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Abstract

To explore the feasibility of pyrosequencing for quantitative differential gene expression analysis we have
performed a comparative study of the results of the sequencing experiments to those obtained by a conventional
DNA microarray platform. A conclusion from our analysis is that, over a threshold of 35 normalized reads per
gene, the measurements of gene expression display a good correlation with the references. The observed con-
cordance between pyrosequencing and DNA microarray platforms beyond the threshold was of 0.8, measured
as a Pearson’s correlation coefficient. In differential gene expression the initial aim is the quantification the
differences among transcripts when comparing experimental conditions. Thus, even in a scenario of low cov-
erage the concordance in the measurements is quite acceptable. On the other hand, the comparatively longer
read size obtained by pyrosequencing allows detecting unconventional splicing forms.

Introduction

RNA sequencing (RNA-seq) is becoming one of the most
popular applications of next generation sequencing tech-

nologies (Cloonan et al., 2008; Marioni et al., 2008; Mortazavi
et al., 2008; Wang et al., 2009). Despite the fact that RNA-seq is a
relatively new methodology, it has already been applied to the
study of the transcriptional complexities of different organ-
isms, including yeast (Nagalakshmi et al., 2008), mice (Mor-
tazavi et al., 2008), Arabidopsis (Eveland et al., 2008), and
humans (Sultan et al., 2008). In addition, to provide a quanti-
tative estimation of the mRNA levels, RNA-seq also offers extra
information on novel splice junctions, novel transcripts, alter-
nate transcription start sites, rare transcripts, etc., constituting a
first-order tool for analysis and discovery in transcriptomics.

Recent articles have compared short-read technologies to
microarray references, finding a good correspondence when
a high number of reads is available (Bloom et al., 2009; t’Hoen
et al., 2008). Here we extend, for the first time, this comparison
to long reads to check to what extent the results of differential

gene expression comparisons obtained by pyrosequencing are
consistent with those ones obtained with gene expression
microarrays. To this end, we have chosen a well-established
perturbation model, the exposure of yeast cells to an abrupt
increase in external pH. Previous DNA microarray-based
analyses of the effect of this perturbation on gene expression
remodeling have shown that it results in several hundred of
genes being induced or repressed (Lamb and Mitchell, 2003;
Lamb et al., 2001; Platara et al., 2006; Ruiz et al., 2008; Serrano
et al., 2002, 2006; Viladevall et al., 2004), as a result of the
modulation of diverse signaling pathways (for a recent re-
view, see Arino, 2010). In this work we present a comparison
of the transcriptional changes detected after short-term
(10 min) exposure to high pH stress (pH = 8.0) for both wild-
type and snf1 mutant strains. snf1 encodes a Ser/Thr protein
kinase, homolog to the mammalian AMP-activated protein
kinase, which is required for regulating transcription of
glucose-repressed genes in yeast and becomes activated in
response to diverse stress situations (Hedbacker and Carlson,
2008). The biological implications of Snf1 in high pH response
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will be described elsewhere (Casamayor, Ruiz, Serrano, Pla-
tara, Ferrer-Dalmau, Barreto and Ariño, manuscript in prep-
aration). Our results show that there is a more than reasonable
agreement between both technologies if a threshold for the
number of reads for gene is used. In addition, despite the low
coverage, still uncommon splicing events can be found.

Material and Methods

RNA preparation

Cultures (50 mL) of wild-type (BY4741) and the snf1::kanMX
derivative were grown on YPD until OD660nm& 0.6–0.8 and
split into two aliquots. One set of aliquots received 16 mM KCl
(nonstressed cells) or 16 mM KOH (stressed cells, pH = 8.0 ap-
prox.). After 10 min cells were collected by rapid filtration
through 0.45 lm Metricel membrane filters (Pall Corporation,
Port Washington, NY) and dried cells kept at –80�C. Total RNA
was extracted by using the RiboPure�-Yeast kit (Ambion, ref.
AM1926), with two steps of elution from the column (50lL
each). Samples were treated with DNAse to eliminate genomic
DNA traces. RNA quality was assessed by denaturing 0.8%
agarose gel electrophoresis, and RNA quantification was per-
formed by measuring A260 in a BioPhotometer (Eppendorf,
Westbury, NY).

