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Despite the enormous proliferation of bacterial genome data, sur-
prisingly persistent collections of bacterial proteins have resisted
functional annotation. In a typical genome, roughly 30% of genes
have no assigned function. Many of these proteins are conserved
across a large number of bacterial genomes. To assign a putative
function to these conserved proteins of unknown function, we
created a physical interaction map by measuring biophysical inter-
action of these proteins. Binary protein-–protein interactions in
the model organism Streptococcus pneumoniae (TIGR4) are mea-
sured with a microfluidic high-throughput assay technology. In
some cases, informatic analysis was used to restrict the space of
potential binding partners. In other cases, we performed in vitro
proteome-wide interaction screens. We were able to assign puta-
tive functions to 50 conserved proteins of unknown function that
we studied with this approach.

high-throughput screening | unknown proteins

Protein interactions are a hallmark of all living organisms, and
research on protein interactions has begun to contemplate

complete interactome approaches (1). Interactomes are the
whole set of protein interactions in a cell; they are regarded as
the framework for future systems and synthetic biology engi-
neering approaches (2). It was noticed that more than 70% of
physically interacting proteins share functional annotations (3).
This empirical observation has led to statistical models to an-
notate proteins with unknown function by observing the func-
tions of their interaction partners (4, 5). The most simple yet
effective method in this respect is the majority rule (4, 6, 7):
a protein with an unknown function is grouped to a functional
class with the highest statistical count found among its in-
teraction partners. The success and accuracy of the majority
method is dependent on the number and completeness of the
available protein-interaction networks and existing functional
information about the proteins. Protein functional assignments
are often obtained by sequence similarity searches of newly
discovered ORFs in sequenced genomes against experimentally
characterized homologous proteins (8). The coverage of func-
tional assignments for genomes based on sequence similarity
searches varies between organisms. The actual fraction of pos-
sible assignments is controversial (9). Additionally, genome in-
formation, such as operon structure (10), gene neighborhoods
(11), and conserved protein domain structures (12), can mainly
be used for prokaryotes to increase the coverage of functional
protein assignments. Much of the genome-wide functional
annotations are based on in silico methods, which are fast and
cost-effective. Physical protein interactions on a proteome scale
can fill the gaps left by in silico methods. Furthermore, this
process can concomitantly bring experimental evidence to the
functional annotation problem.
The yeast two-hybrid (Y2H) and tandem-affinity purification

methods coupled with a mass spectrometer (AP-MS) are gen-
erally used for protein–protein interaction studies on the pro-
teome scale (13, 14); this is mainly because of their optimized
workflows for higher throughput. The combinatorial use of both
techniques together with orthogonal screening strategies and
computational quantification has to some extent overcome the

problem of higher error rates for protein-interaction data (15).
For this procedure, however, the protein-interaction screening
space has to be oversampled, which led to high experimental
costs (16, 17). As an alternative to the prevailing techniques, we
recently developed a microfluidic chip implementing a miniatur-
ized immunoprecipitation (mIP) assay to test for binary protein–
protein interactions in a parallel fashion (640 measurements per
chip) (18). Microfluidics, which refers to the study and control of
fluidic properties and their content in structures of micrometer
dimensions, provides a powerful platform to interrogate protein
interactions (19). Here, we have increased the throughput by an
order of magnitude to 4,000 measurements per chip, extensively
benchmarked the interaction assay, and performed proteome-wide
protein–protein interaction measurements in a model organism,
namely Streptococcus pneumoniae (SP strain TIGR4).
SP-TIGR4 is a Gram-positive bacterium and is annotated with

2,105 predicted ORFs. For approximately one-third of the ge-
nome (742 proteins), no functional assignments are found. From
this set we chose 112 widely conserved proteins and determined
in three consecutive screening strategy protein-interaction part-
ners. In the first round we tested predicted functional interaction
partners based on the genomic context of the conserved protein
with unknown function (cPUF); in the second round we de-
termined the interaction network between cPUFS; and in the last
round we selected interaction partners from the first two rounds
and screened them against the expressed SP proteome on chip.
The screening space of binary protein interactions was gradually
increased with the screening round from 103 to 104 to 105 binary-
tested protein interactions per round. The newly found protein
interactions allowed us to compare the functional information
for the cPUFs that were derived from genome information with
the functional information derived from the physical protein
interaction by applying the majority rule. Furthermore, we tested
the connectivity between cPUFs in SP and gained basic in-
formation about their distributions over the functional space in
the SP proteome that demonstrates the biological relevance of
the found interactions.

