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Abstract

Aims: Hydrogen peroxide (H2O2), a nonradical oxidant, is employed to ascertain the role of redox mechanisms in
regulation of vascular tone. Where both dilation and constriction have been reported, we examined the hypothesis
that the ability of H2O2 to effect vasoconstriction or dilation is conditioned by redox mechanisms and may be
modulated by antioxidants. Results: Exogenous H2O2 (0.1–10.0 lM), dose-dependently reduced the internal diameter
of rat renal interlobular and 3rd-order mesenteric arteries ( p < 0.05). This response was obliterated in arteries pre-
treated with antioxidants, including tempol, pegylated superoxide dismutase (PEG-SOD), butylated hydroxytoluene
(BHT), and biliverdin (BV). However, as opposed to tempol or PEG-SOD, BHT & BV, antioxidants targeting radicals
downstream of H2O2, also uncovered vasodilation. Innovations: Redox-dependent vasoconstriction to H2O2 was
blocked by inhibitors of cyclooxygenase (COX) (indomethacin-10lM), thromboxane (TP) synthase (CGS13080-10 lM),
and TP receptor antagonist (SQ29548-1 lM). However, H2O2 did not increase vascular thromboxane B2 release;
instead, it sensitized the vasculature to a TP agonist, U46619, an effect reversed by PEG-SOD. Antioxidant-condi-
tioned dilatory response to H2O2 was accompanied by enhanced vascular heme oxygenase (HO)-dependent carbon
monoxide generation and was abolished by HO inhibitors or by HO-1 & 2 antisense oligodeoxynucleotides treatment
of SD rats. Conclusion: These results demonstrate that H2O2 has antioxidant-modifiable pleiotropic vascular effects,
where constriction and dilation are brought about in the same vascular segment. H2O2-induced oxidative stress
increases vascular TP sensitivity and predisposes these arterial segments to constrictor prostanoids. Conversely,
vasodilation is reliant upon HO-derived products whose synthesis is stimulated only in the presence of antioxidants
targeting radicals downstream of H2O2. Antioxid. Redox Signal. 18, 471–480.

Introduction

The tone of resistance arterial vessels is regulated by the
interplay of mechanisms promoting vasoconstriction and

dilation via complex networks of interacting signaling path-
ways. Reactive oxygen species (ROS) contribute to regulation
of vasomotor tone in physiological and pathophysiological
settings (26, 46), with superoxide anion (O2

� - ), hydrogen
peroxide (H2O2), and other ROS displaying constrictor and/
or dilator activities (20). H2O2 is particularly interesting, be-
cause it affects vasoconstriction as well as dilation (1),
sometimes in the same vascular preparation (10, 28). These

outcomes are determined by the concentration of H2O2, vessel
type, and experimental conditions (11, 12).

H2O2-induced vasoconstriction has been related to stimu-
lation of vascular smooth muscle thromboxane A2 (TxA2)/
prostaglandin endoperoxide receptors (thromboxane [TP] re-
ceptors) by a product of arachidonic acid metabolism via COX
(13, 27, 32). It has also been linked to elevation of cytosolic
calcium (49) and/or activation of protein kinases (18, 41).
Conversely, H2O2-induced vasodilation has been associated
with activation of guanylate cyclase (33), increasing cellular
cAMP levels (16), and stimulation of vascular smooth muscle
K + channels (4, 15). Vasodilation has also been linked to
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augmented synthesis of vasodilator mediators, including
prostaglandins (16) and endothelium-derived nitric oxide (NO)
(50). According to previous studies, whether H2O2-promotes
vasoconstriction or dilation depends on the functional status of
K + channels in the target vessels, viz., constriction occurs when
vascular smooth muscle K + channels are functionally im-
paired, and dilation happens when they are not (28). The redox
status of the vessels influences functionality of vascular K +

channels (40, 48), as well as of other signaling proteins impor-
tant for Ca2 + -dependent regulation of vasomotor tone (26, 37).
Redox mechanisms also modulate the expression of TP recep-
tors (42, 44), the activity heme oxygenase (HO) (21, 23, 29), and
the vascular actions of its vasodilatory product—carbon mon-
oxide (CO) (25). Hence, it is plausible that one or more of these
redox-controlled vasoregulatory systems condition vasocon-
striction or dilation to this nonradical oxidant, H2O2.

We undertook the present study to test the hypothesis that
the response of resistance arteries to physiologically relevant

concentrations of H2O2 is dictated by the redox status of
the preparations. This was achieved via activation and/or
suppression of redox-modulated vasoactive systems that
promote constriction or dilation. First, we contrasted the effect
of H2O2 on internal diameter (ID) of pressurized rat renal
interlobular (RIA) and 3rd order mesenteric artery (MA), in
the absence and presence of antioxidants. Second, we con-
nected the redox-dependent constrictor action of H2O2 to an
associated increase in responsiveness to TP receptor stimu-
lation. Third, we linked the redox-dependent dilator action of
H2O2 to stimulation of HO-derived CO.

