitutively recruit
RNAPII, TBP and other basal factors, but are regulated at a step after the assembly of these
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basal transcription components [97–99]. In a high-resolution genome-wide mapping, yeast
genes with promoter-proximally enriched RNAPII were identified as one of the three major
classes of genes that each display a different RNAPII occupancy profile: enriched at
promoters, immediately downstream of promoters, or biased toward 3′ ends [100]. These
data highlight the importance to understand the detailed mechanism in yeast that underlies
the RNAPII withholding at and release from promoter proximal regions.

6. Spt4-Spt5 coordinates transcription elongation with chromatin states
Several sets of observations suggest that Spt4-Spt5 may coordinate chromatin remodeling
and histone modification with transcription elongation. First, in addition to the RNAPII
mutations mentioned above, genetic suppressors of the cold-sensitive spt5 allele in S.
cerevisiae reveal an extensive set of interactions between Spt4-Spt5 and chromatin. These
chromatin suppressors of spt5 include: mutations in the ATP-dependent chromatin
remodeler Chd1 [101]; the Paf1 complex [102] which associates with elongating RNAPII
and coordinates a variety of histone modifications [103]; substitutions of histone H3 lysines
4 and 36 as well as mutations that inactivate their cognate methyltransferases Set1 and Set2
[48]; and subunits of the Rpd3S histone deacetylase complex [48], whose function depends
upon H3K36 methylation [44]. Furthermore, mutations that inactivate the SAGA histone
acetyltransferase complex also strongly enhance phenotypes of spt4 and spt5 mutations [48].

Interestingly, the chromatin suppressors of the spt5 cold-sensitive mutation also alleviate the
synthetic growth defects observed in spt4 dst1 and spt5 dst1 (DST1 encodes TFIIS) double
mutants [48]. Nucleosomes are known to provoke transcription arrest by elongating RNAPII
[104]. Thus, one intriguing interpretation of this result is that Spt4-Spt5 protects elongating
RNAPII from transcription arrest events provoked by nucleosomes, and that the chromatin
suppressors of spt5 identify perturbations of chromatin that decrease the frequency of
nucleosome-provoked transcription arrest. These data suggest that in addition to decreasing
the frequency of pausing by RNAPII, Spt4-Spt5 likely also functions to help elongating
RNAPII to overcome nucleosomal barriers to elongation. This model suggests that there are
two mechanisms for suppression of the spt5 cold sensitive mutation. In the first, a slow
polymerase gives the partially defective Spt5 protein additional time to act before RNAPII
collides with a nucleosome, provoking a pause or arrest. In the second model, defective
chromatin modification or remodeling lowers the nucleosomal barrier to elongation so that
the probability of arrest and the requirement for Spt4-Spt5 function is decreased. Deeper
examination of these ideas will likely require in vitro analysis of Spt4-Spt5 on chromatin
templates.