Results
Microfluidic Chip Platform. The microfluidic principles of the pro-
tein-interaction assay have been developed previously (18); how-
ever, to reach higher throughput, changes to the chemical and
microarchitecture of the chip were made (SI Materials and
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Methods). In general, the technology is a combination of a micro-
fluidic chip and a DNA microarray. A large number of binary
combinations of cDNAs encoding for proteins of interest were
spotted on a glass slide. The resulting microarray was aligned and
bound to a polydimethyl siloxane (PDMS) chip with 4,096 iden-
tical unit cells. All unit cells were operated in parallel fashion. One
unit cell had a size of about 750 × 300 μm2 (Fig. S1). With the help
of an automated fluid control system and ∼8,400 integrated
microvalves, two biochemical steps were integrated on a chip in
each unit cell (i.e., the in vitro expression of two proteins from
their cDNA and a mIP assay to test for interaction between the
two expressed proteins). Flush sequences with chemical compo-
sition of the fluids are listed in Table S1. The mIP assay works in
analogy to a direct surface ELISA, with a pull down and detection
antibody specific for sequence tags encoded in the corresponding
proteins. Hereafter, we name the protein that was pulled down to
the glass surface of the chip “bait” and the protein that was tested
to coprecipitate “prey.” Fluorescence signals indicating the pro-
tein interactions were determined with a microarray scanner.

Benchmark of the Interaction Assay on Chip. Before screening for
binary interactions of proteins with unknown functions within the
proteome of SP-TIGR4, the microfluidic protein-interaction
technology was benchmarked using a previously published binary
interaction set from yeast (Table S2) (15). The benchmark set
combines 94 positive and randomly generated binary interactions
from the model organism Saccharomyces cervisiae. The positive
interaction set was derived from five comprehensive protein-in-
teraction databases. Protein interactions from high-throughput
screens or associated to larger protein complexes were excluded.
A further selection criterion for the positive set was that each
protein interaction needed at least four independent literature
entries. The random interaction set was the same size as the pos-
itive set and was generated from ∼14 × 106 possible yeast protein
pairs, where no interactions had been detected before. From 376
Gateway clones, we were able to express on chip 356:87 positive
and 91 negative protein-interaction pairs. Protein interactions from
the benchmark set were measured on the chip platform.
Fig. 1A shows the statistical mean z-score values for the positive

and random interaction assays obtained from two independent
experiments with different pull-down directions (i.e., reversed bait/
prey order). The z-score indicates by how many SDs the fluores-
cence signal of a positive protein-interaction measurement is
above the mean of the control experiments. A clear separation of
the z-score between the positive and random interaction set is
observed. The likelihood that these two populations exhibit the
same mean z-score was tested with Wilcoxon’s signed-rank test
and resulted in a P value of 3.6 × 10−14. A detailed description of
the consistency of the on chip-interaction assay for the benchmark
set is given in SI Materials and Methods, which includes correla-
tions between protein-interaction repeats on chips, between in-
dependent chip experiments, and between different pull-down
antibodies (Fig. S2).
For the identification of positive protein interaction and de-

termination of error rates of the assay system, a receiver operator
analysis was used in which the sensitivity (true positive rate) of the
assay is plotted against its specificity (false-negative rate) at various
thresholds. The resulting receiver operating characteristic curve
(Fig. 1B) was analyzed at two cutoff points. The first cutoff point is
the closest point of the receiver operating characteristic curve to
the sensitivity and specificity values of [0;1]. In contrast, the second
cutoff point was arbitrarily chosen with a fixed high specificity value
of 0.02. The first value indicated objectively the characteristics of
the on chip-protein interaction test system, whereas the second was
used as a stringent threshold value to identify protein interaction
with a low false-positive rate in the unknown SP-TIGR4 protein
screen. The false-positive and false-negative rate for the first cutoff
point was 0.22 and 0.2, respectively, and for the second cutoff