Results

Effect of H2O2 on the ID of pressurized arterial vessels:
comparison in preparations pretreated and not
pretreated with antioxidants

The notion that redox mechanisms influence the response of
resistance arteries to H2O2 was addressed by contrasting the
effects of this oxidant on vascular diameter in preparations
exposed and not exposed to agents selected for their ability to
create an antioxidant setting. As illustrated in Figure 1, RIA and
MA not pretreated with an antioxidant demonstrated a dose-
dependent decrease in ID to exogenous H2O2 ( p < 0.05). In
contrast, H2O2 challenge in RIA and MA pretreated with 1 mM
butylated hydroxytoluene (BHT), a general antioxidant with an
ability to quench free radicals downstream of H2O2 (24), re-
sulted in increment ( p < 0.05) rather than reduction of ID. H2O2

also increased the ID of MA and/or RIA pretreated with des-
ferroxamine (DES), an iron chelator that by disrupting the
Fenton’s reaction decreases generation of hydroxyl radical
(OH$), and subsequent lipid peroxidation (2, 45), dimethyl
thiourea (DMTU), OH$ scavenger (22), or biliverdin (BV), an
antioxidant effective against radicals downstream of H2O2 and
a known inhibitor of lipid peroxidation (17, 39) (Fig. 2).

Notably, arteries pretreated with pegylated superoxide
dismutase (PEG-SOD), an antioxidant that dismutates O2

-

anion to H2O2, or tempol, a SOD mimetic (34), did not re-
spond to exogenous H2O2 with an increase of ID. This was
observed, even though these pretreatments greatly attenuated

Innovation

Our study examines the vascular effects of exogenous
hydrogen peroxide (H2O2) in light of its oxidant properties.
This radical invokes a constrictive response in resistance
arteries, where an antioxidant milieu is not provided. Both
constriction and dilation are observed in the same arterial
preparation, depending upon the use of antioxidants
targeting radicals derived-from or leading-to H2O2. Where
thromboxane sensitization underlies vasoconstriction,
increased heme oxygenase (HO)-dependent carbon mon-
oxide (CO) generation causes vasodilation. Notably,
radicals downstream to H2O2 interfere with its ability to
stimulate HO-dependent CO release; targeting these oxi-
dants increases vascular CO and leads to H2O2-induced
vasodilation. This study lays the foundation to explore
vasoreactivity of endogenous H2O2, in models of chronic
oxidative stress where application of broad-spectrum an-
tioxidants should provide further evidence of pleiotropic
vascular effects of H2O2.

FIG. 1. Effect of H2O2 on
the ID of renal interlobular
and mesenteric resistance
arteries, in arteries not ex-
posed and exposed to BHT.
Results are means – SE, n = 6/
group.*p < 0.05 versus control.
BHT, butylated hydroxyto-
luene; H2O2, hydrogen per-
oxide; ID, internal diameter;
SE, standard error.
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the ability of H2O2 to effect decrease of vascular diameter, as
observed in vehicle-pretreated controls (Fig. 2). Accordingly,
the response of resistance arteries to exogenous H2O2 appears
conditioned by their redox status: constriction versus blunted
constriction or dilation, respectively, in vascular preparations
not afforded and afforded protection from oxidative stress.

Relative to this point, complementary experiments docu-
mented that H2O2 (10 lM) increase O2

- levels as revealed by
lucigenin chemiluminescence (from 66.9 – 10.9 CPM/lg pro-
tein to 87.5 – 7.7 CPM/lg protein, n = 7, p < 0.05). Vessels
exposed to H2O2 also displayed increased levels of TBARS
(from 433.9 – 168.8 to 1892.3 – 498.0 nmoles/mg protein, n = 4,
p < 0.05), an index of lipid peroxidation and oxidative stress
(35). This increase was blunted in vessels concurrently
pretreated with BHT (234.3 – 76.2 vs. 138.4 – 15.6 nmoles/mg
protein, n = 4), BV (185.7 – 56.1 vs. 214.9 – 89.1 nmoles/mg
protein, n = 4), tempol (103.5 – 7.52 vs. 190.2 – 26.1 nmoles/mg
protein, n = 4), PEG-SOD (96.6 – 4.1 vs. 144.7 – 15.0 nmoles/mg
protein, n = 3), or DES (321.8 – 162.3 vs. 207.5 – 42.3 nmoles/mg
protein, n = 3), whereas arterial vessels exposed to H2O2 did
not display any significant change in endogenous SOD activity
(control: 331.3 – 68.6 vs. H2O2: 281.7 – 71.4 U/mg protein).

