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To gauge the relative importance of contingency and determinism
in evolution is a fundamental problem that continues to motivate
much theoretical and empirical research. In recent evolution experi-
ments with microbes, this question has been explored by monitor-
ing the repeatability of adaptive changes in replicate populations.
Here, we present the results of an extensive computational study of
evolutionary predictability based on an experimentally measured
eight-locus fitness landscape for the filamentous fungus Aspergillus
niger. To quantify predictability, we define entropy measures on
observed mutational trajectories and endpoints. In contrast to the
common expectation of increasingly deterministic evolution in large
populations, we find that these entropies display an initial decrease
and a subsequent increase with population size N, governed, re-
spectively, by the scales Nμ and Nμ2, corresponding to the supply
rates of single and double mutations, where μ denotes themutation
rate. The amplitude of this pattern is determined by μ. We show
that these observations are generic by comparing our findings for
the experimental fitness landscape to simulations on simple
model landscapes.
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Evolutionary adaptations arise from an intricate interplay of
deterministic selective forces and random reproductive or mu-

tational events, and the relative roles of these two types of influ-
ences on the outcome of evolution has been subject to long-
standing controversy with significant philosophical implications
(1, 2). Although the vision of “replaying the tape of life” on Earth
or on some extrasolar planet remains confined to the realm of
imagination (3, 4), evolution experiments with microbial pop-
ulations have begun to address predictability of adaptation on
a microevolutionary scale (5–9). In particular, strong signatures of
parallel evolution have been observed in the context of the evo-
lution of antibiotic resistance in pathogens, a finding that is of
direct relevance to strategies of drug design and deployment
(10–14). As lack of knowledge of crucial parameters (e.g., the
frequency of beneficial mutations) in such experiments prevents
forward predictions, predictability is used in a weaker, a posteriori
sense implying repeatability of evolutionary trajectories in repli-
cate populations. For this reason, the two terms will often be used
interchangeably in the following (15).
The repeatability of adaptive trajectories is expected to de-

pend on the genetic constraints imposed by epistatic interactions
as well as on parameters such as population size N, mutation rate
μ, and the typical scale s of selection coefficients (16–18). To be
specific, consider a population evolving in the regime of strong
selection and weak mutation (SSWM), where mutations are so
rare that normally not more than one mutant is present simul-
taneously and the population can be represented as a single
entity that performs an adaptive walk in the space of genotypes
(19–21). Such walks are constrained to move uphill in fitness
(strong selection, Ns � 1) in single mutational steps (weak mu-
tation, Nμ � 1). As a consequence, a mutational pathway con-
necting two genotypes is selectively accessible in the SSWM
regime only if fitness increases in each step (22). A number of
recent studies of empirical fitness landscapes have shown that, in

most cases, only a small fraction of possible adaptive pathways
are accessible in this sense, which implies a dramatic enhance-
ment of evolutionary predictability (10, 11, 15, 23–27). More-
over, the statistical weights of different accessible trajectories
often vary widely, further narrowing the range of possibilities to
a small number of dominant evolutionary pathways (10, 11, 15).
In the SSWM regime, the likelihood of a given trajectory can be
quantified straightforwardly in terms of the product of the rela-
tive fixation probabilities for individual mutational steps (10).
With increasing N, the simultaneous presence of several mu-

tant clones becomes likely and clonal interference sets in (28–
31). Clonal interference introduces a bias favoring mutations of
large effect (32, 33), thus bringing the dynamics closer to the
“greedy” limit, in which the mutation of largest effect is fixed
deterministically in each step (34, 35). Although this in itself
tends to reduce the heterogeneity of evolutionary trajectories
(12, 35–37) and thus increases predictability, it is counteracted by
the increasing availability of genotypes carrying multiple muta-
tions. For sufficiently large populations, the crossing of small
fitness valleys (which is completely suppressed in the SSWM
limit) becomes relatively facile (38–40), opening up a host of
previously inaccessible pathways and leading to a greater degree
of randomness in the dynamics. The resulting overall effect on
evolutionary repeatability in large populations is hard to assess
without detailed analysis, and is expected to depend significantly
on the structure of the underlying fitness landscape.
The objective of this article is to explore how the predictability