point, 0.02 and 0.48, respectively. Taking the second cutoff point
for identifications of the number of positive interaction, we found
46 of the 87, and three false-positive interactions within the
benchmark set. Differences between immuno-pull down directions
existed and are shown in detail in Table S3 with corresponding
error rates for each used antibody. Nevertheless, analysis of the

Fig. 1. Benchmark of the protein-interaction chip technology. (A) Histo-
gram of the z-scores of the random and positive benchmark set obtained
from on chip protein-interaction measurements. The blue line is a Gaussian
fit to the z-scores of the random set (r = 0.91). The dotted line defines the
cutoff value obtained from the x1 value in B. (B) The receiver operator curves
for protein-interaction measurements with different pull-down antibodies
(reverse bait/prey order) and the combined dataset. x1 and x2 denote the
high specificity cutoff level and the value for the error determination, re-
spectively. (C) Comparison of the microfluidic chip to established interaction
technologies based on the benchmark set. The Venn diagram shows the
number of protein interactions from the benchmark set positively identified
by the Y2H, AP-MS, other techniques and the microfluidic chip technology.
Numbers in brackets denote the overlap between the microfluidic chip
technology with corresponding techniques.
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separate pull-down experiments revealed a reciprocal discovery
rate of 0.56 for the positive interaction in the benchmark set. The
obtained false-positive and false-negative error rates for the protein
interaction mIP-assay on chip are about 25% and 20%, re-
spectively. One possible explanation for the false-negative rate for
the mIP-assay is the misfolding of the protein after in vitro syn-
thesis. Both error rates found here are of the same order as de-
termined for high-throughput protein interaction data yield from
Y2H and AP-MS screens (20).
Besides internal benchmarking, the positive protein-interaction

set can be used for comparison of the microfluidic chip to the
established protein interaction assay technologies. The Venn di-
agram in Fig. 1C shows the overlap and differences for the positive
identified protein interactions from the benchmark set between
the microfluidic, Y2H, AP-MS, and Other technology. “Other”
denotes all protein binding assay technologies different from Y2H
and AP-MS. No single assay is expected to detect all protein
interactions, and the actual fraction of positive detected is in-
herently linked to assay and the stringency at which the assay is
implemented (15–17). The microfluidic chip technique exhibited
the largest overlap with the assay group Other, followed by Y2H
and AP-MS. The order of the overlap of the positive identified
protein interactions between the microfluidic chip and Y2H or
AP-MS assay technologies is comparable to the overlap between
AP-MS and Y2H.

SP-TIGR4 Proteome Library Construction. To perform proteome-
wide protein-interaction screens for proteins with unknown
functions on chip, we constructed two cDNA library sets of the
SP-TIGR4 proteome with different pull-down tag sequences.
The first cDNA library set contained a c-Myc/6xHis at the N and
C terminus, respectively. The second library set only contained
a T7 tag at the N terminus. From 2,105 available ORFs (J. Craig
Venter Institute, JVCI), we successfully amplified about 1,500
cDNAs for each of the two library sets. In vitro expression
analysis (Fig. S3) of all cDNA constructs revealed that it was
possible to express 1,030 proteins with a c-Myc/6xHis tag com-
bination and 870 proteins with a T7 tag on chip. A cell location
analysis with the PSORTb 3.0 algorithm (21) revealed that the
fraction of expressed to total number of proteins in the proteome
with cytosolic location is larger (0.51) than the fraction of pro-
teins with a membrane assigned location (0.29).

