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Summary
Neurons in cortical sensory areas respond selectively to sensory stimuli, and the preferred stimulus
typically varies among neurons so as to continuously span the sensory space. However, some
neurons reflect sensory features that are learned or task-dependent. For example, neurons in the
lateral intraparietal area (LIP) reflect learned associations between visual stimuli. One might
expect roughly even numbers of LIP neurons would prefer each set of associated stimuli.
However, in two associative learning experiments and a perceptual decision experiment, we found
striking asymmetries: nearly all neurons recorded from an animal had a similar order of preference
among associated stimuli. Behavioral factors could not account for these neuronal biases. A recent
computational study proposed that population-firing patterns in parietal cortex have “one-
dimensional” dynamics on long time scales, a possible consequence of recurrent connections that
could drive persistent activity. One-dimensional dynamics would predict the biases in selectivity
that we observed.

Introduction
It has long been appreciated that sensory neurons in the brain respond selectively along
particular sensory dimensions. In the case of visual cortex, neurons can be found that
respond selectively to orientation, direction, color, and depth (Hubel, 1988). Typically, the
preferred stimuli of selective neurons are distributed across a wide range of the stimulus
space. For example, neurons in primary visual cortex have preferred orientations that fall
throughout the full 180° range of orientations (Hubel and Wiesel, 1962), direction-selective
neurons in the middle temporal area have nearly evenly distributed preferred directions and
speeds (DeAngelis and Uka, 2003), and neurons in areas of V4 and inferotemporal cortex
have a wide distribution of preferred color (Conway and Tsao, 2009) or preferred visual
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form (Hegde and Van Essen, 2007; Lehky et al., 2011). These broad distributions of
preferred features presumably provide maximum sensitivity throughout the stimulus space
(Purushothaman and Bradley, 2005).

Neuronal selectivity for basic visual features is an intrinsic property of many visual cortical
neurons, but other forms of neuronal selectivity emerge following learning or in response to
behavioral demands. For example, in monkeys trained to associate or categorize visual
stimuli, some neurons respond selectively among the groups of associated stimuli. If a
monkey is trained that two visual stimuli are to be associated as a pair, A, while two other
stimuli are to be associated as another pair, B, after training neurons tend to fire more for
one stimulus pair than the other. Such neurons are common in inferotemporal (Naya et al.,
1996; Sakai and Miyashita, 1991), perirhinal (Naya et al., 2003), and prefrontal cortex
(Freedman et al., 2001; Rainer et al., 1999). Neuronal activity reflecting trained associations
is common during stimulus presentation and also during memory-delay periods in
behavioral tasks that have a working memory requirement (Miller et al., 2002). We recently
described neurons in the lateral intraparietal area (LIP) that likewise show selective activity
reflecting learned associations among visual stimuli, both during visual stimulation periods
and during memory-delay periods (Fitzgerald et al., 2011; Freedman and Assad, 2006).
Those experiments were designed to strictly dissociate associative signals in LIP neurons
from the well-known spatial/oculomotor signals in LIP (Andersen and Buneo, 2002;
Goldberg et al., 2006).

An intriguing question concerns the distribution of neuronal preferences that emerge when
animals are trained to associate stimuli together. In analogy to visual cortical areas that have
a broad range of preferred stimuli among neurons, one might expect roughly equal numbers
of neurons that prefer associated group A or that prefer associated group B. But in
associative learning studies, animals only need to discriminate one discrete group/category
from another; thus it is not clear what to expect about the distribution of preferred associated
stimuli. The question remains open, because most previous studies of associative or
categorical learning have emphasized the magnitude of the associative effect rather than its
sign, that is, which particular group of associated stimuli is preferred (Freedman et al., 2001,
2002; Naya et al., 1996; Naya et al., 2001; Naya et al., 2003; Rainer et al., 1998; Roy et al.,
2010; Sakai and Miyashita, 1991; Yanike et al., 2004).

To address this question, we examined the distribution of preferred groups or categories of
visual stimuli in LIP neurons in two associative learning studies (Fitzgerald et al., 2011;
Freedman and Assad, 2006) and in a perceptual decision study (Bennur and Gold, 2011). To
our surprise, we found that the distributions of preferred groups/categories were
dramatically biased within a neuronal population: nearly every LIP neuron from a given
animal had the same order of preference among the associated stimuli. This was despite the
fact that LIP neurons show very little bias in visual selectivity in naïve animals that have not
been trained in associative learning tasks; for example, preferred directions are distributed
widely among direction-selective LIP neurons recorded in passively fixating monkeys
(Fanini and Assad, 2009). The striking asymmetries in the associative learning and
perceptual decision tasks suggest that the dynamics of the parietal network come to
dominate the firing of individual LIP neurons in certain regimes, driving the neurons toward
a common pattern of firing. In fact, biases in preferred groups or categories are predicted
from a recent recurrent network model for parietal cortex that was developed to explain
some peculiar commonalities in the dynamics of persistent memory-period activity among
individual LIP neurons (Ganguli et al., 2008). These findings suggest that understanding
parietal network dynamics is at least as important as understanding firing properties of
individual parietal neurons.
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Results
We analyzed data from three experiments. In the first experiment, two monkeys were trained
to group either six (Fitzgerald et al., 2011) or twelve (Freedman and Assad, 2006) directions
of moving stimuli into two 180°-wide “categories.” In the second experiment, two animals
were trained to group six arbitrarily chosen shapes into three associated pairs (Fitzgerald et
al., 2011). In the third experiment monkeys reported the direction (right or left) of noisy
motion stimuli (Bennur and Gold, 2011).