Effect of H2O2 on the ID of pressurized arterial vessels:
comparison in preparations with and without
endothelium

To investigate contribution of the vascular endothelium to
the redox-dependent vascular actions of H2O2, RIAs, de-
nuded and not denuded of endothelium were contrasted in
terms of responsiveness to H2O2, in the absence and presence
of BHT. As shown in Figure 3A, endothelium removal did not
affect H2O2-induced vasoconstriction in vessels without an-
tioxidant pretreatment. On the other hand, as depicted in
Figure 3B, H2O2-induced increase of vascular ID was blunted
by endothelium removal in arteries pretreated with BHT.
Accordingly, antioxidant-conditioned H2O2-induced vasodi-
lation is endothelium dependent, whereas constriction of
vessels without antioxidant pretreatment is not.

Redox-dependent H2O2-induced vascular constriction:
contribution of TP receptor activation

Earlier reports have linked oxidative stress to mecha-
nisms of vasoconstriction involving TP receptor stimulation
(13, 43). The notion that redox-dependent H2O2-induced
vasoconstriction relies on TP receptor activation was

FIG. 2. Effect of H2O2 on change in ID, over baseline, of
renal interlobular (n: Control-5, PEG-SOD-4, tempol-4,
Des-4, DMTU-5, and BV-6) and mesenteric arteries (n54),
in arteries not exposed and exposed to antioxidants (as
shown). Results are means – SE. *p < 0.05 versus control. BV,
biliverdin; DES, desferroxamine; DMTU, dimethyl thiourea;
PEG-SOD, pegylated superoxide dismutase.

FIG. 3. Effect of H2O2 on change in ID, over baseline, of
renal interlobular in the presence or in the absence of en-
dothelium, in arteries not exposed and exposed to BHT
(1 mM). Results are means – SE. *p < 0.05 versus endothelium
intact.
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addressed by comparing the constrictor action of the oxi-
dant in pressurized RIA pretreated and not pretreated
with indomethacin—to inhibit COX-dependent synthesis of
constrictor prostanoids, CGS-13080—to selectively inhibit
thromboxane synthase, or SQ29548, to effect blockade of TP
receptors. As depicted in Figure 4A, the reduction of ID
elicited by H2O2 in arteries not pretreated with antioxidants
was blunted ( p < 0.05) in preparations bathed in Krebs’ buffer
(KB) containing indomethacin, CGS-13080, or SQ29548. These
observations suggest dependence of vasoconstrictor action of
H2O2 on a TP receptor agonist manufactured via a pathway
involving COX and thromboxane synthase activities, most
likely TxA2. However, data presented in Figure 4B show that
vascular thromboxane B2 (TxB2) synthesis, an estimate of
TxA2, is neither stimulated by H2O2 nor suppressed by BHT
or tempol. Yet, as illustrated in Figure 4C, the sensitivity of
pressurized RIA to the constrictor action of a synthetic agonist
for TP receptor, U46619, was significantly enhanced in vessels
pretreated with H2O2 (EC50 values: 0.63 – 0.07 nM in controls
vs. 0.17 – 0.08 nM with H2O2, p < 0.05). This sensitizing ac-
tion of H2O2 was not observed in arteries pretreated with
PEG-SOD (EC50 values: 0.49 – 0.05 nM in PEG-SOD vs.
0.47 – 0.04 nM with PEG-SOD + H2O2, p < 0.05), suggesting
that its expression requires a pro-oxidant setting. Accord-
ingly, the constrictor action of H2O2 in renal arteries without
antioxidant protection is linked to TP receptor activation, re-
lying on a mechanism involving augmented sensitivity of the
vessels to TP receptor stimulation rather than increased vas-
cular production of TxA2. That pretreatment with H2O2 does
not sensitize RIA to the constrictor action of a-1 adrenergic
receptor stimulation with phenylephrine (EC50 values:
9.3 – 0.99 and 10.7 – 2.2 nM, in arteries with and without H2O2

pretreatment, respectively) is keeping in line with the possi-

bility that the sensitizing action of H2O2 on TP receptor ago-
nist-induced vasoconstriction is specific.

Redox-dependent H2O2-induced vascular dilation:
contribution of HO-derived CO

The hypothesis that redox status conditions the response of
resistance arteries to H2O2 via mechanisms involving vascular
production of HO-derived CO was addressed by examining
the effect of exogenous H2O2 on CO released from isolated
small artery segments incubated in oxygenated KB containing
and not containing antioxidant agents. Complementary
studies were conducted in pressurized RIA bathed in KB
containing antioxidants, to contrast the ability of H2O2 to elicit
vasodilation in preparations exposed and not exposed to an
inhibitor of HO activity. Dilatory responsiveness to H2O2 also
was studied in RIA taken from rats pretreated with antisense
oligodeoxynucleotides (AS-ODN) targeting HO-1 and HO-2
or with the corresponding scrambled oligodeoxynucleotides
(SAS-ODN).

