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Abstract
In solid tumors, hypoxia contributes significantly to radiation and chemotherapy resistance and to poor outcomes.
The “gold standard” pO2 electrode measurements of hypoxia in vivo are unsatisfactory because they are invasive
and have limited spatial coverage. Here, we present an approach to identify areas of tumor hypoxia using the signal
versus time curves of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data as a surrogate
marker of hypoxia. We apply an unsupervised pattern recognition (PR) technique to determine the differential sig-
nal versus time curves associated with different tumor microenvironmental characteristics in DCE-MRI data of a
preclinical cancer model. Well-perfused tumor areas are identified by rapid contrast uptake followed by rapid wash-
out; hypoxic areas, which are regions of reduced vascularization, are identified by delayed contrast signal buildup
and washout; and necrotic areas exhibit slow or no contrast uptake and no discernible washout over the exper-
imental observation. The strength of the PR concept is that it captures the pixel-enhancing behavior in its entirety—
during both contrast agent uptake and washout—and thus, subtleties in the temporal behavior of contrast
enhancement related to features of the tumor microenvironment (driven by vascular changes) may be detected.
The assignment of the tumor compartments/microenvironment to well vascularized, hypoxic, and necrotic is val-
idated by comparison to data previously obtained using complementary imaging modalities. The proposed novel
analysis approach has the advantage that it can be readily translated to the clinic, as DCE-MRI is used routinely for
the identification of tumors in patients, is widely available, and easily implemented on any clinical magnet.
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Introduction
The microenvironment in solid tumors is characterized by inadequate
and heterogeneous perfusion, hyper-permeable vasculature, hypoxia,
acidic extracellular pH, and nutrient deprivation [1]. Hypoxic tumors,
often associated with a more aggressive tumor phenotype [2], are more
resistant to chemotherapy or radiation therapy than well-vascularized,
well-oxygenated tumors [1–4]. Thus, in vivo knowledge of the spatial
distribution of hypoxia in tumors may provide prognostic information
and can possibly improve treatment planning (e.g., intensity-modulated
radiotherapy) or choice of anticancer drug regimen [4]. Current clinical
and preclinical methods to measure hypoxia, reviewed in detail pre-
viously [3,5], include 1) invasive procedures, such as pO2 electrode
measurements, ex vivo immunohistochemistry of exogenous markers
(pimonidazole, EF-5), or hypoxia-related proteins (hypoxia-inducible
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factor-1α, carbonic anhydrase IX, and osteopontin) on tumor biopsy
samples, and 2) minimally or noninvasive in vivo procedures, such
as positron emission tomography (PET) using exogenous, radioactive
hypoxia tracers (18F-Fmiso, 18F-FAZA, and so on), magnetic reso-
nance (MR) methods [blood oxygen level–dependent (BOLD), tissue
oxygen level–dependent (TOLD), 19F MR relaxometry of perfluoro-
carbons], or electron paramagnetic resonance. Each of these methods
has advantages and disadvantages in terms of its capability of measuring
the spatial distribution of hypoxia in vivo and the confidence in the
accuracy of the measurement. For example, assessing tumor hypoxia
using biopsy samples suffers from inadequate sampling of the tumor
and repeated sampling for assessing changes of tumor hypoxia during
tumor progression or treatment is not practical. Assessing tumor hypoxia
in vivo using PET requires the administration of a radioactive tracer
and, thus, exposes patients to ionizing radiation. Further, although
its sensitivity is excellent, PET has relatively coarse spatial resolution
and provides limited anatomic information, requiring added-on com-
puted tomography or MR imaging (MRI) [5–8]. Additionally, recent
studies indicate that dynamic PET may be necessary to reliably identify
hypoxic tumor regions, prolonging data collection and analysis [6,7].
Thus, there is currently no standard method in the clinical or pre-
clinical setting to reliably image hypoxia in vivo [4,5].