of evolutionary dynamics depends on population parameters,
primarily population size and mutation rate, in the presence of
realistic epistatic interactions. To this end, we performed ex-
tensive simulations of standard asexual population dynamics of
Wright–Fisher type on an empirical eight-locus fitness landscape
obtained experimentally for the asexual filamentous fungus
Aspergillus niger (26). We provide two definitions of adaptive
pathways, which can be applied across all evolutionary regimes of
interest, and reduce to the familiar adaptive walks in the SSWM
regime. Probabilities of pathways and endpoints are then accu-
mulated in a large number of independent runs, and their re-
peatability is quantified through the entropies of these empirical
probability distributions. As usual, high predictability is signaled
by low values of the entropies.
Our central result is that the entropies of evolutionary trajec-

tories and endpoints vary nonmonotonically with population size
and mutation rate. The variation with population size is governed
by the parameters Nμ and Nμ2, which describe the supply of single
and double mutants, respectively, and it becomes more pro-
nounced with decreasing μ. Simulations on the empirical A. niger
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landscape are complemented by a study using a class of model
landscapes with tunable roughness (26, 41), which display the
same type of behavior.

Results
Path Types and Arrow Plots. There are different ways of defining
the path taken by an adapting population in a genotypic fitness
landscape, which are generally not equivalent but may yield
complementary information. Here, we focus primarily on lines of
descent (LODs), which represent the lineages that arrive at the
most populated genotype at the final time (see below for a precise
definition). Similar definitions of paths have been introduced
previously (see, e.g., refs. 42 and 43). In addition, we will make
use of the information supplied by the paths defined as the time
ordered sets of genotypes that at some time contain the largest
subpopulation. We will call such a path the path of the maximum
(POM). The POMs have been studied extensively in the context
of deterministic mutation-selection models (44). Note that single
steps in POMs, in contrast to those in LODs, can connect states
that are separated by an arbitrary number of point mutations.
To gain a better understanding of the factors that determine the

shape of the paths, we find it convenient to introduce arrow plots
representing ensembles of paths realized up to time T (Fig. 1).
Details of the construction are explained in the caption. Note that
the choice of the final time T is, up to a certain point, arbitrary, as
the population dynamics will never terminate completely. Here,
we generally choose T such that the population has time to find at
least some local fitness maximum. Only for the smallest pop-
ulation sizes, where the dynamics become very slow, do we observe
trajectories that do not terminate at a local maximum.
The LODs are obtained as follows: After a fixed time T, the

most populated state is determined. The last step of the path is
then defined as the connection between this state and the state
from which it arose for the last time by mutation. By “arose,” we
mean that the target state was unpopulated before the mutation
occurred. A given genotype may undergo several episodes of
“colonization” and extinction that are stored by the algorithm,
and the last episode before the colonization of the final state is
used to construct the step. Subsequent steps of the path are
constructed analogously, starting from the latest ancestor state
determined, i.e., we search for the state from which the latest

ancestor arose for the last time before giving rise to the next
genotype. The protocol is repeated until the starting point of the
simulations is reached.
Note that the paths generated in this way do not include all

paths explored by the population, nor all of the paths that con-
tribute to the production of the final state. Rather, they repre-
sent the “stepwise fastest” paths through which the final state
may have been accessed. The assumption made here is that this
path should normally be the one responsible for creating the first
mutants on the final state. Once these mutants have been cre-
ated, selection will dominate the further evolution. Thus, the
supply of additional mutants through other paths should play
a minor role. If there are several paths with similar probabilities
for being the fastest in this sense, they should all show up when
the numerical experiment is repeated many times.
The POMs, however, are constructed by keeping track of the

most populated genotype at every generation (Fig. S1). Note that
maxima do not need to move between adjacent genotypes but
can jump to states at Hamming distance larger than unity. Such
events have sometimes been referred to as leapfrog events (28)
(for experimentally observed examples, see, e.g., refs. 45 and 46).
We depict them by wavy lines. By comparing LODs and POMs,
we can thus obtain information about whether fitness valleys
have been crossed by sequential fixation or by “stochastic tun-
neling” (38, 39). In the latter case, the deleterious mutation is
not fixed, but the population on the deleterious state survives
long enough for a secondary mutant of higher fitness to arise. As
we will see later, tunneling is negligible as long as N is small
compared with a threshold scaling as 1/μ2, but becomes domi-
nant for larger N.