In the direction-categorization task, trials began with the monkey fixating its gaze and
manually gripping a touch-sensitive bar (Figure 1A-B). A patch of coherently moving dots
appeared in the receptive field of the neuron under study (the sample stimulus), and then
following a delay period, a second patch of moving dots (the test stimulus) appeared at the
same location. If the two directions belonged to the same category, the monkeys had to
release the touch bar; if the two directions belonged to opposite categories, the animal had to
maintain contact with the touch-bar. The shape pair-associate task was identical in structure
to the direction-categorization task, except that the first and second stimuli were static
shapes presented in the receptive field, and the animal determined whether the two shapes
presented were from an associated pair (Figure 1C-D).

Both tasks were designed to dissociate associative/categorical signals from spatial or motor-
planning effects. For one, the sample and test stimuli were placed in the same position of the
receptive field for the neuron under study and subtended the same maximal visual angle.
The monkeys could also not predict the upcoming required motor response during the
sample-stimulus presentation and delay period, because the test stimulus was chosen at
random. The monkeys were also never trained to make eye movements within the task.

After the animals were trained (generally >85% correct trials, averaged among sessions), we
recorded from neurons in LIP. In both tasks, neuronal activity reflected the learned
associations among stimuli. During the sample, delay, and test period, neurons tended to fire
with similar rates for associated stimuli and dissimilar rates for non-associated stimuli
(Figure 2A-C, 2E-G; neuronal firing traces sorted by the identity of the sample stimulus).
These associative neuronal signals were previously described in detail. However, it is
important to reiterate that associative signals were not due to systematic differences in the
animals’ behavior for different direction categories or shape pairs, such as differences in the
animals’ performance or in fixational or post-trial eye movements (Fitzgerald et al., 2011;
Freedman and Assad, 2006).

Biases in preferred direction category or associated shape-pair
Across the neuronal population, we expected to see approximately equal numbers of neurons
that had higher firing rates for one direction category or the other, or for one associated
shape-pair or another. This would be in line with the typical broad distribution of preferred
stimulus features found among visual cortical neurons. However, we were surprised to find
that the preferred associations were remarkably stereotyped across a given population of
neurons. Figure 2A-C shows three single neurons recorded from Monkey H during the
direction-categorization task. The three neurons varied in their amplitude and dynamics of
firing, yet all three had higher activity for the direction category up/left than for the direction
category down/right (see Figure 1A for color key).

Figure 2E-G shows three single neurons recorded from the same monkey during the shape
pair-associate task. All three neurons had highest activity for the diamond/Y pair,
intermediate activity for the star/vase pair, and lowest activity for the plus/triangle pair (see
Figure 1C, left for color key).
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These particular patterns of selectivity were preponderant for this animal. Figures 2D and
2H show the normalized population average of all neurons recorded from Monkey H
(direction categorization task: n = 45; shape-pair associate task: n = 93). The bias in
selectivity emerges as a divergence of the average activity among the different associated
stimuli; if the order of preference were instead randomly distributed among neurons, the
population-average responses should be closely overlapping.

To examine the bias in more detail, for each neuron we rank-ordered the visual stimuli by
the magnitude of the average evoked neuronal activity. We focused our analysis on those
neurons that had a statistically significant selectivity for the direction categories or shape-
pair associations (nested ANOVA; P < 0.01; Fitzgerald et al., 2011). This selection criterion
does not introduce a bias in the pattern of selectivity, because selective neurons could in
principle prefer any of the possible groups.

Figure 3A shows the rank-order of neural activity evoked by each of the six directions of the
direction-categorization task, for each neuron from Monkey H. Data from the sustained
sample-stimulus response (200-650 ms following motion onset) are presented in the left
column, and data from the late delay period (750-1500 ms following motion offset) are
presented in the right column. During the sample period, across the neuronal population
there was a significant systematic asymmetry between the neuronal activity for the two
direction categories (n = 31 neurons; P = 0.0025, Friedman's test, null hypothesis of equal
activity for the two categories; see Methods for details). The bias was even more
pronounced during the delay period (n = 24 neurons; P < 10-14, Friedman's test).

Monkey I had fewer numbers of neurons that showed statistically significant selectivity for
the direction categories (nested ANOVA; P < 0.01), but there was still a trend toward a bias
in the category preference during both the sample-stimulus period (n = 15, P = 0.0081) and
delay period (n = 9, P = 0.016; Friedman's test; Figure 3B).

Monkeys H and I also performed the shape pair-associate task, which allowed us to ask
whether the selectivity is biased when animals associate stimuli into three groups rather than
two. The neuronal population recorded during the shape pair-associate task in Monkey H
indeed showed a pronounced bias in the ranking of strength of activity evoked by the
different associated shape-pairs (Figure 3C). Both time periods showed significantly biased
preferences during the sample period (n = 64, P < 10-11) and the delay period (n = 68, P ~ 0,
Friedman's test). We did not observe a significant bias in shape-pair preferences for Monkey
I, in either time period (Figure 3D), but Monkey I had weaker shape pair-associate effects in
general.

After seeing the bias in these data (Fitzgerald et al., 2011), we reanalyzed a previous data set
in which two monkeys performed a 12-direction categorization task (Freedman and Assad,
2006). One of those animals was also Monkey H. We confirmed that Monkey H had a
consistent bias between direction categories, and the bias was again more pronounced during
the delay period than the sample period (Figure 3E; sample: n = 10, P < 10-3; delay: n = 11,
P < 10-15; Friedman's test).

However, before those data were collected, Monkey H was trained on a direction-category
boundary perpendicular to the other category boundary. After the retraining, many LIP
neurons again were selective between the direction categories, but that selectivity now
reflected the new category boundary rather than the old boundary (Freedman and Assad,
2006). We examined the pattern of selectivity for the population of neurons recorded from
Monkey H for the first category boundary, and again we found a strong bias in the ranking
of directions (Figure 3F; sample: n = 32, P < 10-10; delay: n = 20, P ~ 0; Friedman's test).
Because the category boundaries were different (orthogonal) between the data in Figure 3E
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and 3F, the bias could not be an intrinsic bias in direction preference that was coincidently
aligned with our category boundary. Rather, the bias must have emerged as the animals
learned to associate directions about a specific direction boundary. The retraining results
also argue that the bias was unlikely to have resulted from under-sampling LIP during
neuronal recordings (also see below).