Currently, dynamic contrast-enhanced (DCE)–MRI data are fitted
pixel by pixel using pharmacokinetic models, such as, for example the
Tofts model [9,10] which results in two parameters characterizing the
dynamics of the pixel enchantment. The initial part of the DCE curve
is characterized by K trans, the volume transfer constant between plasma
and extracellular extravascular space, whereas the contrast washout is
characterized by kep, the rate constant between extracellular extravascular
space and plasma. In this type of analysis, regional differences of pixel-
enhancing behavior across a tumor area are typically separated by thresh-
olding. This limits the ability to separate voxels featuring similar—albeit
not the same—contrast uptake dynamics, as e.g., seen by Cho et al. for
hypoxic and well-perfused, viable tumor areas [6]. To overcome this
limitation, we present here an approach to identify areas of tumor hyp-
oxia by analyzing the signal versus time curves of DCE-MRI data with an
unsupervised pattern recognition (PR) technique. The strength of this
concept is that it captures the pixel-enhancing behavior in its entirety—
during both contrast agent uptake and washout—and thus, subtleties in
the temporal behavior of contrast enhancement related to features of the
tumor microenvironment (driven by vascular changes) may be detected.
Additionally, analyzing the entire data set simultaneously rather than the
individual pixel’s signal versus time curves significantly increases the
signal-to-noise ratio. The assignment of the resulting pattern to well-
vascularized, hypoxic, and necrotic tumor areas, respectively, has been
validated by the data of Cho et al. [6].

DCE-MRI is widely available, relatively easy to implement, and
already routinely used in the clinic. Implementing the described anal-
ysis procedures is straightforward, and the capability to decipher tumor
heterogeneity can be readily translated to the clinic. This potentially
will eliminate the need for additional invasive procedures lacking ade-
quate spatial sampling (biopsies) or the serial exposure to radioactive
tracers (PET) for assessing tumor hypoxia.

Materials and Methods

Description of Experimental Data
We analyzed previously obtained DCE-MRI data from four Dunning

rat R3327-AT prostate cancer syngeneic tumors, labeled A to D based
on their tumor volume: 478 mm3 (A), 744 mm3 (B), 870 mm3 (C),
and 1230 mm3 (D) [6]. The results of our analysis are validated by a
comparison to the results obtained previously from multimodality
imaging data. The details regarding experimental design and data
acquisition are described elsewhere [6].

Briefly, R3327-AT tumors, implanted subcutaneously on the right
hind leg of Copenhagen rats, were imaged using a stereotactic fidu-
ciary marker system permitting the coregistration of images obtained
from different imaging modalities [6,11]. The animals underwent
in vivo DCE-MRI (vascular perfusion/permeability) using the contrast
agent gadolinium–diethylenetriamine pentaacetic acid (Gd-DTPA)
and, subsequently, in vivo dynamic 18F-Fmiso PET (hypoxia) followed
by staining of excised tumor sections with pimonidazole (hypoxia) and
hematoxylin and eosin (H&E; necrosis) [6]. DCE-MRI data were
acquired at 5.347-second temporal resolution for ∼2 minutes before
Gd-DTPA injection, followed by ∼20-minute dynamic acquisition,
resulting in 256 image sets (five tumor slices each). The voxel size was
0.273 × 0.273 × 0.79 mm3 (0.059 mm3) with an 128 × 128 in-plane
matrix and 35 mm × 35 mm field of view. For each tumor, 18F-Fmiso
PET data from the dynamic acquisition were reconstructed, resulting
in 45 to 49 time frames with a voxel size of 0.86 × 0.86 × 0.79 mm3

(0.58 mm3). For ex vivo analysis, images of 8-μm-thick pimonidazole-
and H&E-stained tumor sections, sampled at positions corresponding
to the mid-slice of the MRI and PET image sets, were captured at
0.85 × 0.85 μm2 in-plane resolution, depicting the spatial distribution
of hypoxia and necrosis, respectively [6].
Principal Component Analysis
In the exploration of large data sets (here, DCE-MRI results in

more than 1000 images for one experiment), principal component
analysis (PCA) is an invaluable tool for the identification of the
sources of largest variations, called principal components (PCs). Rep-
resenting the data in a lower dimensional space defined by the sig-
nificant PCs allows for easier interpretation of the dynamics in the
data [12,13].