Population Size Dependence of Typical Paths. Although the main
focus of this article is on the statistical analysis of repeatability, it
is instructive to first elucidate the effects of population size on
the shape of evolutionary trajectories by means of a few typical
examples. For this purpose, we refer to Fig. 1, where ensembles
of LODs are shown that start from one of the four viable states
at Hamming distance d = 7 from the global optimum (GO) in the
A. niger landscape (see Materials and Methods for details on the
landscape, Fig. S1 for the corresponding representation in terms
of POMs, and Figs. S2–S4 for LODs starting from different

A B

C D

Fig. 1. Arrow plots of LODs obtained from an
ensemble of 1,000 runs over T = 215 = 32,768
generations, starting from genotype 250 of the
empirical A. niger dataset. Population size N varies
from 102 in A to 9·106 in D, and the mutation rate is
μ = 10−5. The possible states (genotypes) are ordered
such that the abscissa provides the Hamming dis-
tance, d, of a genotype to the global optimum
(GO), which is located at the origin. The Hamming
distance is the number of single mutational steps
separating two genotypes. States with the same
d are distributed equidistantly along the horizontal
direction. The circles represent endpoints of paths;
the darker their filling, the more often the corre-
sponding state was the most populated one at final
time T. The thicknesses of the arrows are directly
proportional to the fraction of times a certain step
has been taken when the numerical experiment was
repeated. The arrows always point from the ances-
tor to the descendant. The lines with arrows at both
ends mean that the step was taken in both direc-
tions, although not necessarily in the same realization.
The dashed arrows indicate that the descendant’s fit-
ness is lower than that of the ancestor.
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initial genotypes). The figure was generated with a mutation rate
of μ = 10−5, and the data were accumulated over 1,000 realiza-
tions of the process. Note that, in the A. niger landscape, the wild
type is the fittest state (the GO) and that, on average, the
mutants are less fit the more mutations they have incorporated
(26, 47). This is why most observed steps run in the direction of
decreasing d.
For the population parameters used in Fig. 1A and Fig. S1A,

SSWM behavior is expected. The population is mainly mono-
morphic, i.e., only single mutants appear on the background of
the presently dominant genotype and fix with probabilities that
are proportional to their selection coefficient but independent of
N (19–21). Hence all steps that lead to fitter states are realized
with comparable probabilities, provided their fitness values are
not too different. At the same time, the fixation probability for
deleterious mutations is exponentially small in N (48), making
transitions to less fit states very unlikely (Fig. S5B). This leads to a
large number of realized paths and endpoints and highly un-
predictable dynamics.
As the population size increases, several nearest neighbor

mutants of the currently most populated genotype are present si-
multaneously, leading to competition between different mutants.
Fitter mutations will be more commonly selected. Thus, in this
regime, the dynamics becomes greedier and more deterministic
(17, 35). The corresponding pronounced increase in predictability
results in a dramatic thinning of the graph of adaptive pathways
when going from Fig. 1A and Fig. S1A (with N = 102) to Fig. 1B
and Fig. S1B (with N = 1.5 · 104). Direct evidence for the in-
creasingly greedy nature of the dynamics is provided in Fig. S5A,
which shows how the fraction of mutational steps that go to
the fittest neighbor grows from fgs ’ 0.63 for N = 210 to fgs ’ 0.88
for N = 220.
As N is increased further, the number of first step mutants,

including deleterious ones, becomes larger and therefore second
step mutants are created more frequently. If these second step
mutants are sufficiently fit, they can eventually take over the
population, effectively tunneling through (38) (or leaping over)
the intermediate state. Such events yield a mechanism for
crossing fitness valleys that becomes increasingly important for
increasing N, as can be verified in Fig. 1 and Figs. S1–S4 and
S5B. As long as only a few second step mutants are produced by
this mechanism, the dynamics becomes again less deterministic,
as it depends sensitively on which mutants are randomly created
and the number of possible second step mutations is enormous.
Although some indication of this effect can be seen in the com-
parison between Fig. 1C and Fig. 1D, it is brought out more clearly
by the quantitative analysis that we turn to next.

