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Abstract
This paper is motivated by the problem of image-quality assessment using model observers for the
purpose of development and optimization of medical imaging systems. Specifically, we present a
study regarding the estimation of the receiver operating characteristic (ROC) curve for the
observer and associated summary measures. This study evaluates the statistical advantage that
may be gained in ROC estimates of observer performance by assuming that the difference of the
class means for the observer ratings is known. Such knowledge is frequently available in image-
quality studies employing known-location lesion detection tasks together with linear model
observers. The study is carried out by introducing parametric point and confidence interval
estimators that incorporate a known difference of class means. An evaluation of the new
estimators for the area under the ROC curve establishes that a large reduction in statistical
variability can be achieved through incorporation of knowledge of the difference of class means.
Namely, the mean 95% AUC confidence interval length can be as much as seven times smaller in
some cases. We also examine how knowledge of the difference of class means can be
advantageously used to compare the areas under two correlated ROC curves, and observe similar
gains.
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I. Introduction
OBJECTIVE, rigorous evaluations of image quality are a critical component of imaging
system development and optimization. For this purpose, engineers have traditionally relied
on image fidelity metrics that quantify resolution and noise, such as the modulation transfer
function (MTF), noise power spectrum (NPS), pixel signal-to-noise ratio (pSNR), or noise
equivalent quanta (NEQ). However, because such metrics require the restrictive assumptions
of a shift-invariant imaging system and stationary noise [1], they do not reflect the full
complexity of real medical scanners. Furthermore, the interpretation of image fidelity
metrics can be problematic because they are not necessarily correlated with the ability of an
observer to perform a task with the image. For these reasons, a task-based approach to
image-quality assessment has been advocated in which image quality is measured by
specifying 1) a task, 2) an observer, and 3) an objective figure of merit for observer
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performance [1]. Either human observers or numerical (computerized) observers, which are
typically called model observers, may be considered. There is value in each, and the choice
for a specific observer depends on the goal at hand [1]. As discussed in [2], model observers
are valuable for system development and optimization, whereas human observers are
suitable for final clinical validation. The results presented in this paper are motivated by the
problem of system development and performance optimization with model observers; they
are not applicable to image-quality assessment using human observers.

Observer performance for a binary classification task can be described by the receiver
operating characteristic (ROC) curve and by associated ROC summary measures [1], [3],
[4]. Since only a finite number of images is available for testing the observer, estimates of
ROC figures of merit suffer from statistical variability. Of course, this variability decreases
as more images are used, but there are few situations where the number of images is large
enough to allow variability to be neglected. In particular, creating images with modern 3-D
reconstruction algorithms requires significant computational effort, so that the number of
images that can be reasonably produced (typically around 200) for an ROC study
necessitates careful control of statistical variability. This issue becomes particularly
prominent when there are many parameters for the reconstruction algorithm, since any
change in these parameters requires reconstruction of new images. Hence, even for model
observers, there is strong motivation to control and reduce statistical variability so that
sufficient statistical power may be achieved in image-quality evaluations.

In many types of image-quality evaluations, knowledge of the difference of image class
means is available. In particular, when simulated tomographic data is used, which is
generally the case for early-stage evaluations, the image means can often be well-estimated
by reconstructing the data means. This is clearly the case for linear reconstruction methods,
such as those of the filtered backprojection (FBP) type. Furthermore, this is often a very
good assumption for nonlinear iterative reconstruction methods such as expectation
maximization (EM) [5], [6] and penalized-likelihood [7]. (In general, the accuracy with
which image means can be estimated from the data means depends on the reconstruction
algorithm, signals, and backgrounds of interest, e.g., strong signals are typically more
difficult to estimate.) In addition to simulated-data scenarios, good estimates of the image
means can also be obtained for some types of real-data experiments; see, e.g., [2], [8].

For linear model observers, knowledge of the difference of image class means translates into
knowledge of the difference of class means for the rating data. Note that current approaches
to ROC estimation from observer ratings do not take advantage of this information and are
not readily modified to include it. For excellent overviews of the ROC estimation literature,
the reader is referred to the books by Pepe [3], Krzanowski and Hand [4], Zhou et al. [9],
and Zou et al. [10].

By contrast, the ROC estimators that we propose in this work take knowledge of the
difference of class means for the observer ratings into account. We demonstrate that
knowledge of this difference can be used to greatly reduce statistical variability in estimates
of observer performance1 and that confidence intervals with exactly-known coverage
probabilities can be constructed.