A second set of observations suggests a mechanism by which Spt4-Spt5 may coordinate
transcription with chromatin states. In S. cerevisiae, the P-TEFb homolog, Bur1 [105, 106],
Spt4 [107] and the Spt5 CTR [73, 83] are required for recruitment of the Paf1 complex to
elongating RNAPII, and for methylation of histone H3 lysine 4, one of the histone
modifications regulated by the Paf1 complex [103]. Mutations of the Spt5 CTR that
substitute alanines for the serine targets of Bur1 also abolish Paf1 recruitment [73]. In
addition, Bur1, Spt4, and the Spt5 CTR also regulate association of the Rpd3S complex with
chromatin [44]. Thus, like the RNAPII CTD, Spt5’s CTR appears to act as a
phosphorylation-state dependent regulator of recruitment of transcription-associated
chromatin modifying activities. It is appealing to speculate that the dependencies of Rpd3S
and Paf1 complex chromatin-association on Spt4-Spt5 reflect direct and phospho-regulated
binding of these complexes to the Spt5 CTR. However, forms of Spt5 lacking its CTR or
that have been rendered phosphorylation-defective by threonine to alanine substitutions in
the CTR can be co-precipitated with the Paf1 complex [77]. Thus the CTR may act
indirectly to control factor recruitment.
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7. Spt4-Spt5 and pre-mRNA processing
Spt4-Spt5 has also been implicated in a second set of co-transcriptional events, RNA
processing. For example, the RNA capping enzymes of budding and fission yeast bind to
Spt5 [25, 108]. This interaction, which depends upon Spt5’s CTR, may supply an
overlapping function in addition to that mediated by RNAPII CTD-phosphorylation and the
foot domain of RNAPII that assists the recruitment of capping enzyme [78, 109].
Furthermore, in S. cerevisiae, spt4 and spt5 mutations display synthetic growth defects with
capping enzyme mutations, cause splicing defects, affect poly-adenylation site choice, and
suppress certain mRNA export-defective mutations [108, 110–114]. Spt4-Spt5 interacts with
the RNA export factor She2 and attracts She2 to the elongating RNAPII, thereby facilitating
the recognition by She2 of the specific bud-localization signal in nascent RNA [115].
Interestingly, spt4 and spt5 mutations also alter rRNA processing, consistent with Spt4-
Spt5’s association with RNA polymerase I [54, 56, 116].

These diverse roles for Spt4-Spt5 in RNA processing in yeast likely reflect similar functions
in metazoans. In Drosophila, Spt5 interacts with the exosome, suggesting a potential role for
Spt4-Spt5 in RNA degradation [117]. A recent RNA-seq analysis showed that knockdown
of Spt4 also changes splicing patterns in mammalian cells [50]. Finally, human Spt5
interacts with the capping enzyme and stimulates capping activity in vitro [118].

An intriguing set of observations suggests that Spt4-Spt5 may influence RNA processing via
direct interactions with pre-mRNAs. First, purified Spt4-Spt5 complexes from yeast bind
RNA in a gel mobility assay [55, 119]. Second, using a native gel assay to examine
transcription elongation complexes in vitro, Price and colleagues found that DSIF is
recruited more efficiently to elongation complexes with long RNA transcripts [119].
Subsequently, Gilmour and colleagues used a similar analytical strategy to show that DSIF
does not associate with elongation complexes whose nascent RNA transcripts are 18-
nucleotide or shorter [120]. They also showed that Spt5 in these complexes could be
crosslinked to nascent transcripts that were 22-nucleotide or longer, but not those which
were 18 nucleotides long. Although not in agreement with earlier data suggesting that Spt4-
Spt5/RNA polymerase interactions are RNAase resistant [108, 121], these data suggest that
interactions between Spt5 and RNA are an important determinant of Spt4-Spt5’s interactions
with RNAPII elongation complex. One intriguing possibility is that, by binding to nascent
transcripts in elongation complexes, Spt4-Spt5 restricts the ability of RNAPII to backtrack
and arrest, which necessarily requires that the nascent RNA be fed back into the elongation
complex as it moves backwards on the template. This mechanism for an anti-pausing and -
arrest activity has previously been suggested for U2AF65, which binds RNA, associates
with elongating RNAPII and stimulates elongation in vitro under conditions of limiting
nucleotides [122]. A more definitive test of this model awaits identification of RNA
binding-defective forms of Spt5.

How might Spt4-Spt5 influence pre-mRNA processing? One possibility is that Spt4-Spt5
acts indirectly, influencing processing factor recruitment via its effects on the processivity
and rate of RNAPII elongation. Consistent with this possibility, studies of splicing in yeast
and metazoan systems show that elongation rate influences alternative splicing patterns
(reviewed in [123]), and elongation-defective yeast strains, including spt4 and spt5 mutants,
show upstream shifts in poly(A) site selection [112–114]. A second possibility is that Spt5’s
CTR participates directly in recruiting processing factors to elongation complexes. This
seems to be the case in capping. Moreover, ChIP analysis indicates a contributing role for
the Spt5 CTR in RNA cleavage factor I in yeast [124]. Whether or not recruitment of other
pre-mRNA processing factors depends upon Spt5’s CTR remains to be determined.
However, the observation that bur1 mutations interfere with the splicing of a significant
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subset of yeast genes suggests that this question merits experimental analysis [111]. Finally,
observations of the Spt5-RNA interaction suggest that Spt4-Spt5 may influence pre-mRNA
processing reactions by binding to nascent transcripts soon after they emerge from the
elongating RNAPII and possibly serving as a ‘gate keeper’ to regulate access of other
processing factors to the nascent transcript.