A second monkey (S) was also trained in the 12-direction categorization task and then
retrained with the perpendicular direction-category boundary (Freedman and Assad, 2006).
Monkey S showed the similar trends as Monkey H: the bias in preferred direction-category
was stronger during the delay period than the sample period (Figure 3G; sample: n = 26, P =
0.64; delay: n = 12, P < 10-5, Friedman's test) and the bias was also present after the animal
was trained with the orthogonal category boundary (Figure 3H; sample: n = 25, P < 10-3;
delay: n = 10, P < 10-13, Friedman's test). Interestingly, monkey S and monkey H had
opposite preferred categories for both boundary conditions.

The analyses corresponding to the data in Figure 3 focused on those neurons that had
statistically significant selectivity for the direction categories or shape-pair associations
(nested ANOVA; P < 0.01; Fitzgerald et al., 2011). The percentage of neurons that showed
such specificity ranged from 45-74% (mean 58%) during the sustained visual period and
20-71% (mean 44%) during the late delay among all experiments. However, the biases were
also robust when all neurons were included in the analyses (Table S1 in the Supplementary
data). In addition, for all the experiments, across neurons there was no obvious order of
preference between associated stimuli within a category or within an associated pair (data
not shown).

Possible explanations for the bias
The bias in preferred associated stimuli could provide important clues about the behavior of
the parietal network during associative-learning tasks – but there are other potential
explanations. One mundane possibility is that we under-sampled LIP during our recordings
and thus missed other LIP neurons that had the opposite selectivity. This is unlikely for
several reasons. First, in all the associative learning experiments, we mapped the recording
chambers beyond the borders of LIP and recorded from all grid positions (typically four to
five) that allowed LIP access. Second, we found a consistent bias in two separate neuronal
data sets from Monkey H, in two different versions of the direction-categorization task
(Figure 3A and 3E). It is unlikely that under-sampling could have produced a consistent
bias. Third, the bias was not always constant over time during the course of a trial. As
described above, we consistently found a stronger bias during the delay period than during
the sample period, even though many neurons were selective for associated groups during
the sample period. This is shown as a continuous function of time in Figure 4, for all
neurons recorded from Monkey H during the six-direction categorization task. The color
saturation in Figure 4 indicates the difference in normalized neuronal activity between the
categories for each neuron throughout the trial time. Black indicates no difference in the
mean activity throughout categories, blue indicates higher activity on the up/left category
directions, and red indicates higher activity on the down/right directions, and the saturation
of the color indicates the magnitude of the normalized difference between the categories (see
figure legend for more details). During the sample period, neurons preferred either direction
category, but the preference became more stereotyped during the delay period. If the bias
were due to under-sampling LIP, we would expect to see a consistent bias throughout the
trial time.
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Direction selectivity in LIP is not biased before direction-categorization training
Another possible explanation for the biases is that they reflect intrinsic biases in stimulus
selectivity in LIP that happen to coincide with the associated groupings that we taught the
animals. This seems extremely unlikely for the shape-association task, because we paired
the shapes arbitrarily. However, there could have been an intrinsic bias in preferred
directions in LIP that existed before the categorization training. As described above, this is
unlikely because we retrained two animals with a new direction-category boundary
perpendicular to the original boundary, yet we still found a strong bias after the retraining
(Figure 3E-H).

Notwithstanding, we were able to test directly for an intrinsic direction bias in Monkey H.
Before Monkey H was trained in the direction-categorization task, he had fortuitously been a
subject of another study in which he passively viewed patches of dots moving in one of
eight different directions in the receptive field (RF). The animal had no behavioral
requirement except to fixate (Figure 5A). The fixation task was used to assess the intrinsic
direction selectivity of LIP neurons, and indeed ~60% of LIP neurons were direction
selective (Fanini and Assad, 2009). However, those preferred directions were widely
distributed. To compare to the direction-categorization study, we rank-ordered the neuronal
responses to each of the six directions for the 28 neurons that had statistically significant
direction selectivity in the fixation task (one-way ANOVA, P < 0.01; Figure 5B).

The blue and red colors in Figure 5B indicate the corresponding direction categories in the
direction-categorization task—although the monkey did not learn the direction-
categorization task until after the data in Figure 5B were obtained. The data from the six-
direction categorization task for Monkey H are shown for comparison (Figure 5C). Before
the direction-category training (Figure 5B), there was no significant bias between the two
“pseudo-categories,” for either of the two perpendicular category boundaries that we later
used for that animal (P > 0.05 in both cases; Friedman's test). These findings argue against
an intrinsic direction bias in LIP, and thus suggest that the bias emerged—in the same
animal—as a result of the associative training.

The bias is not due to systematic behavioral effects
We also tested whether the biases could have resulted from systematic behavioral biases.
For example, the animals may have struggled more with one associated group or another, or
had a higher reward expectation for one group or another. In addition, there could have been
different patterns of small fixational eye movements or post-trial saccades between different
associated groups. These behavioral factors could potentially modulate neuronal firing in a
way that mimicked associative effects; moreover, because the animals’ behavior would
likely be consistent from neuron-to-neuron, behavioral effects could potentially mimic the
biases that we observed in the neuronal activity. We used a regression-analysis framework
to quantitatively examine the influence of a number of behavioral variables, including trial-
performance accuracy, eye position within the fixation window, microsaccadic eye
movements within the fixation window, and reaction time on match trials. In short, the
behavioral effects on firing rate were generally small, and when we accounted for these
small behavioral effects, we still found clear biases in the pattern of selectivity among
neurons (see Tables S2-S5 and Figs. S1-S2 in the Supplementary information). The bias was
also unlikely to have arisen from disparities in the amount of training or the training strategy
between different direction categories or shape-pairs. For the two direction categories, the
animals were equally exposed to directions from each category from the first day of training.
In the shape-pair task, some pairs were introduced sequentially; however, no two pairs were
introduced more than 15 days apart, and the animals were trained an additional four to five
months after all three pairs were introduced (also see Experimental Procedures).
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Neuronal selectivity in a perceptual decision task is also biased
We found selectivity biases in associative learning experiments, but could selectivity biases
be a more widespread phenomenon? Numerous studies have examined the activity of LIP
neurons during perceptual decision tasks in which monkeys report the direction of noisy
motion stimuli (Gold and Shadlen, 2007). The stimuli are usually patches of randomly
arrayed dots, with a variable percentage of the dots moving coherently in one of two
opposite directions. The monkey must report the perceived direction on each trial (two-
alternative forced-choice). Because the decision in these experiments is of a discrete,
categorical nature, it is possible that perceptual decision tasks might reveal similar neuronal
biases.