1It is obvious that introducing prior knowledge reduces statistical variability. However, the reduction is not always large. For example,
consider the problem of estimating the variance from independent, identically distributed samples. In this case, using knowledge of the
mean changes the χ2-distribution of the sample variance by only one degree of freedom, so that the decrease in statistical variability is
tiny. The primary contribution of our work is to demonstrate that a large statistical advantage results from using knowledge of the
difference of class means.
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To construct our new estimators, we assume that 1) the difference in class means for the
observer ratings is known, 2) the observer ratings are normally distributed for each class of
images, and 3) the variance of the observer ratings is the same for each class of images. The
first assumption is the central hypothesis of this work, while the other two assumptions are
made primarily to facilitate our investigation. From a practical perspective, these conditions
are generally satisfied for linear model observers applied to the detection of small, low-
contrast lesions at a known-location. Specifically, the first assumption is well-justified in
many settings for linear observers, as discussed earlier. In addition, the second assumption is
a good approximation for linear observers since reconstructed tomographic images are often
approximately multivariate normal; see [11, Sec. 2.5] and references therein for a nice
discussion of this issue in the context of nuclear medicine, and see [12, Appendix] for the
case of X-ray CT. Furthermore, even for images that are not normally-distributed, the
normality of ratings for a linear observer is often justified by the central limit theorem. The
third assumption is well-justified, since the absence or presence of a small, low-contrast
lesion has little impact on the image covariance matrix. As a consequence, the variance of
ratings produced by a linear model observer at a fixed location is practically the same for
each class of images; this observation has been made by Barrett and Myers [1, p. 1209] in
the context of nuclear medicine and it was quantitatively analyzed in [13] for X-ray CT.

The present work can be viewed as an extension of the study in [14], which pertained to the
estimation of ideal (perfectly trained) channelized Hotelling observer (CHO) performance
with known difference of class means in channel space. Although powerful, the results in
[14] have the limitation that they are not applicable to the assessment of non-prewhitening
matched filter (NPMF) observers or to general finitely-trained linear observers with a fixed
template. These important cases are addressed here by suitably generalizing the approach of
[14] to deal directly with observer ratings.

The paper is organized as follows. After reviewing ROC curves and ROC figures of merit,
we present our new point and confidence interval estimators. Subsequently, the new point
and interval estimators for the area under the ROC curve (AUC) with known difference of
class means are compared to two estimators that do not incorporate this knowledge.
Specifically, the comparison is with a simple parametric estimator that is closely related to
the maximum likelihood estimator (MLE), and with the nonparametric Mann-Whitney U
estimator. Finally, we present an approximate confidence interval for a difference of AUC
values. Our results consistently show that knowledge of the difference of class means offers
a large advantage for statistical inference.

II. Image-Quality Metrics Based on Linear Observers
Recall that a task-based approach to image quality requires three ingredients: a task, an
observer, and an objective figure of merit for observer performance [1]. The approach
presented in this work pertains to any binary discrimination task at a fixed location in the
image. Here, each image is to be classified as belonging to one of two image classes,
denoted as class 1 and class 2. In a medical context, these image classes could correspond to
normal and diseased conditions, respectively.

We assume that the observer is a linear model observer, defined by a fixed (nonrandom)
template, w. For each image, p, the observer computes a rating statistic, t, defined as t=wTp,
where p and w are written as N × 1 column vectors. To classify each image, the model
observer compares t to a threshold, c. If t > c, then the observer concludes that the image is
from class 2. Otherwise, the image is classified as belonging to class 1. Throughout this
paper, we will denote the values of the rating statistic, t, for class-1 images as X and the
values of the rating statistic for class-2 images as Y.
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Flexibility in the choice of the observer template, w, represents an important aspect of
image-quality metrics based on the performance of linear observers. Typical choices for the
template, w, include both non-prewhitening and prewhitening matched filters, possibly with
the use of channels [1]. However, because there are many possible ways to define the
template, and because we wish to keep our discussion general, the question of how to choose
w will not be addressed here.

For each threshold, c, the observer’s performance is fully characterized by two quantities,
called the true positive fraction (TPF) and the false positive fraction (FPF) [1], [3]. The TPF
is the probability that the observer correctly classifies a class-2 image as belonging to class
2, whereas the FPF is the probability that the observer incorrectly classifies a class-1 image
as belonging to class 2. Since each value of results in a different TPF and FPF, observer
performance over all thresholds is completely described by the curve of (FPF, TPF) values
parameterized by . This curve is called the receiver operating characteristic (ROC) curve [1],
[3]. To denote the TPF as a function of the FPF, we will write TPF(FPF).

As explained in the introduction, we assume that X and Y are normally distributed with

equal variances, i.e.,  and . (If a random variable, U, follows a normal

distribution with mean, μ, and variance, σ2, we write .) In this case, the ROC
curve takes the form [3, Result 4.7, p. 82]

(1)

where Φ(x) and Φ−1(p) are the cumulative distribution function (cdf) and the inverse cdf,
respectively, for the standard normal distribution, , and

(2)

is the observer signal-to-noise ratio with δ=ν–μ. For normally distributed ratings, SNR is a
meaningful measure of the distance between the distributions of X and Y and is therefore a
suitable metric for observer performance [1, p. 819]. (Note that the notion of observer SNR
should not be confused with that of pixel SNR, which is not directly connected with
observer performance.)

A widely-used figure of merit for observer performance is the area under the ROC curve,
denoted as AUC. The AUC may be interpreted as the average TPF, averaged over the entire
range of FPF values [3]. Under our distributional assumptions, the AUC takes the form [1, p.
819], [3, p. 84]

(3)

In this work, we will always assume that δ=ν −μ > 0, so that SNR > 0 and 0.5 < AUC ≤ 1.