Figure 5 depicts the effect of H2O2 on release of CO from
MA without and with antioxidant pretreatment, in the ab-
sence and presence of the HO inhibitor chromium mesopor-
phyrin (CrMP). In preparations not exposed to CrMP, H2O2

enhanced ( p < 0.05) the release of CO from arteries pretreated
with BHT or BV, although it failed to do so in vessels without
antioxidant pretreatment or pretreated with tempol. H2O2

also induced CO release from MA pretreated with DES
(500 lM) (from 135.5 – 16.1 to 227.7 – 39.0 pmol/mg protein/h,
n = 7, p < 0.05, but not from arteries pretreated with PEG-SOD
(163.2 – 26.1 vs. 156.4 – 47.6 pmol/mg protein/h, n = 6). Release
of CO from arteries exposed to CrMP was diminished ( p < 0.05)
by about 50%, and did not increase by further challenge with

FIG. 4. Vascular effects of
H2O2 in the absence or
presence of modulators of
the COX-TxA2-TP receptor
pathway. (A) Effect of H2O2

on change in ID, over baseline,
of renal interlobular arteries,
in arteries not exposed and
exposed to treatments as
shown. Results are means –
SE. *p < 0.05 versus control. (B)
Effect of H2O2 on vascular
TxB2 synthesis in renal inter-
lobar arteries, in the arteries
exposed and not exposed to
BHT or tempol; Results are
means – SE. (C) Effect of H2O2

on concentration–response
curve of a TP agonist (U46619),
in arteries concurrently ex-
posed or not exposed to pe-
gylated SOD. Results are
means – SE; *p < 0.05 versus
vehicle; #p < 0.05 versus H2O2.
EC50 is presented in the text.
TP, thromboxane; TxB2,
thromboxane B2.
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H2O2, either in the absence or presence of antioxidants (Fig. 5).
That H2O2-induced CO release from arteries pretreated with
BHT or BV was prevented by CrMP implies that the oxidant
promotes release of only HO-derived CO. Relevant to this
point, the release of CO-induced by H2O2 from MA pretreated

with BHT is not increased in endothelium-denuded prepara-
tions (47.4 – 11.0 vs. 67.7 – 8.5 pmol/mg protein/h, n = 6). It is
also noteworthy that estimates of HO activity in arterial ho-
mogenates revealed no stimulatory effect of H2O2, either in the
absence (729 – 41 vs. H2O2: 817 – 78 pmol/mg protein/h, n = 7)
or in the presence of the antioxidant BV (807 – 72 vs.
887 – 83 pmol/mg protein/h, n = 4). Hence, estimates of HO
activity in cell-free vascular homogenates are not necessarily a
reflection of HO-derived CO release from intact vessels
afforded antioxidant protection.

Complementary studies also revealed no effect of H2O2 on
HO-1 or HO-2 protein expression, in arteries incubated for
90 min in oxygenated KB containing 1 mM BHT (HO-1/b-
actin ratio: 0.56 – 0.14 vs. 0.54 – 0.03, without and with H2O2

(10 lM), respectively; HO-2/b-actin ratio: 0.62 – 0.10 vs.
0.60 – 0.04, without and with H2O2, respectively). Accord-
ingly, the action of H2O2 to promote vascular release of HO-
derived CO appears not to depend on enhanced HO isoform
protein expression.

Figure 6 illustrates the result of experiments comparing the
effect of H2O2 on the ID of pressurized RIA, bathed in KB
containing an antioxidant (BHT, BV, or DMTU), with and
without concurrent treatment with an inhibitor of HO, CrMP,
or stannous mesoporphyrin (SnMP). The ability of H2O2 to
increase the ID of such vessels was blunted by pretreatment
with CrMP or SnMP. The aforementioned observations link-
ing H2O2-induced vasodilation to release of HO-derived CO
were corroborated in a study examining the effect of H2O2 on
the ID of BHT- (1 mM) treated RIA taken from rats pretreated
with AS-ODN, or corresponding SAS-ODN, targeting HO-1
and HO-2. Shown in Figure 7A–C, respectively, arteries
from rats pretreated with HO-1 and HO-2 AS-ODN in

FIG. 6. Antioxidant-condi-
tioned vasodilation to H2O2

in the absence or in the
presence of HO inhibitor.
Effect of H2O2 on change in
ID, over baseline, of renal in-
terlobular (A, C, D) or mes-
enteric resistance arteries (B),
in arteries exposed to various
antioxidants, and not exposed
or concurrently exposed to HO
inhibitors. Results are means –
SE. *p < 0.05 versus without HO
inhibitor.