8. Other functions for Spt4-Spt5?
A recent series of papers provide additional support for and insights into roles of Spt5 in
regulating RNA processing. In plants, siRNA-mediated DNA methylation and gene
silencing depends upon atypical RNA polymerases that are related to, but distinct from
RNAPII [125]. One of these, RNA Polymerase V (RNAPV), is required for some, but
perhaps not all instances of Ago4-mediated gene silencing [125, 126]. Interestingly,
RNAPV associates with an Spt5 homolog, KTF1, also known as Spt5 Like (SPT5L) [127].
Like canonical Spt5, Spt5L is a large protein with a highly charged N-terminus followed by
an NGN domain, several KOW domains and C-terminal repeats, in this case containing WG/
GW dipeptides [128, 129]. These repeats mediate Spt5L’s association with Ago4, and they
resemble WG/GW repeats found in other Ago4 binding proteins [128, 129]. ChIP assays
demonstrate that Spt5L associates with chromatin, and Spt5L’s stability depends upon
RNAPV, suggesting that it is recruited to chromatin by and functions in the context of its
association with RNAPV [126]. Finally, like canonical Spt5, Spt5L binds RNA in vitro and
in vivo [129].

Spt4-Spt5 has also been implicated in transcription-coupled DNA repair [82, 130, 131], a
function it may execute as part of RNAPII elongation complexes. Immunoglobulin class-
switch recombination and somatic hypermutation also requires mammalian Spt4-Spt5 [42,
132]. Mechanistically, Spt4-Spt5 facilitates the targeting of this pathway by specifically
interacting with activation-induced cytidine deaminase (AID), a key enzyme that initiates
these processes, and recruits AID to transcription sites where RNAPII dwells (or stalls).
Since AID does not directly interact with RNAPII, Spt4-Spt5 most likely functions as an
adaptor between AID and the RNAPII apparatus [42]. In addition, spt4 mutations affect
chromosome segregation [30], and Spt4-Spt5 is required to restrict spread of the histone H3
variant Cse4 away from centromeres [31]. Interestingly, ChIP studies show that Spt4-Spt5
can be found in the vicinity of centromeres, and that this localization may not depend upon
RNAPII [31].

As with other functions of Spt4-Spt5, it is likely that its ability to facilitate co-transcriptional
events is an ancient function; in bacteria, NusG is required for Rho-dependent termination
[133], and may couple transcription and translation via an interaction of its KOW domain
and ribosomal protein S10 [134].

9. Structure of the Spt4-Spt5 complex
Several groups have recently made progress on determining the structure of the Spt4-Spt5
complex. Guo et al. solved the x-ray crystal structure of an Spt4-Spt5 NGN domain fusion
protein [135]. This fusion protein formed domain-swapped dimers in which the Spt4 domain
from one monomeric unit of the dimer bound to the NGN domain found in the other
monomer. The central feature of the Spt4-Spt5 interface is a large beta-sheet formed by
alignment of 4 anti-parallel strands from each of Spt4 and Spt5, creating a large hydrophobic
surface [135]. Surrounding this surface are alpha helices, which contribute charged and
polar interactions that appear to hold Spt4 and Spt5 in register. Mutations targeting predicted
contacts between Spt4 and Spt5 disrupted Spt4-Spt5 interactions both in vitro and in vivo,
suggesting that the structure provided an accurate model of in vivo interactions of Spt4 and
Spt5.
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Subsequent structural analysis of the human [136, 137] and several archaeal [62, 138–140]
Spt4-Spt5 complexes support the model of Guo et al. The structures of these different Spt4-
Spt5 complexes superimpose on top of one another with very small deviations (Figure 1C–
D). Importantly, one of the archaeal Spt4-Spt5 structures includes the single KOW domain
found in archaeal members of the Spt5 protein family [138], and an NMR structure of the
fifth KOW domain of human Spt5 displays a similar structure (PDB ID: 2E70).