We analyzed data from one particular perceptual decision experiment (Bennur and Gold,
2011). In the task monkeys made a saccade to a red target if they perceived rightward
motion and to a green target if they perceived leftward motion (Figure 6A). The two targets
were placed above and below the patch of dots, with one of the targets placed in the RF of
the neuron under study. In one variant of the task, the saccade targets did not turn red or
green until after the motion stimulus was turned off. Because the positions of the red and
green target were randomly interchanged from trial-to-trial, the animal could not predict the
direction of the upcoming saccade during the moving-dot period or the delay period. This
allowed the authors to assess the neuronal selectivity to the direction of the moving dots
independently of the direction of the upcoming saccade. Moreover, because both red and
green saccade targets could appear in the RF, the authors could also assess neuronal
selectivity to target color independently of the direction of the upcoming saccade.

Indeed, many of the LIP neurons were selective for the direction of the moving-dot stimulus
or the color of the saccade target, independently of the saccade direction (ANOVA, P <
0.01; Bennur and Gold, 2011). Moreover, similar to the associative learning experiments,
the preferred directions and colors were highly stereotyped among neurons. Figure 6B-C
shows the rank-order for the subsets of direction-selective neurons (ANOVA, P < 0.01)
during the moving-dot period and during the delay period. For both monkeys and in both
time periods, the neurons tended to have higher activity for rightward motion (blue hues)
than leftward motion (yellow hues). Monkey Av (Figure 6B) had only 6 neurons that were
direction-selective during both time periods, yet there was still a trend toward a bias in
selectivity among those neurons (moving-dot period: P = 0.011; delay period: P = 0.027;
Friedman's test). Monkey At (Figure 6C) had more direction-selective neurons and showed
significant biases in both time periods (moving-dot period: P < 10-6; delay period: P < 10-5;
Friedman's test). Similar results were obtained if all the neurons were included in the
analyses, not only the direction-selective neurons (see Table S1 in Supplementary data).

There was also a bias in the selectivity for the color of the saccade target in the RF. Monkey
Av (data not shown) only had five color-selective neurons (and thus lacked statistical
power), but if all 25 neurons were included, there was a significant bias toward larger
responses for the red target (P = 0.0093; Friedman's test). Monkey At (Figure 6D) had 24
color-selective neurons, and all 24 had higher activity for the red target (P < 10-6;
Friedman's test). One caveat is that both monkeys had been previously trained on a different
perceptual decision task in which only red saccade targets were placed left and right of the
fixation point (Connolly et al., 2009). This previous training history could have made the red
targets more salient to the animals, perhaps causing consistently larger neuronal responses
than the green targets. In the new experiment, however, the animals did not show a
systematic bias in their choices of the red or green saccade targets (Bennur and Gold, 2011),
so there is no direct evidence that the animals placed special significance on the red target.
In the case of the direction selectivity, the animals were exposed equally to left and right
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directions from the start of training, so the direction selectivity could not have resulted from
overtraining in one direction.

Biased preferences are a prediction of one-dimensional dynamics in LIP
We found biased neuronal representations in two associative learning experiments and a
perceptual decision experiment—but what is the significance of the bias? A recent modeling
study could provide insight. Ganguli and colleagues developed a computational model to
examine the dynamics of the parietal neural network (Ganguli et al., 2008). The model was
motivated by a surprising stereotyped relationship observed between the amplitude of
memory-delay activity and the dynamics of visual transients in individual LIP neurons
(Bisley and Goldberg, 2003, 2006). Ganguli et al. argued that this stereotyped neuronal
behavior was unlikely to result from finely tuned intrinsic properties of LIP neurons, but
rather reflects the dynamics of the interconnected neural network that includes those
neurons.

To explain the neuronal data, Ganguli et al. proposed a dynamical neural network model in
which slowly varying patterns of neural activity, such as spontaneous activity or memory-
delay activity, are “one-dimensional” on long time scales. That is, if one considers the
instantaneous firing of all neurons in the network as a vector, that vector is confined to a
one-dimensional trajectory through n-dimensional firing-rate space (n = number of neurons
in the network) as neural activity slowly decays back to spontaneous rates. The authors
further demonstrated that one-dimensional dynamics are a robust consequence of networks
with sparse, random, net-excitatory connectivity between neurons.

A strong assumption of the model is that the one-dimensional trajectory is linear, and thus
that the vectors of population firing rates during periods of spontaneous firing or sustained
delay-period firing are scaled versions of one another. Indeed, for multiple LIP studies,
Ganguli et al. were able to show that, across the neuronal population, there was a linear
relationship between the amplitudes of spontaneous activity and memory-delay activity (or
other slowly changing activity) (Ganguli et al., 2008).