When only a restricted range of FPF values is considered relevant for observer performance,
then the partial area under the ROC curve, defined as

(4)

can be used as a summary measure [3]. The pAUC may be interpreted as the TPF averaged
over the FPF values between FPFa and FPFb. Observe that under our assumptions for the
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ratings, TPF at fixed FPF, AUC, and pAUC are strictly increasing functions of SNR only.
Later, we will take advantage of this property to construct our confidence interval estimators
for TPF, AUC, and pAUC.

III. Point Estimation of SNR
Suppose that continuous-valued observer ratings are available for m class 1 images and n
class 2 images, where either m or n can be zero. Denote these ratings for classes X1, X2, …
Xm and Y1, Y2, … Yn as and , respectively, and suppose that the observer ratings are

independent and normally distributed with equal variances for each class, i.e., 

and . In this section, we introduce and characterize a point estimator for SNR for
the case when δ is known and μ, ν, and σ2 are unknown.2

Below, the sampling distribution for the SNR estimator will be described using the inverted
gamma distribution, which is reviewed in Appendix A. If a random variable, X, follows an
inverted gamma distribution with parameters α and β, we write X ~ IG(α, β). Also, we use
the notational convention that if the upper limit on a summation is zero, then the summation
is zero.

We start by defining unbiased estimators of μ and ν as

(5)

and

(6)

Observe that when m and n are both nonzero, X̃ and Ỹ have lower variance than the

conventional unbiased sample mean estimators,  and ,
respectively. This advantage is gained through the incorporation of δ. The above mean
estimates can then be used to define the pooled variance estimator

(7)

Now, for m + n > 2, define the SNR estimator

(8)

with

2Note that knowing δ does not imply that either μ or ν is known. Whereas if either μ or ν is known along with δ, then μ and ν are
both known.
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(9)

where q=m + n−1 and B(a, b) is the Euler Beta function. The multiplicative factor, γ, is
chosen so that  is unbiased. The sampling distribution and optimality of  are
characterized by the following theorem, which is proved in Appendix B.

Theorem 1: Let q=m + n−1 and suppose that δ is known and that μ, ν, and σ2 are unknown.

If  is computed from independent samples  and , where i=1,2,
…, n with m ≥0, n ≥0, and q > 1, then

a.
 with α= q/2 and β=ηSNR2, where η = qγ2/2

b.  is the uniformly minimum variance unbiased (UMVU) estimator for SNR.

Hence, the sampling distribution of  is simply related to the inverted gamma
distribution, and  is the minimum variance estimator among all unbiased estimators of
SNR. Below, we state a corollary to Theorem 1, which is also proved in Appendix B.

Corollary 1: Let q=m + n−1, η=qγ2/2, and suppose that the hypotheses of the previous
theorem are satisfied. If q > 2, then

Corollary 1 shows that the ratio of the mean of  to its standard deviation only depends
on m and n. This property can be used to select sample sizes, without requiring the nominal
SNR value.

Note that instead of assuming that δ is known, both μ and ν could be assumed to be known.
From a practical viewpoint, requiring knowledge of μ and ν is significantly more
constraining. Nevertheless, we have investigated the advantage that results from assuming
that both and are known, as opposed to only knowing δ. Specifically, the properties of the
following SNR estimator that incorporates both μ and ν were studied:

(10)

where γ is defined by (9) with q=m + n and

(11)

It turns out that  obeys a theorem identical to that given for , except that the value of q
must be replaced by m + n. Given the behavior of the inverted Gamma distribution (q plays
a role similar to that of degrees of freedom for a χ2 distribution), the statistical advantage
resulting from incorporating knowledge of both μ and ν, as opposed to only δ, is very small.
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For this reason, we focus the development in this paper to the less constraining case of
known δ.

IV. Confidence Intervals
Our knowledge of the sampling distribution for  implies the next theorem, which
enables us to compute confidence intervals for SNR, TPF(FPF), AUC, and pAUC with exact
coverage probabilities; see Appendix C for a proof.

Theorem 2: Let q = m + n−1 and suppose that δ is known and that μ, ν, and σ2 are
unknown. Let ω1, ω2 ∈ (0, 1) be such that ω1 + ω2 = ω for some ω ∈ (0, 1), and let

. If  is computed from independent samples  and ,
where i=1, 2, …, m, j=1, 2, …, n with m ≥ 0, n ≥ 0, and q > 1, then

a. For each observation v of V, there exist unique values βL(v) and βU(v) in (0, ∞)
satisfying FV(v; α, βL(v))=1−ω1 and FV(v; α, βU(v))=1−ω2, where FV(v; α, β) is
the cumulative distribution function (cdf) of the inverted gamma distribution with
α=q/2.

b. Let  and . Then the random intervals

where the last three intervals are defined by substituting SNRL(V) and SNRU(V) for SNR in
(1), (3), and (4), are exact 1 − ω confidence intervals for SNR, TPF(FPF), AUC, and
pAUC(FPFa FPFb), respectively.