10. Structural analysis of Spt4-Spt5/RNA polymerase interactions
It is likely that all of the diverse functions of Spt4-Spt5 are mediated in the context of its
physical interactions with RNAPII. Protein mapping analysis in the human system showed
that RNAPII binding involves a middle region of Spt5 encompassing the multiple KOW
domains, while Spt4 binding involves the NGN domain of Spt5 [75, 76]. The RNAPII–
interacting domains of Spt4-Spt5 were further mapped in archaea by Werner and
collaborators. They found that in addition to binding Spt4, the Spt5 NGN domain also
interacts with RNA polymerase, and is required for the transcription stimulation function of
Spt4-Spt5 in vitro [62]. Furthermore, they observed that the affinity of the Spt5 NGN alone
for polymerase was not as strong as that of the intact Spt4-Spt5 complex and that the NGN’s
affinity for RNA polymerase can be enhanced by including either Spt4 or recombinant Spt5
proteins with both the NGN and KOW domains in the binding reactions [62]. Thus,
although direct Spt4/polymerase interactions have not been observed, Spt4 may influence
Spt5/polymerase interactions.

Spt4 may also regulate the stability of Spt5. Spt5 proteins levels drop to about 1/3 of normal
in yeast cells that lack Spt4 [82] and Spt4 enhances the thermal stability of archaeal Spt5
[62]. These data may explain the temperature sensitivity of some yeast spt4 mutants [30].
Collectively, these data indicate a distributed, multi-domain interaction between Spt5 and
the polymerase that is modulated by Spt4. The complexity of the interface drives home the
point that we do not yet fully understand the regulation and functional importance of Spt4-
Spt5/polymerase interactions.

Further structural and mutagenesis data from the bacterial and archaeal systems have
identified the Clamp domain of RNA polymerase as the binding target of the NusG/Spt5
proteins [61, 62, 141]. More precisely, this interface is formed between a concave patch of
hydrophobic residues on the NGN domain of NusG/Spt5 and the coiled-coil (CC) motif of
the Clamp domain of the largest subunit of RNA polymerases. These structural features are
also found in eukaryotic Spt5 and RNAPII, suggesting a universally conserved interaction
surface.

A detailed description of the mechanisms by which Spt4-Spt5 executes its diverse functions
will require a clear understanding of the structure of the entire Spt4-Spt5/RNAPII complex.
However, Spt5’s multi-domain structure and the likely unstructured nature of its N- and C-
termini present obstacles to obtaining crystals of this large complex. Still, clever alternatives
to obtaining tertiary information have been taken successfully with the archaeal homologs.
Recent reviews describe much of the structural and biochemical findings in both the
archaeal and bacterial systems with a reasonable extrapolation to the eukaryotic complex
[142, 143]. As such, we will provide a brief summary of the main features in the current
model for tertiary organization of the Spt4-Spt55 complex with RNAPII.

Initial clues to the organization of Spt5/NusG interactions with RNA polymerase came from
extensive biochemical and molecular genetic analyses of RfaH, an unusual bacterial member
of the NusG family. Unlike NusG, which operates at all genes, RfaH is recruited to
particular genes by binding to a specific DNA sequence in the non-transcribed strand of
target genes [144]. Artsimovitch and colleagues identified a potential RfaH/RNA