Entropy Analysis. When quantifying the degree of determinism of
the evolutionary dynamics, it is important to distinguish between
the repeatability of endpoints and of the paths taken, as well as
between different types of paths. That this distinction matters is
easily understood in the context of infinite population sizes. In
that limit, the population always finds the GO and this optimal
state always takes over the population. Thus, with respect to
endpoints, the dynamics becomes totally deterministic. However,
in the same limit, all possible paths (in the sense of LODs) to the
GO will be taken, and the predictability of LODs should be low
for very large N. In contrast, the most populated genotype fol-
lows a unique path (POM) in the infinite population limit (44).
To study the determinism of the dynamics on more quantita-

tive grounds, it is convenient to define entropies with respect to
the endpoints and the paths taken, respectively. The standard
choice for the entropy function is S= −

P
ipi   ln pi, where the

sum runs over all endpoints (paths) and pi is the probability to
observe a certain endpoint (path). The pi values are approximated
by the fraction of times an endpoint (path) was observed among
replicate simulation runs. The entropy is more appropriate to

quantify determinism than just counting the number of end-
points or paths observed as it includes information about how
often each outcome occurs. Note that the findings to be pre-
sented in the following do not depend strongly on the specific
choice of the entropy function. Largely equivalent results are
obtained for similar observables such as the repeatability mea-
sure

P
ip

2
i used in refs. 49 and 15.

It is important to notice that the observed ensemble of path-
ways generally depends strongly on the initial state, as is ap-
parent when comparing the arrow plots in Fig. 1 to Figs. S2–S4
(the corresponding entropies are shown in Fig. S6 A and B).
Although this effect is interesting in itself, here we focus on in-
vestigating how entropies behave on average when considering
ensembles of equivalent starting points. To maximize the number
of possible starting points on the A. niger landscape, we consider
all paths that start at one of the 46 viable genotypes at Hamming
distance d = 4 from the GO. To illustrate the role of the scales
Nμ and Nμ2, we calculate the entropies for a broad range of
mutation rates.
In Fig. 2, we plot the average endpoint entropy for starting

points at Hamming distance d = 4, 〈Se〉d=4, obtained in the fol-
lowing way: First, the entropy was determined separately for
each starting point by carrying out 100 independent evolutionary
runs up to time T = 215. Subsequently, the entropies were av-
eraged over the different starting points, and the procedure was
repeated for different values of μ and N. Apart from the case
with the largest mutation rate (μ = 10−5), one observes an initial
decrease of the entropy followed by a subsequent rise with in-
creasing N (Fig. 2A). This can be explained by means of the
qualitative arguments given in the last section: The initial de-
crease of the entropy, i.e., increase of determinism of the dy-
namics, is due to the competition between single mutants causing
the dynamics to become greedier, whereas the subsequent in-
crease is a consequence of the increased appearance of double
mutants. Fig. S5A shows that the fraction fgs of greedy steps goes
through a maximum around the same value of N at which the
entropy is minimal.
The initial transition toward greedier dynamics depends on the

production of nearest neighbor mutants, the supply rate of which
is proportional to Nμ. In contrast, the subsequent increase of the
entropy due to the appearance of double mutants is linked to
their production rate ∼ Nμ2. The separation between these two

A

B

C

Fig. 2. (A) Entropy with respect to endpoints, 〈Se〉d=4, vs. population size. (B
and C) Same as A but entropy is plotted vs. Nμ and Nμ2, respectively. Each
curve was obtained from simulations covering T = 215 generations and av-
eraged over the 46 different possible starting points with Hamming distance
d = 4 from the GO, with 100 independent runs from each starting point.
Mutation rates vary between μ = 10−5 and 10−5/210 ∼ 10−8.
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scales becomes more pronounced the smaller the mutation rate
μ, and correspondingly the minimum value reached by the en-
tropy decreases with decreasing μ, as is clearly seen in Fig. 2. To
make apparent the importance of the scales Nμ and Nμ2, in Fig. 2
B and C we plot the entropy as a function of Nμ and Nμ2, re-
spectively. The approximate collapse of the decreasing parts of
the curves in Fig. 2B and of the increasing parts in Fig. 2C im-
mediately affirms the roles played by the two scales. The lack of
an increase of the entropy for the largest mutation rate consid-
ered here is most likely due to the lack of clear separation of the
two scales.
We also calculated the averaged entropy with respect to the

paths, 〈Sp〉d=4, for the same ensemble of pathways (Fig. S7).
Despite the expected distinct behaviors of the two quantities in
the limit N → ∞, we find essentially the same N dependence as
for 〈Se〉d=4. This reflects the fact that, even for the largest values
of N and μ used here, populations are likely to get trapped at
local fitness maxima. New paths that open when increasing N
often lead to formerly unexplored local maxima, which implies
that an increase of the number of explored paths is strongly
correlated with the number of endpoints.