Hence, we can calculate a 1 − ω confidence interval for SNR and any strictly increasing
transformation of it from a realization of  by numerically solving the equations in
Theorem 2(a) for βL and βU. Note that if ω1=0, then βL(v)=0 and if ω2=0, then βU(v)=∞. In
either of these cases, the confidence interval defined is said to be one-sided. Otherwise, the
interval is said to be two-sided [15].

We close this section by restating a theorem that we proved in [13], which is also applicable
here. When our assumptions for the observer ratings are satisfied, it shows that a
simultaneous 1−ω confidence band for the entire ROC curve can be constructed from a 1−ω
confidence interval for SNR. Below, we denote the collection of points on the ROC curve as
ΩROC={(FPF, TPF) : FPF ∈ [0, 1]}.

Theorem 3: Suppose that  and that . Let [SNRL, SNRU] be a 1−ω
confidence interval for SNR, and define the set

where
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Then  is a 1−ω confidence band for the ROC curve in the sense that, for any value of

SNR, ΩROC is contained in  with probability 1−ω, i.e., .

The 1−ω confidence band defined in Theorem 3 is equivalent to the union over all FPF
values of 1−ω confidence intervals for TPF. Such a construction of an exact confidence
band is possible because the ROC curve is parameterized by only SNR when our
assumptions are satisfied [13].

V. AUC Estimator Evaluations
To assess the performance of the estimators introduced in the previous section, we now
present an evaluation of our new point and interval AUC estimators. For this evaluation, we
do not consider any specific imaging scenario, but rather compute all quantities from exact
theoretical expressions, presuming that our assumptions for the ratings are satisfied. Hence,
no Monte Carlo simulation of ratings was necessary. Such an approach allows us to cover a
wide number of scenarios, and is enabled by the fact that the distributions of all estimators
considered in this section only depend on SNR, m and n.

A. AUC Point Estimators

We compared our new parametric AUC point estimator, , to two other
AUC estimators that do not incorporate prior knowledge of δ. The first is the parametric

plug-in estimator  with . Here, 

and  are the usual sample means and

 is the usual pooled sample variance.

Hence,  is closely related to the MLE for AUC when δ is unknown,3 and only differs
from it by the normalization factor in the expression of S2, as the MLE would use m + n
instead of m + n−2. The second AUC estimator is the normalized Mann-Whitney U statistic,
defined as

(12)

where  if  is true and  otherwise. The normalized Mann-Whitney U
statistic is a widely-used, nonparametric, unbiased estimator of AUC [3], [4].

For our evaluations, we compared the relative bias and relative root-mean-square-error for
true AUC values of 0.6, 0.75, and 0.9 with m=n. For each estimator, we computed the

relative bias as  and the relative root-mean-square-error

(rmse) as , where mse is the estimator’s mean-square-error. All
quantities were calculated numerically from exact analytical expressions, where the

calculations for  and  utilized observations made in [13] and [17], respectively.

The results of our evaluations are shown in Fig. 1. Note that because  is unbiased, it
is not included in the bias plots. From these plots, we see that our new AUC estimator, ,

3Note that the popular software package ROCKIT [16] is also based on an MLE, but in a distribution-free setting. Since  relies
on stronger distributional assumptions than ROCKIT, it is expected to be slightly more efficient.
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has a very small negative bias (less than 0.3%) and significantly better relative rmse than the
estimators that do not incorporate knowledge of δ.

B. AUC Confidence Intervals

Next, we compared the new AUC confidence interval based on  to AUC confidence

intervals based on  and , respectively. The confidence intervals based on 

were computed as described in [13], and the confidence intervals based on  were
calculated using method 5 of Newcombe, which was identified as a preferred approach [18].

The figure of merit for the AUC confidence interval comparison was the mean 95%

confidence interval length (MCIL). For the intervals based on  and , we calculated
the MCIL by numerically evaluating exact analytical expressions involving the sampling

distributions. On the other hand, the MCIL for the intervals based on  was estimated
from 50 000 Monte Carlo trials for each choice of the parameters, which gives an accuracy
of ±0.0004.

The MCIL for the three AUC confidence interval estimators is plotted versus m + n in Fig. 2
with for m=n for AUC = 0.6, 0.75, and 0.9. The plots indicate that the 
estimator yields, on average, substantially shorter intervals than the estimators that do not
incorporate knowledge of δ. For example, the plot for shows that with 100 images, the
MCIL for the  estimator is roughly 0.03, compared to approximately 0.21 for
the other estimators. Fig. 2 (bottom right) contains plots of the ratio of the 95% MCIL for

the  intervals to the 95% MCIL for the  intervals for AUC values
of 0.6, 0.75, and 0.9. It can be seen that as the AUC value increases, the reduction in length
realized by the  intervals decreases. Nevertheless, even for , the MCIL for the

 intervals is smaller by a factor of almost two.