FIG. 5. Effect of H2O2 on vascular CO generation in ar-
teries not exposed or concurrently exposed to the HO in-
hibitor, CrMP. Experiments conducted in the absence or
presence of antioxidants, as shown. Results are means – SE.
*p < 0.05 versus respective vehicle in the presence of antioxi-
dant, either BHT or BV. CO, carbon monoxide; CrMP,
chromium mesoporphyrin; HO, heme oxygenase.
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combination featured, relative to control data in arteries from
rats pretreated with the corresponding SAS-ODN, dimin-
ished expression of HO-1 (HO-1/b-actin ratio: 0.25 – 0.03 vs.
0.61 – 0.13) and HO-2 protein (HO-2/b-actin ratio: 0.35 – 0.10
vs. 0.63 – 0.06, n = 4, p < 0.05), along with attenuation of H2O2-
induced CO release and dilation.

Discussion

H2O2 is a mediator of oxidative stress via complex mecha-
nisms involving promotion of lipid peroxidation, stimulation
of cellular oxidases that increase O2�levels, and generation of
OH$ via the Fenton reaction (1, 45). The first key finding of our
study is that exogenous H2O2 constricts pressurized isolated
rat resistance arteries, RIA and MA, a response that is pre-
vented or in some cases converted to dilation by pretreatment
with antioxidant agents. Importantly, not all antioxidants af-
fect the same change in the vascular response to H2O2: pre-
treatment with PEG-SOD and tempol prevent H2O2-induced
vasoconstriction without uncovering a dilatory response,
whereas pretreatment with BHT, DES, BV, and DMTU pre-
vents H2O2-induced vasoconstriction, but also uncovers a
vasodilator response. The differential effect of these antioxi-
dants on vascular responsiveness to H2O2 may be a conse-
quence of differences in the profile of ROS targeted by the
antioxidants in question. Hence, while the primary target of
PEG-SOD and tempol is O2�(34), the primary targets of BHT
(24), DES (2), BV (38, 39), and DMTU (22) are free radicals
downstream of H2O2, including OH$.

That H2O2-induced vasoconstriction is impeded by a di-
verse group of antioxidants suggests a critical connection
between the constrictor action and the generation of a pro-
oxidant milieu. This conclusion is in alignment with the
finding that arterial vessels challenged with H2O2 display
increased levels of O2�and lipid peroxides. Also, all antioxi-
dants that prevent H2O2-induced vasoconstriction also pre-
vent the associated rise in lipid peroxides. That H2O2-induced
vasodilation is uncovered by pretreatment with BHT, DES,
BV, or DMTU, but not with PEG-SOD or tempol, suggests that
the dilatory action is linked to elimination of a free radical
other than O2�, which interferes with the expression of such an

action. All in all, the emerging conclusion is that the response
of resistance arteries to exogenous H2O2 is conditioned by
the redox status: constriction versus blunted constriction or
dilation in vascular preparations not afforded and afforded
protection from oxidative stress.

The second key finding of our study is that the redox-
dependent vasoconstrictor action of H2O2 is linked to TP
receptor activation, relying on a mechanism involving en-
hanced sensitivity of the vessels to TP receptor stimulation.
Other investigators have reported a connection between the
constrictive action of H2O2 and constrictor prostanoids (13).
We found that pretreatment of vascular preparations with
agents that inhibit COX, thromboxane synthase, or TP re-
ceptors eliminates constrictor responsiveness to H2O2. This
implies a primary role of TxA2 as a mediator of this constrictor
response. However, in our studies, H2O2 did not increase
vascular TxB2 production; rather, it enhanced the sensitivity
of the arteries to a synthetic agonist of TP receptors, U46619.
Relevant to this conclusion, previous investigators have
shown that H2O2 can result in an immediate and sustained
increase in the cell surface expression of TP receptors (3). This
effect has been linked to oxidative stress-mediated increased
TP recycling to the plasma membrane, thus increasing func-
tional TP expression (42, 44). Increasing the plasma mem-
brane TP receptor density should enhance the number of
spare receptors available for activation by endogenous ago-
nists. Consequently, TP receptor occupancy needed for the
half-maximal response (EC50) should be lowered without
affecting the maximal response. These conclusions are in-
deed corroborated by our results showing the lowering of
EC50 for the TP agonist in the presence of exogenous H2O2.
Even though the precise molecular events leading to TP-
sensitization remain unknown, consideration should be given
to the possibility that this is linked to oxidant-induced acti-
vation of PKC signaling, as previously suggested (14).