Hartzog and Fu Page 9

Biochim Biophys Acta. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



polymerase interaction surface in a hydrophobic pocket of the NGN domain of RfaH and in
the conserved CC motif of the RNA polymerase clamp domain [141]. Mutations in these
surfaces appear to disrupt RfaH/RNA polymerase interactions [141, 145, 146]. These data
led to a model in which NusG spans the central cleft of elongating RNA polymerase, sealing
nucleic acids in the elongation complex and thereby promoting processivity. Consistent with
this model, RfaH makes a second, possibly dynamic, contact with RNA polymerase at the
gate loop (GL) element of the β subunit on the other side of the central cleft, so that it
completely seals the central cleft [147]. Interestingly, although the RfaH/GL interaction does
not appear to make a significant contribution to the strength of the RfaH/RNA polymerase
interaction, it is essential for RfaH’s (and NusG’s) ability to prevent pausing [145].
Importantly, the GL, CC domain of the Clamp and the hydrophobic pocket of Spt5 are all
conserved features in archaea and eukaryotes.

This view of the association of NusG with RNA polymerase has subsequently been
supported by structural studies of Spt5/RNA polymerase interactions in archaea. To
circumvent the difficulty of crystallizing a complete Spt5/polymerase complex, Cramer’s
group crystallized a Pyrococcus furiosus archaeal complex formed between Spt4-Spt5 and
elements of the Clamp domain of the cognate RNA polymerase [139]. Their structure,
determined to 3.3 Å resolution, verified the predicted Spt5-Clamp interface described above
and, when superimposed over multiple aligned sequences of NGN of various organisms,
verified the conservation of this interface. Based on this conservation and the available 3-D
structure of another archaeal (Sulfolobus sulfataricus) RNA polymerase, the researchers
formulated a 3-D model of the archaeal Spt5/polymerase complex. Applying the same
modeling procedure, they also modeled the yeast Spt4-Spt5/RNAPII (Figure. 2A) and
bacterial NusG/polymerase (Figure. 2B) complexes.

In these semi-crystallographic models, the NGN/Spt4 complex (Figure 2A, red) binds to the
Clamp (blue) near the tip of the CC motif (cyan) of Clamp, and sits over the main nucleic
acid cleft in the polymerase, enclosing the DNA/RNA hybrid in RNAPII (Figure 2A). As
with the bacterial complex [141, 147] these models place the NGN domain near the non-
coding DNA strand in transcription bubble. This raises the possibility that Spt5/NusG may
promote polymerase processivity by helping maintain the downstream edge of the
transcription bubble by withholding the non-coding DNA strand through non sequence-
specific interactions. Consistent with this idea, RfaH can be crosslinked to the non-
transcribed strand in elongation complexes [144]. Although the X-ray data did not provide
information on the location of the sole KOW domain in archaeal Spt5, a consideration of the
linker length from NGN to KOW would argue against a placement of the KOW anywhere
near the RNA exit pore on RNAPII [139].

The crystallographic data described above are in general agreement with a low-resolution
(13 Å) structure determined by cryo-EM single particle analysis of a complete Spt4/5-
polymerase complex also from Pyrococcus furiosus [138]. However, the EM data indicated
a shift of the NGN/Spt4 structure (Figure 2A, magenta) toward the opposite side of the
nucleic acid cleft, making contacts with domains that are correspondingly named Protrusion
(light green) and Lobe (dark green) in the RNAPII structure. While the KOW was not
observed in the crystal structure, the EM map revealed a region of density (Figure 2A, cross-
hashed) that could be docked with a KOW structure. This places the archaeal KOW near the
upstream end of the transcription bubble, but its weak connection to the NGN/Spt4 density
dampens the confidence of its identification.

Could the difference between the crystallographic and EM results reflect different aspects of
the same complex? A closer examination of the EM structure indicates that the site of NGN
contact on the Lobe domain is located at the tip of Lobe, which shares similarity to the
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flexible GL element in the bacterial RNA polymerase. Two possible mechanisms consistent
with the current data of GL activity can be envisaged: (i) the flexible GL structure may serve
as a dynamic gate to ‘seal’ off the gap left at the top of the nucleic acid cleft after the
binding of an NGN domain-containing elongation factor; and/or (ii) the edge of the bound
NGN domain may contact the GL in a dynamic fashion to close the remaining space and/or
alter the intrinsic activity of RNA polymerase [147]. Either of these scenarios will yield a
population-averaged structure similar to the EM image of Klein et al. in which the protein
mass will appear to be continuous. In this sense, the GL, Clamp and NGN domains may
associate in multiple modes, resulting in visualization of complexes with ambiguous
structures due to superposition of multiple related but subtly distinct structures, a result
obtained often in structural analysis of transcription and signaling networks [109, 148, 149].