VI. Confidence Intervals for a Difference of auc Values
Typically, ROC analysis is used to compare two (or more) different imaging scenarios,
whereas the confidence intervals discussed in the previous section only apply to the
evaluation of a single imaging scenario. A simple approach to enable such a comparison is
to invoke the Bonferroni inequality [19, p. 13] to build a rectangular confidence region for
all involved AUC estimates. However, this approach is not optimal when a paired study
design is considered, because it does not account for the possible reduction in variability
when there is a positive correlation between AUC estimates. In this section, we discuss how
to construct a confidence interval for a difference of two AUC values in a paired study
design in the case where the difference between class means is known for the two
underlying ROC curves. This confidence interval is approximate, but it is shown to be
highly robust in terms of coverage probability, and to yield, like the intervals in the previous
section, a strong statistical advantage.

A. Theory
Below, subscripts A and B will be used to denote quantities corresponding to scenarios A
and B, respectively. For example, the AUC point estimator for scenario A will be written as

.

The difference in AUC values can be estimated as . Assuming asymptotic
normality of this difference, we can construct a 1 − ω Wald-style confidence interval for
AUCA – AUCB as
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(13)

where .

Now, it is necessary to estimate

(14)

As shown in Appendix E, the delta method (first-order Taylor approximations) can be used
to derive the approximate expressions

(15)

(16)

(17)

where ϕ(z)denotes the standard normal, , probability density function (pdf). The

coefficients in these expressions can be estimated by substituting  and  for SNRA

and SNRB, respectively. Estimators for , , and  are
discussed next.

Denote the class 1 and class 2 observer ratings for scenarios A and B with the vectors X =
[XA, XB]T and Y = [YA, YB]T, respectively. Suppose that these ratings each follow bivariate

normal distributions, i.e.,  and  with mean vectors  and

, and common covariance matrix

(18)

For each scenario, suppose that the observer rates m class 1 and n class 2 images. From the
above distributional assumptions, it follows that (see Appendix E)

(19)

(20)
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(21)

where q=m + n−1 is the degrees of freedom and  is the Gaussian hypergeometric

function. A MATLAB® function for  is provided in Appendix E. The

expressions in (19)–(21) are exact. We can estimate these quantities by substituting 

and  for SNRA and SNRB, respectively, and by estimating ρ. To estimate the
correlation coefficient, ρ, we define an unbiased covariance estimator, similar to S̃, as

(22)

The correlation coefficient can then be estimated with

(23)

B. Evaluations
We carried out Monte Carlo simulations to evaluate the coverage probability and mean
confidence interval length (MCIL) for the approximate confidence intervals introduced in
the last subsection. For purposes of comparison, we also assessed these metrics for Wald-
style confidence intervals based on the Mann-Whitney U statistic employing the variance-
covariance estimators of DeLong et al. [20]; see [3, p. 108] for further details on these
intervals.

The results of our evaluation for several choices of the parameters m, n, AUCA, AUCB, and
ρ are listed in Table I for the case of 95% confidence intervals (ω = 0.05). The coverage
probabilities and MCILs in this table were estimated from 10 million Monte Carlo trials for
each combination of parameters. Conservative 95% confidence bounds for each coverage
probability can be obtained by adding and subtracting 0.014 to/from each point estimate
(expressed in %), respectively. The estimates in Table I indicate that the coverage
probability of the known-δ approach is more reliable than the Mann-Whitney-based
intervals for small values of m and n. Moreover, a significant advantage in MCIL is
observed for the known-δ estimator in all cases.

The results of a more comprehensive evaluation of the coverage probability for the known-δ
intervals are shown in Fig. 3 for m = n= 50 with ω = 0.05. This figure illustrates how the
coverage probabilities change as ρ varies. Namely, for ρ = 0.55, 0.65, 0.75, 0.85, and 0.95,
box plots are given to summarize the estimated coverage probabilities for 81 combinations
of AUC values, with AUCA, AUCB ∈ {0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.
Each coverage probability was estimated from 1 million Monte Carlo trials to obtain an
accuracy of ±0.05%. The box plots were each generated with the MATLAB® command
boxplot. To interpret the plots, note that the edges of each box are the 25% and 75%
percentiles, and the horizontal line inside the box is the median. The length of each whisker
is 1.5 times the distance between the 75% and 25% percentiles, and data points outside this
range are plotted individually.

From these plots, we see that the coverage probabilities for the known-δ intervals are
generally very reliable. The most extreme outliers in each plot correspond to cases for which
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either AUCA = 0.95 or AUCB = 0.95. In these situations, the normality assumption on the
difference of AUC estimates is likely not well-satisfied.

VII. Discussion and Conclusions
In this work, we investigated the reduction in statistical variability that may be gained in
ROC estimates by using knowledge of δ, the difference of the class means for the observer
ratings. To execute our investigation, we introduced parametric point and confidence
interval ROC estimators that incorporate knowledge of δ. For the case of AUC estimation,
we compared the performance of our known-δ point and interval estimators to parametric
and nonparametric estimators that do not utilize knowledge of δ. This evaluation
demonstrated that the known-δ estimators introduced here are much more powerful than
estimators that do not incorporate knowledge of δ. For example, the mean length of the
known-δ 95% AUC confidence intervals can be as much as seven times smaller than it is for
approaches that do not use knowledge of δ; see Fig. 2 (bottom right).