Finding the Fittest State. In the SSWM regime, adaptation pro-
ceeds through single mutational steps moving uphill in fitness,
and the fixation probability is independent of N or μ (19–21). As
a consequence, the statistical weights of different evolutionary
trajectories are also independent of N, and the SSWM regime
should therefore appear as a plateau at small population sizes in
the graphs showing pathway or endpoint entropies as a function
of N. The fact that no such plateau is observed in Fig. 2 and Fig.
S7 shows that clonal interference already plays an appreciable
role in the considered range of parameters, and that smaller
populations or mutation rates would be needed to fully realize
the SSWM regime.
Other quantities, however, seem to be more robust with respect

to a certain level of clonal interference. As an example, we show in
Fig. 3 the probability PGO for the largest subpopulation to end up
on the GO. The figure shows PGO as a function of N averaged over
starting points at a given Hamming distance d from the GO. The
averaging is necessary, as the probability strongly depends on the
specific starting point (Fig. S6C). For each starting point, 100–
1,000 runs were carried out over T = 217 generations.

The probability of finding the fittest state has a plateau for
small N that coincides rather well with the SSWM value indicated
by the horizontal dashed lines. The deviations that are particu-
larly pronounced for d = 4 and 5 are most likely due to valley
crossings that happen with a low probability for small populations
but are prohibited within the SSWM approximation. When PGO is
small, these valley crossings, albeit very rare, may open up addi-
tional mutational pathways that are not accessible to SSWM
dynamics because they contain at least one fitness decreasing
step, thus increasing PGO over the SSWM value. With increasing
N, clonal interference sets in, making the dynamics more greedy
and thus more deterministic. As this implies a decrease in the
number of different paths that are explored, the probability to
find the GO decreases below the SSWM level. This effect is more
pronounced the further away the starting point is from the GO, as
the probability for the greedy dynamics to miss the GO by leading
the population to a suboptimal local fitness maximum increases.
Only when N is increased further to such large values that double
mutants are regularly produced, the dynamics becomes again
more stochastic, leading to a higher number of explored paths
and thus to a higher PGO exceeding the SSWM value. As for the
entropy measures discussed previously, the variation of PGO with
population size is distinctly nonmonotonic.
Apart from the probability for finding the fittest state, it is also

of interest to study through which mutational pathways this state
is reached. Here, we are particularly interested in the role played
by paths along which fitness increases monotonically [mono-
tonically increasing pathways (MIPs)]. These are the only paths
that are accessible to adaptation in the SSWM regime and have
therefore been at the focus of much recent theoretical and em-
pirical work on fitness landscapes (10, 11, 22–27). What we
would like to clarify is whether (or when) such paths are actually
the dominating ones when it comes to finding the fittest state,
and to what extent they are realized by the dynamics.
To address these questions, we identified all MIPs that start at

Hamming distance d = 4 from the GO, restricting ourselves to
direct paths along which the distance to the GO decreases at
every step. As a first measure, we computed the fraction of MIPs
among all observed LODs that reach the GO, fMIP/LOD. This
quantity was averaged over 100 realizations from each starting
point with Hamming distance 4 from the GO from which at least
one such path exists (Fig. 4A). One finds that at small N, almost
all successful paths are monotonically increasing in fitness.
However, as N increases, fMIP/LOD decreases rapidly, showing
that the MIPs become increasingly less relevant for adaptation.
The dashed line in Fig. 4A represents the ratio of the number of
MIPs to the total number of direct paths, equal to d!, averaged
over all starting points at d = 4. Values of fMIP/LOD below this
line indicate that MIPs are selected even less frequently than
would be expected if all direct paths were equally likely.
Furthermore, we have measured the fraction fMIP of MIPs that

are actually observed within the 100 simulational runs (Fig. 4B).
This quantity displays a nonmonotonic dependence on N that
can be explained in similar terms as for the entropies. It should,
however, be noticed that, even at small N, less than 70% of all
existing MIPs are observed. Thus, the sheer existence of, in
principle, easily accessible paths leading to high fitness genotypes
does not guarantee that they are actually realized by the dy-
namics. This can also be concluded from the low values of PGO
observed in Fig. 3 for small N.