DNA microarray hybridizations

Eight micrograms of total RNA were employed for cDNA
synthesis and labeling, using the indirect labeling kit (CyScribe
Post-Labeling kit, GE-Amersham Biosciences, Piscataway, NJ),
in conjunction with Cy3-dUTP and Cy5-dUTP fluorescent
nucleotides. The cDNA obtained was dried and resuspended
in the hybridization buffer. DNA amount and labeling was
evaluated with a Nanodrop spectrophotometer (Nanodrop
Technologies, Inc., Wilmington, DE). Fluorescently labeled
cDNAs were combined and hybridized to yeast genomic mi-
crochips constructed in our laboratory by arraying 6014 dif-
ferent PCR-amplified open reading frames from Saccharomyces
cerevisiae (Alberola et al., 2004; Viladevall et al., 2004).

Prehybridization, hybridization, and washing conditions
were essentially as described previously (Hegde et al., 2000).

Microarray data analysis

Slides were scanned with a ScanArray 4000 apparatus
(Packard BioChips Technologies, New York, NY) and the
output analyzed using GenePix Pro 6.0 software. For each
experiment two independent biological replicates were per-
formed, each by duplicate (dyes were swapped to avoid dye-
specific bias) and data were combined (four microarrays/
experiment). All the microarray data in a MIAME-compliant
format have been deposited in GEO database and will be
available under series record GSE25697.

Raw data were normalized using the Limma method
(Smyth, 2005) with dye swap, as implemented in the Babe-
lomics package (Medina et al., 2010). Fold changes were cal-
culated using Babelomics as well.

Preparation of cDNA for sequencing

For first-strand cDNA synthesis the RevertAid� H Minus
First Strand cDNA Synthesis Kit (Fermentas, Hanover, MD)
was used. Two independent reactions were carried out (20 lg

of total RNA each) for each experimental condition. Priming
was achieved by using the degenerate oligonucleotide 5¢-
GAGCTAGTTCTGGAG(T)16VN-3¢ (V stands for any nucle-
otide but T and N for any nucleotide), which contains a GsuI
recognition site. Extension was achieved by incubation
with RevertAid� H Minus M-MuLV Reverse Transcriptase
in the presence of dATP, dTTP, dGTP, and 5-methyl-dCTP
(0.25 mM each, final concentration) at 42�C for 60 min. Finally,
the RNA/DNA hybrid was precipitated with ammonium
acetate and ethanol by incubation at - 80�C for 5 min and
centrifugation for 20 min at 4�C at maximum speed in a mi-
crofuge. Pellets were rinsed with cold 70% ethanol, dried
briefly and resuspended in 40 lL of nuclease-free water.

Second-strand cDNA synthesis was accomplished using
the Second Strand cDNA Synthesis (Fermentas) following the
manufacturer’s directions, except that the starting first strand
material was 40 lL and all amounts were doubled accord-
ingly. The synthesis reaction was terminated by addition of
10 lL of 0.5 M EDTA, pH 8.0. The volume was adjusted to
200 lL with deionized water and the nucleic acid precipitated
by addition of 20 lL of 3M sodium acetate, pH 5.2 solution,
1.5 lL glycogen (20 g/L, Roche, Indianapolis, IN) and 600 lL
absolute ethanol. The mixture was keep for 30 min at - 80�C,
then centrifuged for 30 min at maximum speed at 4�C in a
microfuge. Double-strand cDNA pellets were washed with
70% ethanol and resuspended in 45 lL water. At this step both
independent reactions were combined and stored at - 20�C
until processed. Removal of the polyA tail was carried out by
incubating 75 lL of each cDNA sample with 8.6 lL of 10 ·
Tango buffer (Fermentas) and 2.5 lL of GsuI (5 U/lL) for 5 h
at 30�C. At the end of the digestion GsuI was inactivated by
incubation for 20 min at 65�C. Samples were stored at - 80�C
until use. This procedure yielded cDNA samples with a con-
centration ranging from 0.87 to 1.31 mg/mL.