Upon pharmacological blockade of vasoconstriction, we
expected H2O2-induced vasodilation to prevail. However,
neither antioxidants targeting O2

- (PEG-SOD & tempol)
nor agents interfering with the synthesis or actions of con-
strictor prostanoids allowed expression of H2O2-induced va-
sodilation, even in the face of blunted vasoconstriction. These

FIG. 7. Effect of H2O2 on CO release and change in ID in arteries from rats treated with either SAS-ODN or AS-ODN
for HO1 and HO2. (A) Western blot analysis of HO1 and HO2 expression in renal interlobar arteries from rats treated with
either AS or SAS-ODN for HO1 and HO2. (B) Effect of H2O2 on vascular CO release in mesenteric resistance arteries exposed
to BHT. Results are means – SE; *p < 0.05 versus vehicle treated arteries from HO1 + HO2 SAS-ODN. (C) Effect of H2O2 on
change in ID in renal interlobular arteries exposed to BHT (1 mM). Results are means – SE; *p < 0.05 versus arteries from
HO1 + HO2 SAS-ODN. AS-ODN, antisense oligodeoxynucleotides; SAS-ODN, scrambled oligodeoxynucleotides.
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observations, in addition to the findings that H2O2-induced
vasodilation necessitates pretreatment with BHT, BV, DES, or
DMTU, suggest that exclusion of radicals downstream of
H2O2, rather than interference with the expression of vaso-
constriction, enables H2O2 to elicit vasodilation.

The third key finding of our study is that the redox-
dependent vasodilatory action of H2O2 is linked to a mecha-
nism involving enhanced vascular production of HO-derived
CO. Two reciprocal lines of evidence substantiate this rela-
tionship: first, the experimental conditions found to favor
expression of H2O2-induced vasodilation; for example, pre-
treatment of the arterial vessels with antioxidants such as BHT,
BV, and DES also enables exogenous H2O2 to increase the re-
lease of vascular CO. Second, experimental interventions
that interfere with H2O2-induced release of CO; for example,
pretreatment with inhibitors of HO activity or HO protein
expression effectively prevents the oxidant from eliciting a
vasodilatory response. Accordingly, the redox-depended
vasodilatory action of H2O2 may be regarded as a manifesta-
tion of the associated increase in vascular production of HO-
derived CO. That only arterial vessels pretreated with BHT,
BV, or DES are stimulated by H2O2 to release HO-derived CO
implies that this response is also redox dependent, necessi-
tating an antioxidant setting for its expression. These results
suggest that free radicals, other than O2

- , somehow prevent
H2O2 from increasing HO-dependent CO; however, our study
falls short from addressing the mechanism underlying this
redox-dependent stimulatory action of H2O2 on vascular CO
release. According to previous reports, higher concentrations
of H2O2 have been shown increase HO activity in purified
enzyme systems and in renal homogenates, via acting as
an electron donor (23, 29). However, in the present study, a
stimulatory action of H2O2 on HO activity, measured in arterial
homogenates in vitro, could not be documented, either in the
absence or presence of a vasodilation promoting antioxidant.
However, one cannot exclude the possibility that the ability of
exogenous H2O2 to increase vascular release of HO-derived
CO relies on stimulation of HO activity via engagement of
second-messenger systems that are only operational when
cellular integrity is preserved. In this regard, interaction be-
tween H2O2-activated kinases (6–8, 30) and kinase-dependent
modulation of HO (5, 47) may link H2O2 to stimulation of
HO-dependent CO release in arterial vessels.

Thus, as summarized in Figure 8, pleiotropism observed to
exogenous H2O2 with regard to the ID of resistance arteries is
redox dependent. In the absence of an exogenous antioxidant,
H2O2-induced redox imbalance leads to vasoconstriction that
in turn is dependent upon vascular TP sensitization. All
antioxidants, in spite of their diverse specificity, attenuate
oxidative stress and prevent this redox-dependent vasocon-
striction. Importantly, vasodilation to H2O2 is only uncovered
when oxidants downstream of H2O2 are quenched and
involves increased HO-dependent CO generation. These ob-
servations lead us to conclude that a free radical, other than
O2

- , interferes with the mechanisms linking H2O2 to stimu-
lation of HO-dependent CO generation.

Materials and Methods

Animals

The Institutional Animal Care and Use Committee of the
New York Medical College approved all animal protocols.