Here, V(X, t) denotes a data matrix with the individual signal versus
time curves in its rows (X depicting spatial location and t depicting
time). PCA decomposes V into the product of 1) the PCs, which
are orthonormal and ordered by decreasing amounts of variability
in the data they represent, and 2) the scores or magnitudes, which
are the weights of each PC in the original data. For instance, in
DCE-MRI data from an entirely homogeneous tissue/organ, all signal
versus time curves will have an almost identical (within the noise of the
measurement) temporal pattern and PCA will yield a first PC as the
normalized curve of this pattern, while the second and higher PCs will
be noise related. The entire data set from this homogeneous tissue/
organ can be represented without loss of information as the product
of the first PC and its scores. When DCE-MRI is acquired from a
heterogeneous sample, PCA will yield multiple significant signal-
related PCs, matching the number k of sources (tissues/compartments
with significant contribution to entire region of interest) for different
signal versus time curves.

PCA is a standard routine in series of commercial and open source
software, such as MATLAB, SAS, SPSS, R, and so on. In this partic-
ular implementation, no mean centering of the data is required and
the PCs and their scores are obtained through singular value decom-
position of the data covariance matrix rather than the data correlation
matrix [13].
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Pattern Recognition
While PCs are useful mathematical constructs for initial explora-

tion of the data and to obtain the number k of independent basic
temporal curves characterizing DCE-MRI data, the temporal shapes
of the orthonormal PCs cannot be directly interpreted in terms of
signal versus time DCE-MRI curves. Thus, constrained nonnegative
matrix factorization (cNMF) [14], an unsupervised PR algorithm,
is applied to V, seeking k solutions of basic temporal curves. cNMF
assumes that each image in the DCE-MRI series represents k tissue
types with individually associated basic signal versus time curve
shapes, that is, cNMF seeks a representation of V as a product of
k basic contrast signatures S(t) and their weights W. Mathematically,
this would be expressed as V ∼ W(X) × S(t) under the constraint that
the elements of W and S are nonnegative (note that the k basic
contrast signatures obtained by cNMF are not orthonormal like
the k significant PCs). The weights W quantify the contribution
of each of the k patterns to the final uptake pattern in any given
voxel, thus accounting for subvoxel contrast uptake behavior. That
means this approach is not only capable of separating voxels pre-
dominantly following one given pattern but also identify voxels that
have significant contributions from more than one pattern, effectively
increasing the spatial resolution of the data.
cNMF belongs to the class of blind source separation/independent

component analysis methods, and a variety of algorithms for the
nonnegative decomposition of data are publicly available [15].
cNMF was introduced primarily for fast recovery of biochemically
meaningful spectral patterns in three-dimensional magnetic reso-
nance spectroscopic imaging data [14]. The algorithmic and compu-
tational details of NMF [16,17] and cNMF [14,18,19] have been
described previously.

Results

PR Approach
Figure 1 illustrates the workflow of our analysis procedure, using

data from animal B: 256 image sets (each 128 × 128 × 5 pixels) are
organized in a two-dimensional space-time data matrix V(X, t), where
X depicts the spatial location of the pixel. The mean of the 23 pre-
contrast image sets is subtracted from the data set. A representative
array of signal versus time curves depicts the shape differences of
the curves in the tumor region, reflecting the heterogeneity of under-
lying tumor tissue features (Figure 1A). Three distinct temporal pat-
terns of tumoral signal versus time curves are indicated by colored
boxes (Figure 1A, from left to right): blue—continuous slow uptake;
green—faster uptake and some washout; and red—rapid uptake and
fast washout. On the basis of their shape [6] and image location,
these curves are most likely associated with necrotic, hypoxic, and
well-vascularized/highly permeable tumor tissues, respectively. Note
that we will subsequently refer to the well-vascularized/highly perme-
able tumor areas as “well perfused.”
PCA was applied to V, and the first four PCs from the DCE-MRI