Pyrosequencing

Gene expression was analyzed using 454 pyrosequencing
data generated by sequencing of cDNA synthesized from four
total RNA samples from two different S. cerevisiae strains at the
Universitat Autònoma de Barcelona. Raw data (.sff files) from
the GS FLX sequencer were provided by Lifesequencing S.L.
(Valencia, Spain). This represent half sequencing run of cDNA
from each sample, summing up a total of 502,959 reads. Ap-
proximately 5 lg of the cDNA-preparation in the size range
250–600 bp were used to generate a sstDNA shotgun library
according to the protocol supplied by the manufacturer. Briefly,
purified cDNA fragments were nebulized and concentrated
with AMPure PCR purification beads to remove fragments
below 200 bp. These fragments were hybridized to DNA cap-
ture beads and each cDNA fragment was individually ampli-
fied by emulsion-based clonal amplification polymerase chain
reaction (PCR) (emPCR). The DNA capture beads containing
amplified DNA were then deposited in individual wells of a
PicoTiter plate. After titration, the optimums DNA copies per
bead were used for the main sequencing run. After emulsion
PCR and subsequent bead recovery, DNA beads were loaded
onto one PicoTiterPlate and were subjected to sequencing.

Sequence data analysis

Four experiments were incorporated in the same run by
means of multiplexing using different tag sequences.
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A custom Perl script was made to deconvolute the multi-
plexing and to sort the sequences into the four different ex-
periments that were carried out. The script looks for the tag
sequence on the 5¢ end of the sequences, prune it, and assign
the sequence to the corresponding experiment.

All the remaining reads were mapped to the yeast genome
using the BWA-SW program (Li and Durbin, 2010). Reads
mapping in more than one genomic location were discarded.
The genomic coordinates for the genes were taken from the
Ensembl (Flicek et al., 2008). Gene coordinates were further
corrected with more recent estimations based on experimental
results (Nagalakshmi et al., 2008)

Table 1 shows the original number of reads and the reads at
each step of filtering and mapping. Both technical replicates
were joined for the subsequent step of quantification.

The quantification of the relative expression of the mRNAs
corresponding to the genes is measured as the number of

reads mapping onto it. This value must also be corrected by
the gene length. Thus, absolute number of reads mapped are
normalized as reads per kilobase per million of bases (RPKM)
(Mortazavi et al., 2008).

For each of the four matrices of counts we have applied the
RPKM normalization (Mortazavi et al., 2008) and later we
have calculated the fold changes (log2-ratios) of WT_pH vs
WT and snf1_pH vs snf1. In this way sequencing results are
comparable to log2-ratios obtained from the microarray
platform.

Microarray to sequence comparison

The fold change values obtained from the microarrays were
compared to the corresponding fold changes obtained from
the corresponding sequencing experiments using a simple
Pearson’s coefficient of correlation.

Table 1. Number of Reads, Filtering, and Mapping of the Two Replicates

Replicate 1 Replicate 2

WT WT_pH snf1 Snf1_pH WT WT_pH snf1 snfi_pH

Total reads 25,609 43,559 37,296 43,308 28,322 47,040 40,230 47,327
Filtered duplicated reads 4,350 7,106 6,065 6,774 3,003 5,146 4,035 4,442
Non-redundant reads 21,259 36,453 31,231 36,534 25,319 41,894 36,195 42,885
Reads with good quality 20,964 35,740 30,709 35,971 24,326 40,235 34,683 41,412
Number of reads with unique mapping

on Ensembl transcripts
7,768 12,450 11,911 13,980 9,119 13,961 14,152 16,188

Number of reads with unique mapping
on transcripts as in (Nagalakshmi
et al., 2008)

17,525 29,152 25,693 29,004 20,391 32,505 29,111 33,592

Number of reads with no transcript mapping 1,503 2,397 2,398 3,034 1,683 2,987 2,478 3,489
Number of reads with multiple mapping

on transcripts
860 1,476 1,146 1,524 942 1,597 1,354 1,580

Number of transcripts with reads 3,564 4,172 4,384 4,770 3,862 4,344 4,552 4,955
Number of undetected transcritps 3,560 2,952 2,740 2,354 3,262 2,780 2,572 2,169

FIG. 1. Boxplots of the comparisons. Comparisons of transcriptional changes detected by DNA microarray and pyr-
osequencing experiments. The changes in expression detected after exposure of wild-type (WT) and snf1 cells (snf1) to
alkaline pH are shown for each type of experiment as boxplots.
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Results and Discussion