Male Sprague-Dawley rats (250–300 g; Charles River) were
anesthetized (pentobarbital sodium, 60 mg/kg, intraperito-
neally), and the kidneys and the intestines were removed and
placed on a dish filled with oxygenated ice-cold KB (compo-
sition in mM: 118.5 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 KH2PO4, 1.2
MgSO4, 25.0 NaHCO3, and 11.1 mM dextrose). RIA and
mesenteric arteries (3rd order) were isolated for various ex-
periments as described in the Results section. To investigate
the effects of HO inhibition on vascular effects of H2O2, an-
tisense oligonucleotides, HO2-AS-ODN and HO1-AS-ODN
(complementary to rat HO2 and HO1 mRNA, respectively),
and their scrambled controls were synthesized by Sigma-
Genosys; each oligodeoxynucleotide was phosphorothioated
on the first three bases of the 3¢ end and was purified by high-
pressure liquid chromatography. The sequence of HO-1 AS-
ODN is 5¢-GGCGCTCCATCGCGGGACTG-3¢ and targets
bases + 10 to - 9 of HO-1 mRNA, and the sequence of HO-2
AS-ODN is 5¢-TCTGAAGACATTGTTGCTGA-3¢ and targets
bases + 11 to - 9 of HO-2 mRNA. The sequence of HO-1
S-ODN is 5¢-TCCAGCGGCGTCAGCGGTGC-3¢, and the se-
quence of HO-2 S-ODN is 5¢-GATCTGACTTCAAGTGATTG-
3¢. The effectiveness of HO-1 AS-ODN and HO-2 AS-ODN to
reduce tissue expression of HO-1 and HO-2, respectively, was
documented previously (19). Oligonucleotides encapsulated
in liposomes (1:1 molar ratio) prepared using DOTAP lipo-
somal transfection reagent (Roche Diagnostics) were followed

FIG. 8. A schematic representation of pleiotropic vascular
effects of H2O2, as derived from our hypothesis and re-
sults. In the absence of exogenous antioxidants, H2O2 pro-
motes a pro-oxidant setting and induces TP-dependent
vasoconstriction. This effect is abrogated by a wide spectrum
of antioxidants, targeting radicals both up and downstream
of H2O2. Conversely, vasodilation to H2O2 is reliant upon
HO-derived products and is only uncovered in the presence
of antioxidants targeting radicals downstream of H2O2.
These results imply that a radical other than O2

- somehow
interferes with the ability of H2O2 to stimulate HO product
generation and to bring about vasodilation.
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by injection into the tail vein of rats, as described before (19).
Animals were sacrificed 36 h postinjection, and renal and
mesenteric arteries were collected for further studies.

Vascular function studies

RIAs or MAs, were dissected into segments 1 to 2 mm in
length and mounted on a myograph (model CH/200/Q;
Living System Instrumentation). All residual blood was
gently flushed from vessel lumen before experiments. One
end of the vessel was mounted on a glass micropipette and
connected to a pressure servo-controller (model CH/200/Q;
Living System Instrumentation). The opposite end of the
vessel was tied to a micropipette connected to a stopcock. A
video camera ( Javelin), leading to a video caliper (Texas A &
M), monitor ( Javelin) and recorder, was used to record the
vessel chamber. Vessels were superfused throughout the
experiment with gassed (95% O2–5% CO2) KB at 1 ml/min, at
37�C. Intraluminal pressure was gradually increased to
80 mmHg and allowed to equilibrate for 1 h. Drugs were ad-
ded, at indicated concentrations, to the superfusion buffer and
allowed to equilibrate for 15 min; changes in ID were then
recorded in response to increasing concentrations of H2O2,
over a period of 20–25 min. Data are reported as ID (lm) or
change in ID (lm) over baseline.

For experiments involving endothelium free arteries, the
vascular endothelium of RIA was removed via passage of an
air bubble through the lumen of the artery. Endothelium re-
moval was confirmed by failure of these arteries to dilate in
response to increasing concentrations of acetylcholine (Ach).
Arteries demonstrating Ach-dependent dilation were ex-
cluded from the study.

Assessment of vascular TxB2

Freshly dissected renal interlobar arteries were washed and
pretreated with and without indicated antioxidants. Follow-
ing a 15-min preincubation, arteries were removed and placed
in fresh vials containing or not containing various antioxi-
dants in the absence or presence of H2O2 (10 lM). Incubations
were done in closed vials at 37�C in oxygenated KB for 60 min,
so as to allow detection of low concentrations of eicosanoids.
After incubation, the reaction was stopped by acidification
with acetic acid (*pH 4.0), and internal standard mix (I.S for
TxB2- d4PGE2) was added to the buffer, followed by extrac-
tion with ethyl acetate. TxB2 was identified and quantified
with a Q-trap 3200 linear ion trap quadrupole liquid chro-
matography/tandem mass spectrometry equipped with a
Turbo V ion source operated in a negative electrospray mode
(Applied Biosystems), as previously described (36). Data are
normalized to total protein and are presented as ng/mg
protein/h.