11. Mechanistic Insights
The current structural model for Spt4-Spt5 bound to RNA polymerase offers a simple
mechanism to explain their functions in transcription elongation. The binding of Spt4-Spt5
to the RNAPII elongation complexes will completely encircle the DNA template and RNA/
DNA hybrid. The NGN domain may also affect the dynamics of the Clamp. The Clamp is a
major structural element that RNAPII uses to engage DNA and to hold the 8–9 base pair
DNA/RNA hybrid before the strands separate [150]. Five loop structures (named Switch 1–
5) are located near the base of this mobile domain and are seen in the ternary complex
making intimate interactions with nucleic acids adjacent to the NTP addition site [150, 151].
Mutations of Clamp residues conceivably impact transcription functions such as the
processivity during early stages of elongation, as has been demonstrated for a Switch-2
region mutant [152]. Either by directly restraining the DNA and RNA in the cleft, or
allosterically affecting the Switch conformations, or combined, these mechanisms may
altogether prevent disassembly of elongation complexes and thus ensure processivity.

Spt4-Spt5 appears to interact exclusively with structural elements on the surface of RNAPII
and not directly probe the active site of the polymerase. The best current data indicate the
Spt4-Spt5’s closest point of contact with the substrate is its interactions with the non-coding
DNA strand, and this is located over the top of the cleft, away from the catalytic center. If
Spt4-Spt5 exerts a conformational influence on RNAPII active site, it is most likely
achieved via allosteric mechanisms. This stands in contrast to the direct mechanism used by
elongation factor TFIIS (or SII). Extensive biochemical and structural analyses show that
TFIIS binds RNAPII and inserts its Zn-ribbon domain (domain III) into the secondary
channel (also called Funnel) of the polymerase, and, in an almost acrobatic fashion, projects
its β hairpin of Zn-ribbon domain close to the polymerase catalytic site [153]. The net result
of this binding is a precise placement of three charged groups (R287, D290 and E291) at the
tip of the hairpin right next to the polymerase catalytic center where phosphodiester bond
formation (and its reversal hydrolysis) occurs. This structural model satisfactorily explains
the TFIIS function in stimulating the intrinsic RNA cleavage activity and proofreading
function of RNAPII [154, 155]. Chiefly, the charged loop-tip residues of TFIIS augment the
RNAPII catalytic center in its capacity to stabilize the second Mg ion and also a water
molecule that attacks the scissile phosphodiester bond [156, 157]. Additionally, the inserted
TFIIS hairpin appears to help maintain the trigger-loop of the largest subunit in a
catalytically functional conformation.

Interestingly, like Spt4-Spt5, the general transcription factor TFIIF also appears to use
indirect mechanisms to regulate polymerase elongation. (Whether its other functions during
PIC assembly involve direct interactions with partner factors such as TFIIB is currently
unclear.) Stimulation of elongation has been well demonstrated for metazoan TFIIF [158–
160], although not for its fungal counterpart. Biochemical mapping using protein cleavage
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and crosslinking-coupled mass spectrometry has demarcated TFIIF’s binding sites on
RNAPII: the two large subunits of yeast TFIIF interact with the Rpb2 Lobe and Protrusion
domains that form one side of the DNA/RNA cleft [161, 162]. The binding area seems to
extend toward the Rpb1 Jaw as revealed in the latest structural visualization using EM [163].
All the binding sites that have been elucidated to date are distributed on the surfaces that are
immediately outside of the DNA/RNA cleft; current data do not indicate a close approach of
any TFIIF element into the cleft or catalytic center. This binding strategy likely explains the
functional competition of TFIIF with the newly identified negative regulator Gdown1 of
mammals [163–165]. Since mammalian TFIIF also functionally competes with DSIF [166],
the question arises: does TFIIF also compete with Spt4-Spt5 for a common binding site(s)?
Observing functional interactions between a TFIIF mutation and a Switch-2 mutation,
Ponticelli and coworkers proposed an allosteric mechanism in which TFIIF can indirectly
affect the conformation around the polymerase cleft and hence the stability of early
elongation complexes having short transcripts (e.g. 5-mer) [167]. It remains to be tested
whether Spt4-Spt5 can ‘remotely’ modulate RNAPII conformation at interiors of the cleft
(e.g. the Switches) or even the active site.