Selection of Proteins with Unknown Functions and Sequence Similarities.
From the 742 predicted ORFs annotated with unknown func-
tions [for annotation sources, see JVCI, National Center for
Biotechnology Information (NCBI), and RAST], we concen-
trated on proteins with conserved sequences because of their
presumed general interest in biology (22) and to reduce the
chances of measuring false predicted reading frames (23).
Functionally unknown proteins with similar sequences (normal-
ized bitscore > 0.4) (Fig. S4) found in more than 40 organisms
regardless of taxonomy are termed in the following as cPUFs.
Under the given constraints, we clustered 178 SP-TIGR4 pro-
teins as conserved from the 742 SP-TIGR4 proteins with un-
known function. Although all homologous proteins to the 178
cPUFs are termed as functionally unknown, about half of the
cPUFs exhibit domains with similarities to a functional charac-
terized protein family (pfam). Those sets were not excluded from
the study because the proteome-wide protein-interaction screens
are expected to clarify the context of these cPUFs in the cell
network of SP-TIGR4. Of the 178 clustered cPUFs, 112 could be
expressed on chip, which were then selected for the protein-in-
teraction screen in the following.

Protein-Interaction Screen Among Predicted Functional Associated
Partners. After sequence similarity searches, we exploited the ge-
nomic information of the cPUFs to find functional association

partners. For this scoring, algorithms were used that analyzed the
proximity (300 bp), the operon structure of the cPUF gene, genes
with the same co-occurrence profiles in different organisms, and
genes that may have fused during evolution to form the cPUF.
The prediction algorithms for functional association partners
based on such genomic information in bacteria had shown some
degree of success (11). It is important to note that functional as-
sociation partners deduced from genome information do not
necessarily have to overlap with physical protein interactions be-
cause both are in distinct relationships. Nevertheless, information
about an overlap between computational and experimental tech-
niques will lead to better appraisal knowledge of the quality of
prediction algorithms.
To predict functional associated partners for each cPUF we

exploited the STRING database. For 100 cPUFs, we found five
predicted functional association partners with a high confident
score and concomitantly a positive in vitro expression result on
chip. For the remaining 12 cPUFs, at least one association partner
was found that was expressed on chip. Thus, we were able to
measure in total 772 binary protein interactions in reciprocal order
(switched bait/prey), with two repeats for each antibody direction
on chip. Fig. 2 shows a corresponding histogram of the z-scores
from the interaction screen of the predicted protein associations
to the cPUFs. Clearly, two z-score distributions are observed
within the histogram, where the optimal threshold separating the
two z-score groups from each other matched the above obtained
cutoff value for the benchmark set. Protein interactions above the
cutoff value were assigned to the algorithm used for their pre-
diction. We found that a fraction of around 0.17 of each predicted
functional association was a physical protein interaction. The
overlap of the predicted functional associated proteins with
physical protein interaction increased up to 0.35, if several algo-
rithms indicated a functional association. This result is comparable
to or greater than that found in previous studies, which used in
silico and experimental approaches (24), and is therefore a valu-
able approach to reduce the screening space if functional knowl-
edge about a protein is unknown.

Protein Interactions Among cPUFs. For the second screening round,
we concentrated on the group of cPUFs itself and addressed the
question of the number and degree of interactions among the
cPUFs. Possible interactions in the group of cPUFs could reveal
unknown protein clusters, parts of a single pathway, or regula-
tory networks. To find interactions within the cPUFs a matrix-
screening approach was applied in which all 112 cPUFs were
screened against each other. The binary interaction tests re-
sembled the screen from the previous round. The z-score of all
screens is shown in the histogram of Fig. S5. The screen revealed
19 interactions among cPUFs, where the degree of connectivity
between these interactions is 17.
To further extrapolate these findings, we compared the number