data of animal B and their corresponding weight/amplitude images
are presented in Figure 1B. The numbers next to each PC indicate the
percent variability in V each PC accounts for. The results illustrate
that there are three signal-related PCs, while the fourth and higher
(not displayed) PCs are noise related. This indicates that the data
are composed of three basic temporal curves. From the corresponding
magnitude images, it can be inferred that almost all contrast-related
changes occur within the tumor, although signal enhancement can
also be seen in the surrounding muscle. Guided by the map of the
first PC, the tumor area is outlined manually, and PCA is applied only
to the signal-to-time curves from tumor pixels (Figure 1C ). Again,
the first three PCs explain more than 99.9% of total variability in
V. Note that the PCs contain both positive and negative segments,
limiting their side-by-side comparison with experimental signal versus
time curves.

cNMF is applied to the data matrix V, seeking three solutions (k = 3),
and the results are represented in Figure 1D: the basic signal versus
time curves S(t) are on the left and the spatial distribution of their
corresponding weights W(X) in V is on the right. The top pattern is
characterized by fast Gd-DTPA uptake and washout, with the highest
intensities in the corresponding weights being close to the tumor
surface. The middle curve and its corresponding weight image depict
delayed signal buildup and washout, indicative of reduced vasculariza-
tion. Compared to the other two patterns, the third pattern features the
slowest time-dependent signal increase with no observable washout
over the time course with the highest weighting in central tumor areas.

A detailed mathematical description of the workflow is described
in the Supplementary section.

The PCA/cNMF analysis of DCE-MRI data from three other
tumors are presented in Figure 2. PCA of the smallest tumor A re-
veals that almost the entire variability can be represented by one PC
(Figure 2A). The shape of the first PC, which approximates the nor-
malized average of the tumoral signal versus time curves, is notably
different than that of the first PCs in Figure 1, B and C . It is similar
to the first cNMF curve in Figure 1D: the signal increases at fastest
as a result of rapid Gd-DTPA uptake followed by rapid washout, which
is reflected in the temporal pattern. One of the most likely explanations
is that this particular tumor is quite homogeneous and well vascular-
ized. Consequently, cNMF failed to decompose the data set into mul-
tiple temporal patterns. The second PC in this tumor (Figure 2A,
second row), accounting for only 0.5% of variability in this data set,
displays the features of very fast contrast agent uptake and washout
(a characteristic found in large vessels [20]) and, based on its temporal
shape and location throughout the slices, may represent a feeding vessel
for this tumor.

The cNMF curves obtained from tumors C and D (Figure 2, B and
C) have almost identical shapes to those from animal B (Figure 1D).
In addition, the shapes of the cNMF-identified temporal curves are
similar to manually selected, representative signal versus time curves
for perfused, hypoxic, and necrotic areas, respectively, published in
Cho et al. [6].

Relationship between cNMF Curve Shapes and the
Tumor Microenvironment

In Figure 3, A and C , respectively, the weights of the differential
signal versus time patterns (cNMF curves) are presented as composite
color maps for two representative tumor tissue slices from animals B
and D, with red depicting fast contrast agent uptake and washout,
green depicting delayed contrast agent uptake and washout, and blue
and black areas depicting slow or no contrast agent uptake, respec-
tively. Voxels that have significant contributions from more than one
pattern, as quantified by the weight of each differential signal versus
time pattern, are depicted by the mixing of their respective colors. For
example, a voxel with significant contributions from the red and blue
channels would be depicted as a corresponding purple shade. The
individual color components of these maps are compared in Figure 3,
B and D, to maps depicting well-vascularized, necrotic, and hypoxic