We realized that the Ganguli model also makes a prediction about neuronal selectivity in our
experiments. If the population firing rates (vectors) are scaled versions of one another, the
order of preference among the associated stimuli should be the same for every neuron.
Consider our direction-categorization task: if for one neuron the activity is twice the
spontaneous rate in response to the up/left category and three times the spontaneous rate in
response to the down/right category, the activity ratios should be likewise twice for up/left
and three times for down/right for all neurons. That is, the order of preference between the
categories should be the same for all neurons. If not, the vector of population firing rates
would not scale linearly under different conditions. Thus the Ganguli model provides a
potential explanation for the biases in selectivity that we observed.

To test the applicability of the model to our data, we examined whether, across the neuronal
population, there was a linear relationship between the firing rates under different conditions
and between the spontaneous condition. For every neuron from Monkey H in the six-
direction categorization task, we averaged the delay-period activity across the three
directions in each category and plotted the average activity from the two direction categories
against each other (Figure 7A, r = 0.70, P < 10-12) and against the spontaneous activity
(50-450 ms following fixation) (Figure 7B-C). In all cases the data were well fit by a linear
relationship (up/left category: r = 0.73, P < 10-12; down/right category: r = 0.62, P < 10-9).
We observed similar linear relationships in the other associative experiments
(Supplementary material, tables S6-16).
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Ganguli et al. also argued that rapidly changing visual transients are not confined to a single
dimension in population firing-rate space, but instead enter higher order modes that then
rapidly decay back to the single firing-rate mode as the firing rate stabilizes. We thus plotted
the amplitude of the visual transient evoked by the onset of motion in the RF (40-140 ms
following motion onset) against the spontaneous activity (Figure 7D-E). Indeed, those plots
were less well fit by a linear relationship (up/left category: r = 0.099, P = 0.036; down/right
category: r = 0.098, P = 0.036). These data also argue that the mutual scaling of delay and
spontaneous activity (Figure 7C-D) was not due to simple differences in excitability among
LIP neurons: if the scaling were due to excitability differences, we would have also expected
a linear relationship with the transient visual response (Ganguli et al., 2008). It is possible
that the lack of a linear relationship in Figure 7D-E was due to our inability to accurately
measure the amplitude of the visual transients, either because of the small time window
needed to measure the visual transient or inherent variability in the transient amplitude.
However, when we plotted the amplitude of the visual transient for the two direction
categories against each other (Figure 7F), we found that the transients were nearly identical
in the two cases (linear regression: r = 0.99, P ~ 0.), arguing that we accurately estimated the
amplitudes of the transients -- and underscoring the lack of category selectivity during this
early time interval.

The delay activity is often greater than the spontaneous activity, or it may fall below the
spontaneous activity (Figure 7C), but a caveat of this analysis is that the delay activity is
frequently not much larger than the level of the spontaneous activity. If the spontaneous
activity comprises a large “component” of the delay activity then a linear relationship would
be expected between the two measures. The relatively modest delay activity limits the
statistical power to determine exactly how the spontaneous and delay activities are related,
e.g., by multiplicative or additive scaling. However, a linear relationship between delay
activity and spontaneous activity is not a strong prediction of the model. Rather, as long as
the population relationship between the spontaneous and delay activity is stereotyped among
conditions and monotonic, there should be a biased selectivity among neurons, as we found
(S. Ganguli, personal communication).

Discussion
We found biases in neuronal selectivity in LIP in three different experiments, in five
monkeys from two laboratories. The biases were very strong in some cases, and we found no
evidence that the biases were due to experimental under-sampling, intrinsic selectivity in
LIP, or behavioral artifacts.

The biased distributions that we observed in LIP are markedly different from the broad or
uniform distributions of preferred visual features typical among visual cortical neurons.
There have been some reports of over-representations in particular visual features in visual
cortex, such as horizontal and vertical orientations in V1 (Pettigrew et al., 1968), centrifugal
motion directions (Albright, 1989) and near disparities in MT (DeAngelis and Uka, 2003),
and expanding optic flow stimuli in the medial superior temporal area (Duffy and Wurtz,
1995). However, those biases are subtle compared to the biases we found in LIP. The over-
representations in visual cortex were present in untrained animals, whereas the biases we
observed in LIP were clearly the result of the animals’ training in the particular behavioral
task.

But what is the significance of the biased representations in LIP? We can consider a number
of clues. First, the bias was present in associative learning tasks and in a perceptual decision
task. These paradigms are inherently similar, because the animals classify stimuli into two or
three mutually exclusive categories – “left” versus “right,” “shape-pair one” versus “shape-
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pair three,” “direction-category one” versus “direction-category two” (Freedman and Assad,
2011). Thus the bias in LIP may arise whenever animals decide between discrete
alternatives.

Discrete alternatives bring to mind nonlinear dynamical networks with discrete attractor
states. Multiple-attractor networks have been used to model the activity of inferotemporal
cortex during pair-association tasks (Mongillo et al., 2003). Wang and colleagues (Wong
and Wang, 2006) also used recurrent neural network models that generate stable, self-
sustaining population-activity states to simulate neuronal responses to a two-direction
perceptual decision task in LIP (Roitman and Shadlen, 2002). Different stable attractors
corresponded to the different decision states and the spontaneous state, a two- or three-
dimensional description. Ganguli and colleagues examined the same perceptual decision
study and argued that the decision pools were dominated by a single dimension (Ganguli et
al., 2008). On the other hand, attractor and one-dimensional descriptors of LIP are not
mutually exclusive; multiple attractors may exist while a single dimension's activity
dominates (Wang, 2008), and the one-dimensional state during the delay period resembles a
leaky attractor (Ganguli et al., 2008).