of interactions for the cPUFs to the number of interactions be-
tween randomly generated protein samples from model bacteria,
namely Campylobacter jejuni (25), Helicobacter pylori (26), Trep-
onema pallidum (27), and Escherichia coli K12 (28). The corre-
sponding number of interactions in each random protein set from
one organism was extracted from corresponding large-scale Y2H
screens. The mean number of interactions in random protein sets
was 15 ± 3, except for C. jejuni, which was 44. The first number of
interaction is close to the found number of interactions within the
cPUFs set. Thus, it is reasonable to assume that the physical re-
lationship between cPUFs resembles that sampled from a random
protein set and larger unknown complexes or subnetworks within
the set of cPUFs could not be detected.
The distributions of the number of interactions found for ran-

dom sample sets from each of the four organisms are given in
Fig. S6. Apart from the low connectivity, this comparison indicates
similarities between the microfluidic and Y2H screens because
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both technologies work with threshold values for the identification
of protein interactions (20). The close match of the mean number
of interaction between random sample sets and the cPUFs sets
suggest that comparable threshold values for the identification of
positive protein interactions were used in the studies. A lower
threshold value may then explain the higher mean interaction
value for random samples observed for C. jejuni, although we used
the core interaction set of this study for our comparison.

Proteome-Wide Interaction Screens. For the last screen we per-
formed proteome-wide interaction screening of selected cPUFs.
We chose 18 cPUFs for which no protein interaction was observed
in the functional prediction screen. Additionally, 12 cPUFs were
selected for which a protein interaction to another cPUF or
a functional annotated protein could be detected in the matrix or
prediction screen, respectively. Protein interactions of the latter
protein set were used for benchmarking of the proteome-wide
screen because all interaction partners are included in the
expressed proteome on chip and, thus, should be found again. Fig.
3 A and B represents the measured z-score distributions for the
two cPUFs when screened against the SP proteome on the
microfluidic platform. Measurements were performed in only one

pull-down direction. The z-score distributions obtained from
proteome-wide screens are broader than those measured in all
previous experiments. The reduced number of repeats can explain
the broader z-score distribution. An additional factor contributing
to a higher noise level of the mIP assay was the large spectrum of
proteins with different physical properties. Nevertheless, we found
all previous interactions detected for the 12 cPUFs within the
matrix screen in the top 2% of the z-score distribution within
the proteome-wide screen.
To work consistently in the evaluation of positive interactions,

we pooled all proteins found in the top 0.5–2% of the z-score
distributions of the single proteome-wide screens of the cPUFs
and subjected them to an additional refinement screen. The re-
finement screen resembled the previous screens in number of

Fig. 2. Screen of predicted protein interactions for functionally unknown
proteins of S. pneumoniae. (A) Mean z-scores of the two pull-down experi-
ments of 532 predicted interactions for the 112 conserved unknown SP pro-
teins. The dashed lines mark the cutoff level for positive protein interactions
(determined by the benchmark set). (B) The staggered bar chart shows the
number of found physical interactions among the predicted interaction from
different algorithms. Mix, predicted protein interactions scored by two of the
other three algorithms. The blue and red bars denote negative and positive
physical interactions.

Fig. 3. Proteome-wide protein–protein interaction screens. (A and B) The
histogram of the z-score distributions obtained for the protein interaction
measurement on chip between the Streptococcus pneumonia proteome set
with cmyc/His tag against the unknown conserved proteins SP0122 and
SP0432, respectively. Measurements were performed unidirectionally. (Insets)
The z-scores for the top ∼1% of interactions, which were selected for re-
finement measurements. (C) The histogram of the mean z-score distribution of
the top ∼1% of identified protein interactions from all performed proteome-
wide screens repeated in bidirectional order with four repeats. The dotted line
shows the cutoff value determined from the benchmark set.
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repeats and two pull-down directions. The z-score distribution of
the refinement screen for all 30 cPUFs is shown in Fig. 3C. It was
then possible to extract the positive cPUF interactions from
the refinement screen with a high confidence level by using the
threshold value determined in the yeast benchmark experiments.
For the 12 cPUFs with 49 previous identified interactions from
the matrix and prediction screen, 28 were again identified within
the proteome-wide screens. The new detected protein inter-
actions for all cPUFs are listed in Table S4.