Figure 1. Analysis workflow illustrated for DCE-MRI data from a Dunning R3327-AT prostate tumor model. (A) A representative array of
signal versus time curves from a tumor region and adjacent muscle tissue, depicted by the green box on a representative T1-weighed
MR image on the right, is shown. The color boxes indicate three differential temporal patterns in the tumor (from left to right): blue—
continuous slow uptake; green—faster uptake and some washout; red—rapid contrast uptake and fast washout. On the basis of their
temporal shape [6], as well as their image location, these curves are most likely associated with necrotic, hypoxic, and well-perfused
tumors, respectively. (B) Left: First four PCs, together with their fractional contribution to the data variability. Right: Spatial distribution of
the magnitude of the corresponding PC scores in the five image slices. (C) PCA applied only to the DCE data from pixels within the
tumor. Left: First four PCs. Right: Spatial distribution of the magnitude of the corresponding PCs in a representative central tumor slice
(note that the PCA was carried out on the entire data set). (D) cNMF analysis of the data seeking three solutions. Left: Basic signal versus
time curves, S(t). Right: Spatial distribution of the corresponding weights, W, in the five tumor slices.
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tumor areas, respectively, which were obtained previously from com-
plementary imaging modalities by Cho et al. [6].

(i) Areas of fast contrast uptake and washout (voxels in red) appear
to be spatially well correlated with the distributions of high Akep
values in Cho et al. [6]. The Akep map has been obtained by fit-
ting the contrast versus time curves in each voxel using the two-
compartment model by Hoffmann et al. [21]. In this model, Akep
is the product of amplitude A (degree of relative MR signal en-
hancement) and exchange rate kep (related to the rate of MR signal



Figure 1. (continued).
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increase) and is considered an approximate measure of vascular
perfusion and permeability of the tumor tissue [21]. Thus, the first
cNMF curve is characteristic of well-perfused tumor tissue.
(ii) Previously, tumor necrotic areas were identified ex vivo from

H&E-stained tissue sections of these tumors that were aligned to
the corresponding in vivo DCE-MRI slices [6] (Figure 3, B and
D). The distribution of necrotic areas appears to be spatially well
correlated with tumor areas characterized by the third cNMF curve
shape, that is, areas of low or no contrast uptake as identified in vivo
from DCE-MRI data (voxels in blue and black; Figure 3, B andD).
(iii) The remaining tumor areas (voxels in green), characterized by

the second cNMF curve shape, are compared to the corre-
sponding in vivo PET images depicting the slope map of tumoral
18F-Fmiso time-activity curves and images of corresponding ex vivo
pimonidazole-stained tissue sections (Figure 3, B and D). In the
PET data, hypoxic areas are identified by the positive slope of
the late portion of the 18F-Fmiso curves and are related to the con-
tinuing accumulation and lack of clearance of the hypoxia tracer,
while on tissue sections, pimonidazole-stained areas are considered
hypoxic [6].