Data generation and preprocessing

Four S. cerevisiae cultures were analyzed: (1) a control, wild-
type strain (WT), (2) the control strain under alkaline stress
(a shift to pH 8.0 for 10 min; WT_pH), (3) a mutant snf1 strain
(snf1), and (4) the snf1 strain under alkaline stress (snf1_pH).
The RNA was extracted and the corresponding cDNA pre-
pared as described in methods. The cDNA corresponding to
the four conditions studied was subjected to competitive hy-
bridization in two-color microarrays representing the com-
parisons WT versus WT_pH and snf1 versus snf1_pH (see
Methods section). On the other hand, two replicates of the
four experimental conditions were sequenced as described in
the Methods section. A number of total reads (merging both
replicates) between 40,000 and 80,000 were obtained for each
experimental condition analyzed. Table 1 shows details on the
number of reads obtained and the remaining number of reads
after the filtering and mapping steps.

Both, microarray and RNA-seq data were normalized as
described in methods. Two comparisons (WT vs. WT_pH and
snf1 vs. snf1_pH) were carried out and analyzed with the two
technologies. Log ratios of the fold change values were ob-
tained in the two comparisons. Figure 1 shows the boxplots of
the comparisons. It is apparent that the distribution of values
is different when microarrays are compared to RNA-seq re-
sults. Although microarrays produced almost symmetrical
boxplots, RNA-seq results seem to be slightly biased toward
low values of log-ratios. Table 1 shows the process of filtering
and mapping the reads onto the transcripts. The number of
mapped reads when the transcript definitions provided by
Ensembl (Flicek et al., 2008) are used is significantly lower

than that obtained when more accurate definitions, based on
experimental values (Nagalakshmi et al., 2008), are used. Such
more accurate definitions include the 5¢ and 3¢ UTR, missing
in many genes, which increases the regions for mapping in the
transcripts. This explains the corresponding increase in the
number of reads mapping in the transcripts.

With small variations among the experiments, over an 80%
of the total genes of the S. cerevisiae genome is detected as
apparently actively transcribing by, at least, one read. This
value is very similar to the number of genes detected as
transcriptionally active by DNA microarray analysis (80.2
and 73.9% for wild-type and snf1 cells, respectively. Figure 2
shows the distribution of reads per gene in the gene spectrum
of S. cerevisiae obtained in the sequencing experiments. Due
to the low coverage a substantial number of the genes are
represented by only a few reads.

DNA microarray and pyrosequencing data correlations

Beyond the simple detection, when the aim is the quantifi-
cation of the relative expression of the mRNAs corresponding
to the genes, a minimum number of reads is required for each
gene, which must also be corrected by the gene length (Mor-
tazavi et al., 2008).

The correlations between microarrays and RNA-seq data
were studied. The most extreme thresholds of coverage were
used given that this factor is known to have a strong effect on
the reliability of the measurements. Figure 3 shows how cor-
relation, computed as the Pearson correlation coefficient,
changes as a function of the threshold of normalized counts
(in RPKM) for including a gene in the comparison. The higher
the coverage of the genes considered, the better the correlation
until a plateau is reached. Figure 3 documents how the trends
obtained in the two genetic backgrounds studied (WT and
snf1) are quite similar and that the coefficient of correlation

FIG. 2. Percentage of genes that show a normalized number
of reads per transcript (RPKM value) represented in the x-
axis. The vertical line corresponds to the threshold of RPKM
value where the correlation between the microarray experi-
ment and the sequencing experiment is high (see text). In this
particular case, the number of genes corresponding to the
percentage at the RPKM value is of around 200 (actually 208
genes for the WT cells and 189 genes for the snf1 cells).

FIG. 3. Pearson’s correlation coefficient computed between
the microarray and the pyrosequencing comparisons as a
function of the threshold in normalized number of reads per
transcript (RPKM). Red line corresponds to the WT com-
parison and blue line to the Snf1 comparison.
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stabilizes approximately at a value of 0.8 over 35 RPKM per
transcript. Higher coverage did not resulted in more corre-
lated measurements, suggesting that the limit of concordance
between both technologies is around this value.