These structural models suggest that Spt4-Spt5/NusG proteins bind polymerase at sites that
are also bound by transcription initiation factors. In bacteria, sigma factor binds to the CC
domain in the Clamp [168, 169], and RfaH functionally competes with sigma factor [147,
170]. In eukaryotes, initiation factor TFIIE binds to the Clamp of RNAPII [162] at a site that
appears to overlap the NGN binding site. This conflict suggests that TFIIE and Spt4-Spt5
may compete for access to the Clamp. Werner and coworkers used single-molecule FRET to
directly address this problem in archaea [171]. Their results confirm (i) an overlap (e.g. the
shared CC motif) between the RNA polymerase binding sites of the archaeal TFIIE and
Spt4-Spt5, and (ii) the predicted binding competition between these factors [171]. More
interestingly, their transcription activity assay reveals that the relative abilities of Spt4-Spt5
and TFE to compete for polymerase depends upon the functional state of the polymerase
complex: TFE out-competes the inhibitory effect of Spt4-Spt5 on pre-initiation complex
assembly; whereas Spt4-Spt5 displaces TFE from the elongation complex, and hence may
exert a positive effect on transcription by facilitating the factor handover process during the
transition from initiation to elongation [41, 172].

Factor competition during the initiation-to-elongation transition may also be coordinated
with progression of the early elongation complex, particularly in terms of accumulated
length of the transcript. Cheng and Price have shown that DSIF enjoys an increased affinity
toward complexes with longer RNAs (>35 nucleotides) [119], consistent with the RNA gel-
shift data mentioned earlier, RNA-Spt5 crosslinking within an elongation complex [120],
and the proposal that Spt4-Spt5 directly interacts with the nascent transcript emerging from
the RNA exit pore. If so, one may speculate that Spt4-Spt5 bridges the Rpb1 Clamp and the
5′ RNA to form a structural relay that could coordinate the status of 5′ end of the transcript
with events occurring inside the central cleft or even at the 3′ end of the transcript. It might
also be possible that such bridging could serve as a ratchet to help prevent the 5′ RNA from
retrograde movement and hence reduce pausing. A similar binding organization on RNAPII
has been demonstrated for the RNA splicing factor U2AF65 as mentioned earlier.
Progressive change of RNAPII conformation along the transcription coordinate (from
initiation to promoter clearance to elongation) might be another parameter that influences
Spt4-Spt5 interactions [66]. This mechanism might be especially significant when RNAPII
traverses from ~20 to ~30 nucleotides during which range the polymerase displays a change
of behaviors in terms of its tendency to backtrack [173] and slip over repetitive sequences
[174].
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Several additional difficulties may be anticipated for efforts to solve the complete structure
of eukaryotic Spt4-Spt5 complexes. First, these Spt5 proteins contain five to six KOW
domains separated by linker sequences that are predicted to be disordered (Fu, unpublished).
It is reasonable to expect that some of these domains directly participate in coupling
RNAPII elongation with various other nuclear pathways including nucleosome
modification, RNA processing and DNA modifications. However, it is not known if the
different KOW domains serve distinct or overlapping functions. Furthermore, if two or more
of the KOW domains can interact with the same surface on RNAPII, it may be difficult to
obtain a uniform population of complexes for structural studies of Spt4-Spt5/RNAPII
interactions. In addition to problems presented by the KOW domains of eukaryotic Spt5,
protein disorder prediction algorithms indicate that both the N-terminal acidic and the CTR
regions do not adopt a stable fold (Fu, unpublished). Thus, as is the case for the RNAPII
CTD [175], Spt5’s N- and C-termini are likely not amenable to crystallographic analysis.