The biased selectivity and the linear relationship between sustained activities (e.g., between
delay activity and spontaneous activity) that we found in LIP are consistent with a single,
dominant dimension in LIP, but there are several caveats to this interpretation. First, if the
biased selectivity and linear relationship between sustained activities are manifestations of
the same underlying process, the strength of the two effects should co-vary across animals or
data sets. We could not meaningfully address this issue with the few data sets in this paper
(no more than three per experiment), but it bears future study. Second, the strength of the
bias varied among animals, as did the sign (e.g., the direction bias was reversed between
monkeys H and S; Fig. 3E-H). This might suggest that the bias arises stochastically among
animals or reflects the specific strategy that an animal uses to solve the task. Finally, the bias
was usually not absolute in any experiment, and the sustained activities were not perfectly
correlated across neurons for a given data set. While some variation would be expected from
physiological noise, at this point a more conservative descriptor of the dynamics might be
“low-dimensional” rather than one-dimensional.

However, saying that the biased selectivity in LIP could arise due to low-dimensional neural
network dynamics hardly provides a satisfying answer to the question of why the selectivity
is biased (at least to most neuroscientists). One possibility is that the bias is simply an
epiphenomenon of a different function of the parietal network. For example, many LIP
neurons have activity that can be sustained for several seconds in the absence of visual
stimulation. This sustained activity has been argued to play a role in oculomotor planning
(Andersen and Buneo, 2002), spatial attention (Goldberg et al., 2006) and other forms of
non-spatial working memory (Fitzgerald et al., 2011; Freedman and Assad, 2006; Sereno
and Amador, 2006). Sustained activity on a timescale of seconds needs to be self-generated
at the level of the neural network, and recurrent, excitatory connections are usually invoked
to this end. Thus one possibility is that the biased selectivity in LIP is an epiphenomenon of
a recurrent network architecture that is optimized to support stable, sustained activity in the
absence of visual input. If so, the bias should minimally be considered as an additional
constraint in modeling recurrent networks of this sort.

On the other hand, biased representations may play a useful functional role. At first glance,
the bias in LIP seems disadvantageous, in that the (overwhelming) redundancy would limit
the coding power or bandwidth of the neural network. In contrast, neurons in lower visual
cortical areas are typically varied in their selectivity, which reduces redundancy and thus
increases decoding power. But a functional role of visual cortical areas is presumably to
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encode along continuous stimulus dimensions, such as orientation, direction, depth, and
color. Discriminating fine differences in these features requires a high bandwidth system,
which could be accomplished by having neurons with different selectivity.

This is not the case for the associative learning and perceptual decision tasks that we
examined. These tasks have only a small number of discrete outcomes and thus do not need
to be encoded by a high-bandwidth system. For example, the direction-categorization task
had only two categorical outcomes, which in principle could be encoded by one bit – high or
low. This is essentially what we find in LIP during these tasks. In this view, it is possible
that downstream brain areas read out the overall level of activity among LIP neurons in
determining the particular discrete outcome; high input would indicate one category and low
input would indicate the other category. This could have the potential advantage of reducing
noise by increased averaging. It could also reduce or obviate the need for precise patterns of
connections or labeled lines from LIP: if LIP only provides a scalar output, the identity of
the particular inputs from LIP would be unimportant. In contrast, if there were equal
numbers of LIP neurons that preferred either of the two categories, downstream areas must
have a way to segregate or otherwise identify those inputs.

The idea of a potential scalar read-out from LIP raises a number of interesting issues. First, a
scalar read-out only works well for a few discrete behavioral outcomes; for more than a few
outcomes, a scalar read-out could quickly run out of bandwidth. That is, firing rate can only
be split into so many levels before noise starts to obscure differences between levels. We
only examined tasks with two or three discrete outcomes, but it would be interesting to see
whether the selectivity biases remain if more outcomes or categories are included. A related
issue is that, because our behavioral tasks involved only a few outcomes, the animals could
have adopted a simplified mnemonic or decisional strategy, such as “A” or “not A”. One
could imagine that such a simplified strategy could produce a biased selectivity among
neurons. However, there is no a priori reason why the delay activity and the spontaneous
activity should fall along a linear or low-dimensional trajectory in multi-dimensional firing-
rate space. That is, low dimensionality implies biased selectivity, but biased selectivity does
not guarantee low dimensionality. In the case of the three shape-pairs, it is even less likely
that three delay conditions and spontaneous activity would share a low-dimensional
trajectory.

A second interesting issue is the extent of the neural network that contributes to the biased
representations. For example, we only recorded from one hemisphere in all the studies
reported here, but an open question is whether both hemispheres share the same bias. In
addition, we focused on parietal cortex in this study, but other brain areas may also play a
role. LIP is connected with the dorsolateral prefrontal cortex, frontal eye fields, and superior
colliculus (Blatt et al., 1990; Lewis and Van Essen, 2000), all of which contain neurons with
persistent activity during memory-delay periods, when we found the strongest bias. In fact,
there have been a number of associative learning or categorization studies in frontal cortex,
although these have generally not focused on the distribution of selectivity among neurons.
However, a few studies commented that the selectivity distributions were not biased. For
example, roughly equal numbers of neurons in the frontal eye fields prefer slower speeds or
faster speeds when animals are trained to categorize speed (Ferrera et al., 2009). In addition,
when animals are trained to switch between two categorization schemes, the preferred
categories of individual neurons in dorsolateral prefrontal cortex (DLPFC) were evenly
distributed for both categorization schemes (Cromer et al., 2010). However, these studies
combined the data from the two monkeys, so we cannot rule out that the individual monkey
data were biased in opposite directions. Intriguingly, in a recent study in prefrontal cortex
examining categorical representations in a stimulus-detection task, “stimulus present”
neurons outnumbered “stimulus absent” neurons by nearly 4:1 (Merten and Nieder, 2012), a
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strong categorical asymmetry that is reminiscent of the biases we found in parietal cortex.
This leaves open the possibility that biased categorical representations also extend to
prefrontal cortex.

Finally, the biased representations were a consequence of training (or retraining) the
animals, and therefore exhibit some kind of flexibility. For example, in one animal we found
that the biased representation of direction emerged from an unbiased representation when
the animal was trained in the direction-categorization task. In all the studies, we trained the
animals over a period of at least a few weeks, so we cannot address how quickly a biased
representation can emerge from an unbiased representation. It is even possible that biases
are established online, depending on behavioral demands.