In the definition of our point estimator for SNR, we included a multiplicative factor, γ, to
make it unbiased (and hence, a UMVU estimator). Although it is not immediately obvious
from our expressions, it is easy to show that our confidence interval estimators do not
depend on γ. Also, it can be seen that as m and n increase, γ rapidly approaches one.
Therefore, for large m and n, our SNR point estimator is essentially the same as the
maximum likelihood estimator (MLE) for SNR when δ is known. As a consequence of the
invariance property of MLEs [19, p. 320], our point estimators for TPF, AUC, and pAUC
are therefore asymptotically equivalent to the MLEs for these quantities. Hence, because
MLEs are asymptotically efficient [19, p. 472], our point estimators for TPF, AUC, and
pAUC will also be asymptotically efficient.

After evaluating the known-δ confidence intervals for a single AUC value, we introduced an
approximate confidence interval for the difference of two AUC values that utilizes
knowledge of δ. An evaluation of this interval estimator demonstrated robustness as well as
much better coverage probability and mean confidence interval length than intervals based
on the Mann-Whitney U statistic employing the DeLong variance-covariance estimator.

The known-δ estimators introduced here rely on three assumptions. Namely, they require
that 1) the difference in class means for the observer ratings is known, 2) the observer
ratings are normally distributed for each class of images, and 3) the variance of the observer
ratings is the same for each class of images. As discussed in the introduction, these
assumptions are well-satisfied in many imaging contexts for linear observers applied to
known-location discrimination tasks. Examples of such tasks include those with variable
background [2], [21]–[23]. In addition to lesion detection tasks, detection of contrast/tracer
uptake variations [24] also appears amenable to our assumptions. In a future work, we will
report on the robustness of our estimation theory for application to X-ray CT image-quality
evaluation.

We have demonstrated that large statistical advantages can be realized by parametric ROC
estimators that incorporate knowledge of δ. Extension of the known-δ concept to more
complex image-quality studies and to more general ROC estimators does not appear to be
trivial. Nonetheless, any such extension could potentially be of great value for image-quality
assessment.
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Appendix A
In this appendix, we review the inverted gamma distribution and some of its properties that
are needed in the paper.

The inverted gamma distribution originates as the distribution of the reciprocal of a gamma
random variable. It has two positive parameters, α and β, called the shape and the scale
parameters, respectively. A random variable U is said to have an inverted gamma
distribution if its pdf takes the form [25]

(24)

when u > 0, and fU(u) otherwise. Above, Γ(x) is the Gamma function. If U is an inverted
gamma random variable with parameters α and β, we write U ~ IG(α, β). The mean of such
an inverted gamma random variable is easily shown to be [25]

(25)

An important special case of the inverted gamma distribution is the inverted χ2 distribution.
Specifically, it can be shown that the reciprocal of a χ2 random variable with ν degrees of
freedom is an inverted gamma random variable with α=ν/2 and β=1/2.

Our proof of Theorem 1 in Appendix B requires the next two results regarding the inverted
gamma distribution.

Lemma 1: Let c > 0 be an arbitrary constant. If U ~ IG(α, β) and V = cU, then V ~ IG(α,
cβ).

Proof: See [14, Lemma 7].

Lemma 2: Suppose that U ~ IF(α, β) with α > 1/2 and let . Then

, where B(a, b) is the Euler Beta function.

Proof: Since  is a strictly increasing function, we can use the monotonic
transformation theorem for random variables [19, p. 51, Theorem 2.1.5] together with (24)
to write the pdf of V as

(26)

when v > 0 and fV(v) = 0 otherwise. Hence, the expected value of V is

(27)

Performing the change of variable z=1/v, (27) becomes

(28)
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(29)

where we applied a standard formula [26, 18.76, p. 109], in the last step.

Using the relation B(a, b) = Γ(a)Γ(b)/Γ(a+b) between the Euler Beta function and the
Gamma function and the fact that , (29) may be rewritten as

.

It is straightforward to show that the cdf for the inverted gamma distribution is

(30)

where Γ(x, y) is the upper incomplete gamma function. In MATLAB®, the function
gammainc can be used to evaluate the inverted gamma cdf as FU(u; α, β) = gammainc(β/u,
α, “upper”).

For our proof of Theorem 2 in Appendix C, we will need the following lemma, which
expresses a useful property of the inverted gamma cdf.

Lemma 3: Suppose that U ~ IG(α, β). Then at arbitrary fixed values of u and α, the cdf of
U, FU(u; α, β), is a continuous, strictly decreasing function of β.

Proof: Although this property seems like it should be well-known, we could not find any
proof of it in the literature. One way to prove it is as follows.

Suppose that and are fixed quantities, and define g(β) = FU(u; α, β). By (30), g(β) may be
written as

(31)

It follows from (31) and the theorem on absolute continuity for the Lebesgue integral [27, p.
141], that g(β) is continuous. In addition, since β > 0 and u > 0, the integrand in (31) is
strictly positive. Hence, (31) implies that g(β) is a strictly decreasing function of β.

Appendix B
Now, we prove Theorem 1 and Corollary 1, which characterize . We use the notational
convention that a summation is zero if its upper limit is zero. Also, recall that q = m + n − 1.