How could Spt4/5’s association with RNAPII be regulated by other cellular factors? Gaynor
and coworkers have identified consensus arginine motifs between human KOW domains 3
and 4 that are recognized by protein arginine methyltransferase (PRMT) 1 and 5 [176].
Inhibition of methylation, either by mutating the targeted residues or by using a methylation
inhibitor, enhanced Spt4-Spt5 activity in terms of both DRB-induced inhibition and Tat-
induced activation. Further, they have found that methylation inhibition is associated with
increased association of Spt4-Spt5 with the IL-8 promoter as assayed by ChIP and elevated
association with RNAPII as measured by immunoprecipitation and Western blotting. The
broader significance of these findings has yet to be tested in a genome-wide study. However,
it is conceivable that PRMT-mediated methylation of Spt5 may modulate the stability of
elongation complexes and promote their turnover during termination; facilitated removal of
Spt4-Spt5 may allow RNAPII to disengage from the DNA template and be prepared for
reinitiation by leaving an un-obstructed nucleic acid cleft. An understanding of how
methylation of Spt5 modulates its association with RNAPII will require structural
information as to where KOW 3 and 4 are placed on the surface of RNAPII.

12. Perspectives
Tremendous progress has been made in elucidation of the structure and function of Spt4-
Spt5 complexes. We now have a clear view of the deep structural and functional
conservation shared among members of the Spt5/NusG family of proteins. However, a
comprehensive structural framework is not yet available for understanding how Spt4-Spt5
engages and modulates the properties of elongating RNAPII nor for understanding how
other nuclear functions are temporally and mechanistically linked to transcription
elongation. Future challenges include: obtaining more complete structures for Spt4-Spt5/
RNA polymerase complexes; determining how Spt4-Spt5 impacts the enzymatic
mechanisms of RNAPII and its translocation down a DNA template; understanding how
Spt4-Spt5 may participate in regulatory transitions from initiation to elongation and
elongation to termination; and more deeply examining Spt4-Spt5’s roles in RNA processing
and chromatin remodeling.
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Highlights

Spt4-Spt5 is a positive and negative regulator of transcription elongation.

Spt5/NusG proteins are found in all organisms and are essential for life.

Spt4-Spt5 links transcription elongation to chromatin remodeling and RNA
processing.

Structural studies are beginning to provide insights into Spt4-Spt5 function.
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Figure 1.
(A) Domain organization of Spt4 and Spt5 proteins. Domain boundaries are drawn to
proportions according to their polypeptide lengths. (B) Alignment of sequence segments
from Spt5 and NusG proteins that encompass the KOW motif. Note a Tudor domain
sequence of TDRD (Tudor domain-containing protein 3) is also included. Color variation
(from red to green) reflects degree of conservation (invariant to similar). (C) Structural
superposition of homologous Spt4 and Spt5 proteins. Protein IDs are indicated with the
different colors. (D) Structural superposition of KOW domains of Spt5 and NusG together
the Tudor domain of TDRD3. Abbreviations: S.c. - Saccharomyces_cerevisiae; M.j. -
Methanococcus jannaschii; A.a. - Aquifex aeolicus; P.f. - Pyrococcus furiosus; T.t. -
Thermus thermophilus; E.c. - Escherichia coli; H.s. - Homo sapiens; and TDRD3 - Tudor
domain-containing protein 3.
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Figure 2.
Quaternary organization of (A) Spt4-Spt5-RNA polymerase elongation complex of archaea
and eukaryotes and (B) bacterial NusG-polymerase elongation complex. Left hand images
present a top view of the complexes and right hand images a front view. Significant
structural domains are marked and colored differently. Two locations of the Spt5 NGN
domain are included in A, with the X-ray and EM results rendered in red and magenta,
respectively.
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