Discussion
The three screening rounds lead to 163 new identified protein
interactions for the group of cPUFs from the SP TIGR4 strain.
Fig. 4A shows a network representation of the determined
interactions. For 78 of 112 investigated cPUFs, at least one in-
teraction partner was found. Before using an algorithm to assign
functional annotations, we manually inspected the protein-in-
teraction data for biological and functional consistency. One
example is given here. The cPUFs SP1748, a predicted RNA
binding protein, and SP1746 form an interaction cluster with
SP1079, which belongs to the obg GTPase family. Obg family
proteins play a role in the biogenesis of ribosomes, regulation of
the cell cycle, and stress response (29). We found additional
proteins interacting or located one edge next to SP1746 and
SP1748, which are associated with ribosome modification and
stress response, namely: SP0434, a stress-response protein; FtsJ,
a protein methylating the 23S rRNA for ribosome regulation;
nusB, a termination factor for transcription; the 50S ribosomal
protein L21; and the transcription factor MarR with unknown
activation response. Accumulation of similar functional groups
was also found in other clusters. To increase the confidence of
the acquired protein interactions we selected 16 protein inter-
actions out of the positive set of the cPUFs and validated them
off chip with classic ELISA in one pull-down direction only. Of
the 16 protein interactions, 10 were positively identified in the
ELISA experiments (Table S4).
General functional annotation for the cPUFs was derived by

applying the majority rule to the acquired protein-interaction set.
For this process, we followed the method as described in ref. 4, in
which interaction between two nonfunctional classified proteins
are taken into consideration. Although there are numerous al-
ternative algorithms to the majority rule for assigning protein
functions based on their interactions, we use the majority rule
because of its simplicity coupled with high accuracy. cPUFs were
classified into the main functional categories of the Clusters of
Orthologous Groups (COG) (NCBI) nomenclature. Fig. 4B
summarizes all determined functional classes for the cPUFs (blue
bars). The number of found members in each class is normalized
to the total number of SP proteins currently assigned to the class
(NCBI). The analysis leads to putative functional assignments of
48 cPUFs to COG categories. The cPUFs are almost evenly dis-
tributed over all of the general functional classes. This result
supports the finding that the group of cPUFs as a whole resembles
a randomly sampled collection of proteins. We further added to
the bar graph in Fig. 4B functional assignments for the cPUFs
calculated with the majority rule based on the functional predicted
genomic association partners (red bars). The overall representa-
tion of functional groups among the cPUFs is only slightly
changed; however, the annotation COG class for a particular
cPUF overlaps only for 42% of the investigated proteins.
The rapidly increasing number of full genome sequences and

the correspondingly increasing number of ORFs with no func-
tional information about the encoded protein are raising the
demand for experimental methods to characterize protein
function. None of the identified 163 SP cPUF protein inter-
actions discovered in this work were reported in prior interaction
data repositories. That only 42% of the in silico annotation
overlap with the annotations resulted from the protein-

interaction approach can be an indicator for uncertainties in the
various approaches. Despite uncertainties and global assign-
ments, our collected data are unique experimental data for these
proteins, and the annotations can be used as a launching point
for deeper functional experiments. The comparable degree of
connectivity among the cPUFs compared with random protein
samples indicates that the major signaling networks and functional
groups common to many organisms have been exhaustively de-
termined. Finally, we demonstrated that the microfluidic tech-
nology for measuring protein interactions is comparable with
other high throughput technologies. Because of high error rates of
the high-throughput protein interaction technologies, including
the microfluidic chip technique, oversampling of datasets will still
be required in future. The benchmark experiments of the micro-
fluidic chip revealed a larger overlap with classic protein-in-
teraction assay techniques than with Y2H and AP-MS techniques.

Fig. 4. (A) Graph of the protein interaction network determined for the
cPUFs of S. pneumoniae by microfluidic chip technology. Black and red nodes
denote the cPUFs and proteins with functional annotation, respectively.
Proteins in the dashed box are ribosome associated; the grey node is cPUF
SP1748). All genes with annotations and interaction partners are given in
detail in SI Materials and Methods. (B) The functional categories found for
the cPUFs based on the majority rule and functional prediction.
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Therefore, the chip technology is working orthogonal to the pre-
vailing techniques with the advantage of lowering the experi-
mental costs of protein–protein interaction sampling.