Proof of Theorem 1(a): Let  and  be the sample means
for class 1 and class 2, respectively. Here, we use the convention that X̄ = 0 if m = 0 and Ȳ =
0 if n = 0 .

From the definition of S̃2, we have

(32)
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Substituting (Xi − X ̄ + X̄ − X ̃) for (Xi − X̃) and (Yi − Ȳ + Ȳ − Ỹ) for (Yj − Ỹ) in (32) and
rearranging yields

(33)

Inserting the definitions of X̃ and Ỹ into (33), simplifying, and dividing by σ2 on both sides,
we get

(34)

By a standard result [19, Theorem 5.3.1(c), p. 218] for the distribution of the sample

variance, the first and second terms on the right side of (34) are distributed as  and 
random variables, respectively. In addition, it is easy to see that

. Hence, the third term in (34) is distributed as a 
random variable. Since the class-1 samples are independent of the class-2 samples, and since
X̄ and Ȳ are independent of the first and second terms, respectively [19, Theorem 5.3.1(a), p.

218], it follows that all three terms in (34) are independent. Thus, . Applying the
relationship between the inverted distribution and the inverted gamma distribution (see

Appendix A), we have . Next, observe that

(35)

where η=qγ2/2. Thus, Lemma 1 implies that  with α=q/2 and β = ηSNR2.

Proof of Theorem 1(b): For notational simplicity, denote the class-1 and class-2 samples
with the (random) vectors X = [X1, X2, … Xm]T and Y = [Y1, Y2, … Yn]T. Also, write
realizations of these vectors as x = [x1, x2, … xm]T and y = [y1, y2, … yn]T, respectively.
Below, we denote the statistics X̃, Ỹ, and as defined by (5)–(7) with x̃, ỹ, and s̃,
respectively, when evaluated at x and y.

From Theorem 1(a), Lemma 2, and (9), it follows that , i.e.,  is an
unbiased estimator of SNR. The joint pdf of the sample is

(36)

After lengthy algebra, (36) can be rewritten as

(37)

Define the vector
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(38)

So (37) can be written in the form

(39)

By the Fisher-Neyman factorization theorem [28, Thm. 6.5, p. 35], [29, Prop. IV.C.1, p.
159], T(X, Y) is a sufficient statistic. Moreover, because the expression in (39) has the form
of a full rank exponential family [28, pp. 23-24], T(X, Y) is a complete statistic [28, Thm.
6.22, p. 42]. Since 1) T(X, Y) is a complete sufficient statistic, 2)  is an unbiased

estimator of SNR, and 3) , i.e.,  is a function of T(X, Y) only, the
Lehmann-Scheffé Theorem [28, Thm. 1.11, p. 88] [29, p. 164] implies that  is the
unique UMVU estimator of .

Proof of Corollary 1: From Theorem 1(b), we have . Also, from Theorem
1(a), and (25), we have

(40)

The identity  then yields

(41)

The stated ratio of mean to standard deviation thus follows.

Appendix C
Next, we prove Theorem 2, which enables us to calculate our ROC confidence intervals. For
this task, we need the following lemmas.

Lemma 4: Let V be a continuous random variable with cdf, FV(v; θ), that is a strictly
decreasing function of the parameter θ for each v. Also, let ω1, ω2 ∈ (0, 1), be such that ω1
+ ω2 = ω for some ω ∈ (0, 1). Suppose that, for each v in the sample space of V, the
relations

may be solved for θL(u) and θU(v). Then the functions θL(v) and θU(v) are uniquely defined
and the random interval [θL(V), θU(V)] is an exact 1 − ω confidence interval for θ.

Proof: See [19, Theorem 9.2.12, p. 432] for a proof, and [15, Section 11.4] for a
complementary discussion.

Lemma 5: Let g(θ) be a continuous, strictly increasing function of θ. If [θL, θU] is a 1 − ω
confidence interval for θ, then [g(θL), g(θU)] is a 1 − ω confidence interval for g(θ).
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Proof: See [13, Lemma 3].

Theorem 2 follows from Theorem 1(a) together with Lemmas 3, 4, and 5. Note that under
our distributional assumptions, TPF, AUC, and pAUC are strictly increasing functions of
SNR.

Appendix D
In this appendix, we give a MATLAB® function that computes the ROC confidence
intervals that are discussed in this paper. Note that this code requires the Statistics
Toolbox™ for MATLAB®.