Assessment of vascular CO release

Freshly dissected small mesenteric arteries (2nd and 3rd
order) were pretreated with indicated antioxidants, with un-
treated arteries kept as controls. Following a 15-min pre-
incubation, 10 lM of H2O2 was added to the vials, and the
vials were then sealed and incubated at 37�C for 90 min in
oxygenated KB. Experiments were performed in arteries
concurrently exposed and not exposed to CrMP (30 lM), to
differentiate between HO-dependent and independent sour-

ces of CO. After incubation, gas-sealed vials were placed on
ice to stop the reaction, and headspace gas was analyzed for
CO with C13O16 added as an internal standard. CO mea-
surements were performed using an Agilent 5890 GC-MS, as
previously described (19, 31). Data are normalized to total
protein and are presented as pmoles/mg protein/h.

Assessment of HO activity in vascular homogenates

Freshly dissected small mesenteric and renal interlobar
arteries were homogenized in sucrose–Tris buffer (sucrose,
255 mM, Tris–HCl, 20 mM) with NP-40 (1%) and mammalian
protease inhibitor cocktail (Sigma Aldrich). After protein
estimation, 0.15 mg protein of the arterial homogenate was
incubated with various antioxidants for 15 min. After this,
homogenates were incubated with 10 lM of H2O2, 30 lM
heme, and 2 mM NADPH, in the absence or presence of an
HO inhibitor, CrMP (50 lM). Vials were then sealed and in-
cubated at 37�C for 90 min. After incubation, gas-sealed vials
were placed on ice to stop the reaction, and headspace
gas was analyzed for CO with C13O16 added as an inter-
nal standard. CO measurements were performed using an
Agilent 5890 GC-MS, as previously described (19, 31). HO
activity is calculated by subtracting CO levels obtained in the
presence of CrMP from those obtained without. Data are
normalized to total protein and are presented as pmoles/mg
protein/h.

Assessment of HO protein expression

Freshly dissected renal interlobar and small mesenteric
arteries were paced in oxygenated KB containing 1 mM of
BHT. After a 15-min preincubation, arteries were incubated
with and without H2O2 (10 lM) at 37�C for 90 min. HO-1 and
HO-2 protein expression was assessed in these arteries by
immunoblotting, as previously described (9). Assessment of
HO protein expression in SD rats treated with either AS-ODN
or S-ODN for HO-1 & 2 was performed in freshly dissected
renal interlobar arteries from these animals.

Assessment of the redox state

Renal interlobar and small mesenteric arteries were pre-
incubated in the absence or presence of described antioxidants
for a period of 15 min, followed by an incubation with and
without H2O2 (10 lM) at 37�C for 20 min in oxygenated KB.
Subsequently, arteries were snap-frozen in liquid nitrogen
before being analyzed for TBARS (using a Cayman Chemi-
cals, Inc. kit # 10009055), as per manufactures’ protocol.
Data are normalized to total protein and are presented as
nmoles/mg protein.

For assessment of effects of H2O2 on arterial SOD activity,
mesenteric and renal arteries were incubated with and with-
out H2O2 (10 lM) at 37�C for 20 min in oxygenated KB. Ar-
teries were snap-frozen in liquid nitrogen and analyzed for
SOD activity (Cayman Chemicals, Inc. kit # 706002), as per the
manufacturers’ protocol. Data are normalized to total protein
and are presented as U/mg protein.

Lucigenin chemiluminescence was employed for superox-
ide detection, as previously described (25). Briefly, renal in-
terlobar arteries were incubated in oxygenated KB at 37�C for
20 min with and without H2O2 (10 lM). Arteries were then
transferred to preblanked lucigenin vials (5 lM) and analyzed
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in a scintillation counter. Data are normalized to total protein
and are presented as CPM/lg protein.

Data analysis

Data are expressed as means – SEM for the given number
(n) of experiments. Results were analyzed by ANOVA with
Tukey–Kramer post hoc analysis, or by Student t-test. The null
hypothesis was rejected at p < 0.05.
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BHT¼ butylated hydroxytoluene
BV¼ biliverdin
CO¼ carbon monoxide

COX¼ cyclooxygenase
CrMP¼ chromium mesoporphyrin

DES¼desferroxamine
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HO¼heme oxygenase
H2O2¼hydrogen peroxide

ID¼ internal diameter
KB¼Krebs’ buffer

PEG-SOD¼PEGylated superoxide dismutase
RIA¼ renal interlobular
ROS¼ reactive oxygen species
SOD¼ superoxide dismutase

SnMP¼ stannous mesoporphyrin
TP¼ thromboxane

TxA2¼ thromboxane A2

TxB2¼ thromboxane B2
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