Obviously, the more stringent is the threshold the fewer
genes can be used in the comparisons. Figure 2 shows the
number of genes remaining after the threshold. Some recent
reports suggest that, in mammalian genomes, several million
reads would be required to obtain accurate quantification of
> 95% of expressed transcripts (Blencowe et al., 2009), but as
yet there has not been a detailed analysis on how sequencing
coverage affects differential expression calls yet (Oshlack
et al., 2010). Knowledge on the relationship between se-
quencing depth, feature detection, and differential expression
is needed for experimental design purposes and for under-
standing the characteristics of the analysis results.

Comparisons of differentially expressed genes

In the optimal threshold of 35 RPKM the trends observed
for the microarrays and the RNA-seq were quite similar. The
concordance in the number of genes differentially expressed

when both platforms are compared is reasonably high,
reaching 60% among the 20 most differentially expressed
genes (see Table 2). This is a high concordance value, even
for comparisons between platforms based on the same tech-
nology (Ioannidis et al., 2009; Shi et al., 2006).

Figure 4 shows all the possible pairwise comparisons at the
optimal threshold. RNA-seq produces more extreme values in
the most differentially expressed genes given that the scales of
measurement in the hybridization and in the sequencing
counts are different. However, overall the results are quite

Table 2. Intersections Between the 20, 50,
and 100 Genes More Differentially Expressed

by RNA-seq and Microarray

20 50 100

WT microarray/
WT RNAseq

12/20 (60%) 16/50 (32%) 48/100 (48%)

snf1 microarray/
snf1 RNAseq

12/20 (60%) 22/50 (44%) 67/100 (67%)

FIG. 4. Comparisons of log-ratio values between microarrays and RNAseq filtering only genes over the optimal threshold
of 35 RPKM. The diagonal contains the name of the variable that is represented in the x-axis for the row and in the y-axis
for the column, respectively. Thus, the plot in the first row and the second column corresponds to the comparison between
the arrays, the plot in the third row and the forth column corresponds to the comparison between the two sequencing
experiments, aned the rest o plots correspond to the remaining crosscomparisons.

DIFFERENTIAL EXPRESSION BY PERALLEL PYROSEQUENCING 57



similar despite the differences in the methodologies used to
measure mRNA abundances.

Detection of unconventional transcripts

Even with a low degree of coverage, the comparatively
longer read size provided by pyrosequencing potentially al-
lows for the detection of new events of splicing. Upon the
application of Top-hat cuff links (Trapnell et al., 2010) to all
the reads, including those that did not map into known
transcripts, we have found six new splicing sites that originate
new transcripts, not reported either in Ensembl or in SGD.
Genes YGL031C (ribosomal protein L30 of the large 60S
ribosomal subunit) and YER131W, YGR027C, YLR333C,
YLR367W, and YLR388W (protein components of the small
40S ribosomal subunit) were found to display a new transcript
form. All of them were 5¢ heterogeneity length variants.
However, a comprehensive survey of the literature revealed
that such unconventional splice variants had already been
described elsewhere ( Juneau et al., 2007; Miura et al., 2006).
Only new splice variants supported by, at least, a 10 · cov-
erage were considered. It is expected that an increase of the
coverage will reveal new unconventional transcripts.

Conclusions

The main aim of differential gene expression experiments is
the quantification of the differences among transcripts when
comparing conditions. For this purpose we have shown that
only a few reads per gene can account for a reasonably ac-
curate evaluation of changes in its transcriptional pattern. In
addition, it also allows detection of a number of transcrip-
tionally active genes quite similar to of the number observed
in the microarray analysis. Therefore, our work demonstrates
that, even in a scenario of low coverage, the concordance
among DNA microarrays, which has been the reference
technology for transcriptional studies and the pyrosequen-
cing technologies, is quite acceptable. Furthermore, uncom-
mon splicing variants can be found even at low levels of
coverage. Obviously, the detection of low-abundance variants
will be critically dependent on higher coverage measure-
ments. On the other hand, low coverage implies a lower
number of genes over this minimum number of reads re-
quired for detecting changes in their transcriptional statuses.

An interesting conclusion from this study is the fact that
using the standard annotation of yeast the results obtained are
clearly suboptimal. The reason for this is that many reads map
beyond the standard gene boundaries. The use of more de-
tailed annotations of gene and transcript boundaries, derived
from more recent works (Nagalakshmi et al., 2008) produces
clearly improved results.
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