Materials and Methods
Microfluidic Chip. The microfluidic protein-interaction assay and the general
chip layout are described in SI Materials and Methods and are available upon
request. The production of the multilayer PDMS chip followed standard
protocols as published in ref. 19 and given on the Stanford Microfluidic
Foundry Wep page (http://www.stanford.edu/group/foundry). Additionally,
the Stanford Microfluidics Foundry will supply fabricated chips at cost to the
academic community.

cDNA Library Construction. The construction of linear cDNA expression tem-
plates for both the yeast benchmark set (pDONR221 clones provided by
Haiyuan Yu, Cornell University, Ithaca, NY) and S. pneumoniae (pDONR223
clone library obtained from the J. Craig Venter Institute) were generated by
a two-step extension PCR. In the first step, the target sequence was amplified
with general primers for the source vectors, and in the second step, the ORF
sequences were extended with appropriate 5′ UTR and 3′ UTR sequences re-
quired for the IVTT (Promega TNT7-specific) and pull-down system (6xHis, T7,
and cMyc tags) used on chip. PCR conditions for both steps resembled the
vendor description (Platinum, Invitrogen and Phusion, New England Biolabs).
All primer sequences are given in SI Materials and Methods.

Microarray Production. Selected DNA expression templates with a concen-
tration between 0.1 and 0.2 μg/μL in a 0.8% BSA, 10 mM phosphate buffer
(pH 7.2) solution, were spotted onto epoxy-coated glass slides (2 inches × 3
inches) (ThermoFisher). OmniGrid Micro microarray printer with a custom-
made print-head holding 2 × 5 silicon pins (Parallel Synthesis Technologies)
were used for contact printing of the cDNAs on the glass slides. Microarrays
between experiments varied between two set-ups. Within the first set-up we
spotted one layer of cDNAs on each spot location, whereas in the second set-
up a second layer was deposited on top of the first. In the latter set-up cDNAs
of both bait and prey proteins were colocalized on the microarray. The print
for the second layer was started after drying the first layer for 4 h. After

printing, the microarrays were aligned and bounded to the PDMS chip for 5 h
at 65 °C. Bound chips were used within 1 wk and not stored for longer.

Data Evaluation of the Protein-Interaction Chip. Fluorescence images were
analyzed using GenePix v.6.0 software to determine median fluorescence
intensities from the pull-down area of the bait protein on the glass slide. The
area corresponds to the button valve area (∅22 μm) and position within one
unit cell of the PDMS chip and can clearly be visualized on the images.
Protein-interaction spots with obvious nonuniform high-intensity signals
caused by accumulated impurities during the chip run were flagged and
excluded from further analysis. For each binary interaction measurement,
two negative control experiments were included on chip (i.e., the no-bait
and no-prey experiments). Controls were arranged such that they were lo-
cally close to real binary interaction measurement. Downstream analysis was
performed using Matlab 7.0 (Mathworks). Local intensity variation of all
spots on the images, resulting from the scanner and other fluorescence
background sources, were corrected by subtracting a median local back-
ground value. The local background was measured in the surrounding of the
pull-down spot (three-times the radius of the spot). For normalization of the
experiments, we calculated a z-score. For this process, we used the intensity
signal of the no-prey and no-bait experiments, which were normally dis-
tributed with some outliners. Normalization of the interaction data were
then archived by fitting a Gaussian function to the distribution of all control
spots. The mean value of the Gaussian fit was subtracted from all meas-
urements and the resulting value was then divided by the SD of the Gaussian
fit, resulting in a z-score for each interaction measurement. Outliners of the
control spots with an intensity four times higher than the mean of all control
spots were excluded, together with corresponding interaction spots because
they indicate cross reactivity of proteins with the antibodies or precipitation
of the in vitro-synthesized protein.
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