Comparison with Model Landscapes. To demonstrate that the
results described so far are not caused by the idiosyncrasies of the
specific empirical landscape used in this work, we carried out
simulations on a family of random model landscapes tuned to
reproduce the overall features of the A. niger fitness data set. The
model we consider is a slight variation of the rough Mount Fuji
(RMF) model (26, 27) originally introduced in ref. 41. Within the

Fig. 3. Probability PGO for the largest subpopulation to end up at the GO
within T = 217 generations vs. population size, for all Hamming distances
d for which viable starting genotypes exist. The horizontal dashed lines show
the SSWM predictions. The mutation rate was μ = 10−5/16.
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RMF model, the fitness value wi of a genotype i is determined
according to the following:

wi = − c1di + c2 + ξi; [1]

where di is the Hamming distance of i to a reference state whose
fitness is set to 1 and will be the GO, c1 and c2 are constants, and
ξi is a Gaussian random variable with mean zero and SD σ. The
constants c1 and c2 were obtained from the A. niger fitness data as
follows: First, we averaged over all fitness values at a given Ham-
ming distance di ≥ 1 from the GO, including the states with zero
fitness corresponding to nonviable genotypes (26). Then a
straight line was fitted to the averaged values plotted against
Hamming distance. The slope yields c1 ≈ 0.064, and for the in-
tercept we obtain the estimate c2 ≈ 0.730. The variance of the
fitness values yields the estimate σ2 ≈ 0.091 for the variance of
the ξi. Only values wi < 1 are accepted, to ensure that the GO is
located at the reference genotype. In cases when Eq. 1 yields
a negative value, the corresponding fitness is set to zero. In
principle the nonviable genotypes in the landscape could be
modeled explicitly, e.g., along the lines of ref. 26. However, we
prefer to keep the model simple and do not include a separate
treatment of nonviable states.
The observed qualitative features have been reproduced by

simulations of the RMF model over a broad range of parameters,
but here we focus on the specific “A. niger” parameter set de-
scribed above, which optimally matches the empirical landscape
(see Fig. S8 for results covering a broader range of parameters). In
Fig. 5 and Fig. S9, we plot the quantities obtained from simu-
lations of adaptation on this model landscape. We considered�
8
4

�
= 70 different starting points at Hamming distance d = 4

from the GO, and 100 independent runs from each of them were
carried out. For each of the starting points, a new fitness landscape
was created using Eq. 1.
Fig. 5 and Fig. S9A show that the entropies obtained for the

model landscapes display a similar nonmonotonic dependence
on N and μ as the empirical landscape. Again, rescaling N by μ
and μ2, respectively, leads to an approximate data collapse of the
decreasing and increasing parts of the entropy curves, respectively.
Although comparison with Fig. 2 and Fig. S7 reveals that the
values of the entropies and the positions of the respective minima

are not quantitatively recovered by the model, the qualitative
behavior is well reproduced.
Fig. S9B depicts a similar comparison for the probability to

reach the state with the highest fitness. Because PGO � 1 in most
cases, this quantity is strongly affected by rare events and displays
massive fluctuations between different realizations of the RMF
model landscape. Averaging over realizations is therefore not
appropriate for the comparison with the A. niger landscape. In-
stead, in Fig. S9B, we display data obtained for individual landscape
realizations, which show that the overall shape of the variation of
PGO with N is reproduced by the model. Moreover, the supple-
mentary results in Fig. S8 show that the nonmonotonic variation of
the entropy with population size persists whenever the fitness
landscape is sufficiently rugged, and disappears only when the
limiting case of a smooth, additive landscape is approached.