Flexible representations have been described previously in LIP, at least in regard to
responses of single neurons. For example, LIP neurons have color-selective responses when
color is made behaviorally relevant (Toth and Assad, 2002). If the biased selectivity in LIP
represents a simplified coding strategy that emerges in response to certain behavioral
conditions (as opposed to an epiphenomenon of some other network constraint), this implies
flexibility at the level of the general population-coding strategy in parietal cortex, not just at
the level of single neurons.

Experimental Procedures
Behavioral tasks

The five behavioral tasks are described in detail in the published papers (Fitzgerald et al.,
2011; Freedman and Assad, 2006; Fanini and Assad, 2009; Bennur and Gold, 2011), but are
summarized below for convenience. All experimental procedures were in accordance with
the NIH Guide for the Care and Use of Laboratory Animals and Harvard Medical School or
University of Pennsylvania Institutional Animal Care and Use Committee.

Direction-categorization task
Animals started the task by fixating their gaze at a center point and holding a touch circuit.
A patch of 100% coherently-moving dots appeared in the receptive field of the neuron under
study for 650 ms, and following a 1,000 ms (twelve-direction task) or 1,500 ms delay (six-
direction task), a second dot-patch was presented in the receptive field for 650 ms. On half
of the trials, the directions of the two dot patches belonged to the same category, and the
animal released the touch circuit for a juice reward. On the other half of the trials, the
direction of the second dot patch belonged to a different category, and the animal had to
maintain his hold of the touch circuit during a 150 ms delay until a motion patch moving in
the same category was presented for 650, when the animal could release the touch circuit to
receive juice.

Animals were trained with equal exposure to the two direction-categories. The direction-
categorization training started with only the two directions orthogonal to the category
boundary—one direction in each category. Additional directions off the orthogonal were
added to each category simultaneously as training progressed.

Shape-pair association task
The trial structure was the same as the direction-categorization task, and the delay period
was 1500 ms. The animals were initially trained on two shape pairs, and additional pairs
were introduced sequentially or in groups of two. No more than 15 days of training
separated the introduction of the first and last shape-shape pairs, and the animals were
trained on the shape task for a further four to five months after all shape-pairs were
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introduced. Additionally, the animals saw the shapes with equal frequency during the four to
six months of recording and further training.

Motion-viewing task
After the monkeys fixated, a patch of static dots (adjusted to fill the neuron's receptive field)
was presented in the receptive field for 200-400 ms. The dots then moved coherently for 600
ms in one of eight equally spaced directions, followed by an interstimulus interval of 400
ms. After three such motion pulses, the monkey was rewarded for maintaining fixation.
Each trial was separated by 1000 ms.

Perceptual decision task
Animals started the task by fixating their gaze on a central point, and after a short delay, two
blue neutral targets appeared above and below the fixation point. Neurons were selected so
that one of the targets fell within the receptive field. A patch of moving dots (5°) appeared at
the center of the display. The dots moved left or right for 800 ms with three possible
coherences: 99.9%, 25.6%, or 6.4%. Following the offset of the moving dots (300 ms), the
blue targets changed color to red and green, indicating where the monkeys should look to
signal their decision about the direction of motion. After another 400 ms, the fixation point
turned off, cuing the animal to make a saccade to one of the two targets. Animals were
trained with equal exposure time to left and right motion.

In this paper, we focused on the 99.9% and 25.6% coherences. We did not consider the 6.4%
coherence case, because the animals judged the motion directions near chance for 6.4%.

Data analysis
All analyses were performed on correct trials in which the animals maintained fixation
throughout the trial. Single neuron plots were smoothed with a 120 ms Gaussian kernel.
Population plots show averaged, normalized activity. For each neuron, the mean activity for
each condition was smoothed with a 50 ms Gaussian kernel, and the response of each cell
was divided by its maximum activity across all of the conditions.

We tested for significant encoding of motion-direction categories and shape-pair
associations using a nested analysis of variance (ANOVA; criterion of P < 0.01) in which
the shape-pairs or direction-categories were the main variables, and the two shapes within
each pair or three or six directions within each category were the nominal variables. This
nested design tests whether neuron's responses to all shapes or directions within a pair or
category are distinct from the other shapes or directions. That is, the nested approach
generally excludes neurons that responded selectivity to only one shape within a pair or one
direction within a motion category.

For the perceptual decision data (Bennur and Gold, 2011), we tested for significant direction
or color selectivity using one-way ANOVA with a criterion of P < 0.01.

We tested for a significant population-level bias in the activity for each motion direction
category, shape-pair association, direction decision, or color using a Friedman's test, a non-
parametric test for a difference in the neuronal activity by group, with a null hypothesis that
the population-level activity is the same for all groupings. The random variable is each
neuron's mean activity by condition. For example, in the twelve-direction categorization
task, the input is all neuron's mean activity for each of the twelve directions, which is
labeled as six observations for category A and six observations for category B per neuron.
The Friedman's test adjusts for individual neuron firing rate differences by rank-ordering
each neuron's responses to the association/decision stimuli and then testing for a significant
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difference in association/decision group rankings across the population. All analyses were
performed using custom software and the statistics package in Matlab releases 2007a and
2012a (The Mathworks, Natick, MA).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Preferred stimuli are typically broadly distributed in visual cortical areas.

• LIP neurons surprisingly had stereotyped preferences in discrete outcome tasks.