% find_CIs.m

%---for the case when delta is known----

% Returns 1-omega confidence intervals for SNR, AUC,

% TPF, and pAUC, where omega = omegal + omega2

% inputs: oraegal, omega2, m (number of images from

% class 1), n (number of images from class 2)

% FPF (a column vector of fixed FPF values for TPF

% CIs), FPFa, FPFb (lower and upper FPF limits for

% pAUC), snr (estimated value of SNR)

% outputs: CI (a structure array with the fields

% CI.SNR, CI.AUC, CI.TPF, and CI.pAUC, each

% containing confidence intervals for the associated

% ROC metric)

function [CI] = find_CIs(omegal, omega2, m, n, FPF, … FPFa, FPFb, snr)

alpha = (m+n-l)/2; % inv-gamma parameter

eta = pi/(beta((m+n-2)*.5,.5)^2);

if m+n < 2,

disp(‘error: m+n too small!’)

return

end
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snr_sq = snr^2;

% find confidence interval for second parameter

% of inverted gamma

% Note: The user may wish to check EXITFLA6 and

% add appropriate error messages, or they may

% wish to modify the tolerances of the fzero

% function with the OPTIONS argument.

beta0 = [le-6 le6]; % search interval

if (omegal ~= 0 && omega2 ~= 0),

[bet a_L, FVAL, EXITFLAG] = fzero(®(beta) …

gammainc(beta/snr_sq, alpha, ‘upper’) …

-(1-omegal),beta0);

[beta_U, FVAL, EXITFLAG] = fzero(®(beta) …

gammainc(beta/snr_sq, alpha, ‘upper’)…

-omega2,beta0);

elseif (omegal ~= 0 && omega2 == 0),

beta_L = 0;

[beta_U,FVAL,EXITFLAG] = fzero(®(beta) …

gammainc(beta/snr.sq, alpha, ‘upper’) …

-omega2,betaO);

elseif (omegal ~=0 && omega2 == 0),

[beta_L, FVAL, EXITFLAG] = fzero(®(beta) …

gammainc(beta/snr_sq,alpha,‘upper’) …

-(1-omegal)sbetaO);

beta_U = Inf;

else
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disp([‘Warning: Both omegal and ’…

‘omega2 are zero!’])

beta_L = 0;

beta_U = Inf;

end

% find confidence intervals for summary measures

SNR_L = sqrt(beta_L/eta);

SNR_U = sqrt(beta_U/eta);

AUC_L = normcdf(SNR_L/sqrt(2));

AUC_U = normcdf(SNR_U/sqrt(2));

TPF_L = normcdf(SNR_L + norminv(FPF));

TPF_U = normcdf(SNR_U + norminv(FPF));

pAUC_L = quadgk(®(fpf) normcdf(SNR_L … + norminv(fpf)),FPFa,FPFb);

pAUC_U = quadgk(®(fpf) normcdf(SNR_U … + norminv(fpf)),FPFa,FPFb);

CI = struct(‘SNR’, [SNR_L SNR_U], ‘AUC‘,… [AUC_L AUC_U], ‘TPF’, [TPF_L 
TPF_U], ‘pAUC‘,… [pAUC_L pAUC_U]);

Appendix E
Here, we derive the expressions given in Section VI for the confidence interval estimator of

AUCA – AUCB. Since ,  can be approximated with a first-order
Taylor expansion around the point , i.e., for scenarios A and B,

 and

, where ϕ(z) is the pdf for the
standard normal distribution. The approximations (15)–(17) follow immediately from these
expansions.

Next, note that (19) and (20) are simply restatements of (41). Now, it remains to derive (21).

We start by using the unbiasedness of  and  to write

(42)

Employing subscripts A and B to denote scenario A and B quantities, respectively, the first
term can be rewritten as
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(43)

(44)

(45)

where  and . Now, applying [30, Theorem 3.2] together with the
identity B(a, b) = Γ(a)γ(b)/Γ(a+b) and the fact that , we get

(46)

where  is the Gaussian hypergeometric function. Inserting (46) into (45),
recalling the definition of γ, and simplifying, yields

(47)

We can simplify further by using [31, identity (9.5.3), p. 248] to obtain

(48)

Finally, (21) follows from (42) and (48).

The MATLAB® function below can be used to numerically approximate

 with a series expansion. In our experience, 50 terms is generally
sufficient to obtain high accuracy.

% hypergeom.m

% approximate the Gaussian hypergeometric function

% 2Fl(l/2,l/2,q/2,z) using an nterra series

% approximation

function F = hypergeom(q,z,nterm)

u=zeros(nterm);

u(l)=l; % k=0 term

for j=l:(nterm-1),
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k-j-i;

% get (k+l)th term from kth term

u(j+l)=u(j)*(z/(k+l))*((l/2+k)-2)/Cq/2+k);

end

% sun terms from smallest to largest to get best

% numerical accuracy

F=0;

for j=nterm:-l:l,

F=F+u(j);

end
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Fig. 1.
Plots of relative bias (left) and relative error (right) for AUC point estimators as a function
of the total number of images, m + n, with m = n. The plots correspond to true AUC values
of 0.6 (top), 0.75 (middle), and 0.9 (bottom).
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Fig. 2.
Mean 95% AUC confidence interval length plotted versus m + n with m = n and ω1 = ω2 =
0.025. The plots correspond to true AUC values of 0.6 (top left), 0.75 (top right), and 0.9

(bottom left). (bottom right) The ratio of the  MCIL to the  MCIL
plotted versus m + n for AUC = 0.6, 0.75, and 0.9.
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Fig. 3.
Box plots displaying the estimated coverage probability of approximate 95% confidence
intervals for AUCA – AUCB with m = n = 50. Each box plot corresponds to one value of ρ,
and summarizes the coverage probability for 81 combinations of AUC values, with AUCA,
AUCB ∈ {0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.
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