Discussion
The repeatability of evolutionary trajectories in replicate pop-
ulations is determined jointly by the distribution of the fitness
effects of beneficial mutations, by their epistatic interactions, and
by the rate at which they appear in the population. Whereas
previous work has addressed primarily the first two determinants
of evolutionary predictability (14, 18, 22, 26, 49, 50), here we
focused on the effect of mutation supply mediated by the pop-
ulation size N and the mutation rate μ. By performing simu-
lations on an experimentally measured fitness landscape, we
ensured a realistic representation of the distribution of muta-
tional effects and their epistatic interactions.
Our key observation is that, because of the distinct roles played

by the supply rate of single (∼Nμ) and double (∼Nμ2) mutations,
evolutionary predictability as quantified by the entropy measures
Se and Sp varies nonmonotonically with population size. Simula-
tion results for the RMF model suggest that this behavior is ge-
neric whenever the underlying fitness landscape is rugged with
many local optima, as is often the case for empirically determined
fitness landscapes (27, 51). Similar to earlier observations of an
evolutionary advantage of small populations in complex fitness
landscapes (35–37), the phenomenon depends crucially on the
clonal interference among beneficial mutations and cannot be
captured within the commonly used SSWM approximation. This
also implies that the restriction of evolutionary accessibility to
pathways with monotonically increasing fitness (MIPs) assumed
in a number of recent studies (10, 22, 24, 26) may be of limited
relevance to adaptation.
Although the endpoint entropy Se is easier to access experi-

mentally than the path entropy Sp, at least partial information

A

B

Fig. 4. (A) The fraction of MIPs among all paths observed in 100 runs from
each of the 46 viable starting genotypes at distance d = 4 from the GO that
reach the GO within T = 215 generations is plotted vs. N. The horizontal
dashed line shows the expected fraction if all paths occurred with equal
probability. (B) Fraction of observed MIPs among all possible MIPs as a
function of N. In both panels, averages are taken over starting points for
which at least one MIP exists. The poor statistics are due to the fact that, in
general, only a few MIPs are observed.

Fig. 5. Endpoint entropy vs. population size N obtained from simulations on
the RMFfitness landscapes withA. niger parameters, to be compared with Fig. 2.
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about adaptive pathways can be inferred from microbial evolu-
tion experiments (12, 13, 45). Parallel evolution has been ob-
served on several occasions, but very few studies explicitly
addressed the effect of population size on repeatability. Among
those, one found an increase of genotypic diversity with increasing
population size (45). Other experiments have addressed the
population size dependence of phenotypic diversity on the level of
fitness trajectories. One study using Escherichia coli found a pro-
nounced reduction of the variability of fitness trajectories with
increasing population size (36), but another study using Aspergillus
nidulans found no effect (52). More experimental work under
precisely controlled conditions is clearly needed to test the pre-
dictions of the present article.

Materials and Methods
Empirical Fitness Landscape. The construction of the A. niger strains and the
measurement of their fitness values has been explained in detail elsewhere
(47). The fitness landscape consists of the wild-type strain and combinations
of eight marker mutations: fwnA1 (fawn-colored conidiospores), argH12
(arginine deficiency), pyrA5 (pyrimidine deficiency), leuA1 (leucine de-
ficiency), pheA1 (phenyl-alanine deficiency), lysD25 (leucine deficiency),
oliC2 (oligomycin resistance), and crnB12 (chlorate resistance). Of the 28 =
256 possible combinations, a total of 186 were found to be viable and
assigned nonzero Wrightian fitness (26). Among these, there are four

mutants with seven mutations each, i.e., incorporating all but one muta-
tion. In the order in which the genotypes were presented in table S1 of ref.
26, these are genotypes 250 (all but pyrA5), 251 (all but leuA1), 252 (all but
pheA1), and 253 (all but lysD25).

Evolutionary Dynamics. The simulations presented here were performed using
standard Wright–Fisher dynamics according to the following algorithm:

i) Draw the number nμ of mutation events in a generation from an expo-
nential distribution with mean λ = NLμ, where N is the population size, L
is the number of loci, and μ is the mutation rate.

ii) The nμ mutations are distributed among the present mutations with
probabilities corresponding to their frequencies. The possibility of indi-
viduals accumulating several mutations in a single time step is neglected.
Mutations at all loci are chosen with equal probability.

iii) Selection is carried out in two steps. First, frequencies are evolved analyt-
ically according to f ′i = fiðwi=wÞ, where fi denotes the frequency of the ith
state before selection, i.e., at generation t, the wi denote the respective
fitnesses, and w=

P
iwifi denotes the mean fitness of the population.

iv) Finally, the frequencies at time step t + 1 are obtained by drawing N
individuals from a multinomial distribution with probabilities pi = f ′i .
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