• Stereotypy is predicted by theory that stable LIP activity is one-dimensional.
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Figure 1. Direction-categorization and shape pair-association tasks
A-B. Direction-categorization task. Monkeys associated six directions into two categories.
C-D. Shape pair-association task. Monkeys associated six static shapes into three pairs.
Different pairings were used for the two monkeys.
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Figure 2. Single neuron and population activity
A-C. Three single neurons recorded while Monkey H performed the direction-categorization
task. The six traces in each plot correspond to the mean neuronal activity evoked by each of
the six directions, and the same colors indicate directions that belong to the same category.
D. The mean normalized activity recorded from the population of 45 neurons. The
normalized spontaneous activity is indicated by the black horizontal line.
E-G. Three single neurons recorded while Monkey H performed the shape pair-association
task. The six traces in each plot correspond to the mean neuronal activity evoked by each of
the six sample shapes, and the same colors indicate associated shapes.
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H. The mean normalized activity from the population of 93 recorded neurons. The
normalized spontaneous activity is indicated by the black horizontal line.
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Figure 3. Rank ordering of firing rate across different directions or shapes
In A-H, each column of small colored rectangles corresponds to a set of firing rates recorded
from a single neuron. Each rectangle in a column represents a single stimulus (direction or
shape, depending on the experiment), color-coded according to the corresponding direction
category or associated shape-pair of that stimulus. The stimulus that evoked the highest
activity is represented by the rectangle at the top of the column, and the stimulus that evoked
the lowest activity is represented by the rectangle at the bottom on the column. The
remaining stimuli are arrayed within the column, rank-ordered by firing rate from top to
bottom.
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A. The ranked activity for all direction-category selective neurons in the six-direction
categorization task recorded from Monkey H during the sustained sample (200-650 ms after
motion onset) and late delay (750-1500 ms after motion offset). For each neuron, the three
red rectangles correspond to the three directions in one direction category, and the three blue
rectangles correspond to the three directions in the other category.
B. The ranked activity for all direction-category selective neurons in the six-direction
categorization task recorded from Monkey I during the sustained sample and late delay.
C. The ranked activity for all pair-selective neurons recorded from Monkey H in the shape
pair-association task during the sustained sample (200-650 ms post-shape onset) and late
delay (750-1500 ms after shape offset).
D. The ranked activity for all pair-selective neurons recorded from Monkey I in the shape
pair-association task during the sustained sample and late delay.
E. The ranked activity for all motion direction category-selective neurons in the twelve-
direction categorization task with the 45-225° category boundary recorded from Monkey H
during the sustained sample (200-650 ms post-motion onset) and late delay (500-1000 ms
following motion offset).
F. The ranked activity for all category-selective neurons in the twelve-direction
categorization task after training Monkey H with a 135-315° boundary, during the sustained
sample and late delay.
G. The ranked activity for all category-selective neurons in the twelve-direction
categorization task with the 45-225° category boundary recorded from Monkey S during the
sustained sample and late delay.
H. The ranked activity for all category-selective neurons in the twelve-direction
categorization task after training Monkey S with a 135-315° category boundary during the
sustained sample and late delay.
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Figure 4. Time course of category-selective activity
The normalized difference in neuronal activity between the categories for the population of
45 neurons recorded from Monkey H during the direction-categorization task. Blue indicates
higher activity when the up/left directions were presented, black indicates no difference in
activity between the two categories, and red indicates higher activity when the down/right
directions were presented. Each neuron's average activity across the three directions within
each category was calculated, then each neuron's activity was normalized by the maximum
activity from the category averages, the normalized down/right activity was subtracted from
the normalized up/left activity, and the difference was smoothed with a 50 ms Gaussian
kernel.
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Figure 5. Passive viewing of motion stimuli
A. Before categorization training, Monkey H passively viewed eight directions of
coherently-moving dot stimuli (Fanini and Assad, 2009).
B. For direction-selective neurons, the ranked activity evoked by each direction is plotted
during the sustained visual response (200-600 ms post-motion onset) as the monkey
passively viewed the stimuli. Directions are color-coded as in the motion categorization task
in Fig. 1, where 6 indicates the highest activity, and 1 indicates the lowest activity. Two
directions that fell along the category boundary were excluded.
C. The ranked activity for motion direction-category selective neurons recorded from
Monkey H following the categorization training, replicated from Figure 3A, right panel.
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Figure 6. Bias in preferred direction and color in a perceptual decision task
A. Behavioral task.
B-C. The ranking of preferred directions and coherences for the direction-selective neurons
recorded from Monkey Av (B) and Monkey At (C) during the dots presentation (left panels,
200-800 ms post-dots onset) and delay before the target color change (right panels, 1-300 ms
after dots offset). Responses to rightward 99.9%-coherence moving dots are in dark blue,
26.5%-coherence dots are in light blue, leftward 99.9%-coherence dots are in tan, and
leftward 25.6%-coherence dots are in light yellow.
D. The ranking of preferred color following the target-color change (100-300 ms post target
color change) for color-selective neurons recorded in Monkey At.
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Figure 7. Relationship between the spontaneous activity and the activity during the direction
categorization task
A. The averaged late delay activity (750-1500 ms following motion offset) of the two
categories recorded from Monkey H during the six-direction categorization task are plotted
against each other. Linear regression: r = 0.70, P < 10-12. The gray line has a slope of 1.
B-C. The activity during the late delay versus the spontaneous activity recorded during the
fixation period (50-450 ms following fixation). Each point represents the mean activity of an
individual neuron during the presentation of one direction category. Linear regressions are
fitted separately for each category: up/left category (B, blue points): r = 0.73, P < 10-12;
down/right category (C, red points): r = 0.62, P < 10-9.
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D-E. The activity during the early visual transient (40-140 ms following motion onset)
versus spontaneous activity, plotted in the same convention as above. Linear regressions are
fitted separately for each category: up/left category (D, blue points): r = 0.099, P = 0.036;
down/right category (E, red points): r = 0.098, P = 0.036.
F. The averaged early visual transient (40-140 ms following motion onset) of the two
categories plotted against each other. Linear regression: r = 0.99, P ~ 0. The gray line has a
slope of 1.
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