While the total hypoxic areas identified in the tumor slice by
all modalities (DCE-MRI, 18F-Fmiso PET, and pimonidazole)
appear comparable, the intensity scales for the different imaging
modalities (Figure 3, B andD) are different. This can be explained
when considering a number of method-related features directly
affecting the respective intensity scale: 1) The green in the hypoxic
maps obtained from the unsupervised PR analysis of the DCE-
MRI data is weighted to represent how much of each pattern con-
tributes to each pixel, that is, bright green are voxels following
predominantly the shape of delayed contrast uptake and washout,
while faint green voxels are a mixture of more than one pattern;
2) in contrast, the 18F-Fmiso slope and pimonidazole maps result
from the uptake and metabolism of the respective 2-nitroimidazole,
which not only depends on oxygen level but also on tracer con-
centration, perfusion, cell viability, and cellular nitroreductase
activities [22]. Therefore, hypoxic areas adjacent to well-vascularized
voxels will appear more intense in the various images than hypoxic
areas that are closer to necrotic areas, as more of the nitroimidazole
reaches cells in the former than the latter. This is readily visible
in the faint green staining of the area immediately adjacent to a
necrotic area (green arrows, Figure 3B, Akep, PIMO), which is
not well vascularized, while an intense green area (red arrows,
Figure 3B, Akep, PIMO) appears to be a hypoxic area adjacent
to a well-vascularized area. This also means that the intensity of the
18F-Fmiso slope map is affected by vascular perfusion/permeability,
leading to higher slope values for hypoxic regions close to well-
vascularized areas and lesser slope values in those areas that are
adjacent to necrosis and, thus, poorly vascularized (green arrows,
Figure 3B, 18F-Fmiso vs Akep).
While previously the three microenvironments were manually
selected on the basis of DCE-MRI, H&E, pimonidazole, and late
18F-Fmiso slope images (shown for comparison in Figure 3, B and
D) [6], in the approach described here tissue segmentation was
achieved automatically and objectively on the basis of the differential
temporal patterns in DCE-MRI alone. The color depiction facilitates
the comparison of our results to the images acquired by Cho et al. [6]
using four image modalities.

Visualization and Quantification of Tumor
Microenvironments/Compartments

For the four tumors analyzed, the weights of the differential signal
versus time patterns are presented in Figure 4A (in order of increasing
tumor size) as composite color maps depicting well-vascularized/
perfused, hypoxic, and necrotic areas, respectively, in red, green,
and blue/black. The smallest tumor (tumor A, top) is entirely well
perfused. For the larger tumors, the images are consistent with our
basic understanding of tumor architecture and physiology: the tu-
mor center is mostly necrotic, with the hypoxic compartment closely
enveloping the necrotic core and the well-vascularized/perfused



Figure 2. PR analysis. (A) Left: First four PCs from DCE-MRI data from the smallest tumor A in the analyzed series (478 mm3). The first
PC explains more than 99% of the variability, suggesting high level of homogeneity in the tumor microenvironment. Right: Spatial
distribution of the magnitude of the corresponding PC scores in the five tumor slices. (B) cNMF applied to DCE-MRI data from tumor C
(870mm3). Only the first 145 time points from the DCE series (∼775 seconds) were analyzed, as PCA analysis of this tumor (data not shown)
indicated that there was an interruption in the PC curves around the 145th time point, possibly because of movement. Left: Basic signal
versus time curves S(t). Right: Spatial distribution of the corresponding weights W in the five tumor slices. (C) cNMF applied to DCE-MRI
data from tumor D (1230 mm3). Left: Basic signal versus time curves S(t). Right: Spatial distribution of the corresponding weights W in the
five tumor slices.
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Figure 3. Correlation of contrast agent uptake patterns as determined by PCA/cNMF analysis of DCE-MRI data to tissue microenviron-
ments as determined by other imaging modalities. (A, C) Composite color images of signal versus time patterns (cNMF curves) in in-
dividual tumors B (A, tumor volume = 744 mm3) and D (C, tumor volume = 1230 mm3). The colors represent the weights of the first
(red), second (green), and third (blue) cNMF curves, as displayed in Figures 1D and 2C for the two tumors, respectively. (B, D) The spatial
distribution of the three temporal patterns compared to the spatial distribution of well-perfused, hypoxic, and necrotic areas, respec-
tively, as identified previously by other imaging modalities [6]. The red cNMF map agrees well with the corresponding Akep map esti-
mated from the DCE-MRI data and represents well-vascularized areas. The blue pattern, including the black core of the tumor, overlaps
with the areas of necrosis, as determined from corresponding H&E-stained tissue sections. The hypoxic areas in these tumors previously
obtained from the late 18F-Fmiso slope data (in vivo) and pimonidazole-stained tissue sections (ex vivo) [6] correspond well to the dis-
tribution in the green map. Green and red arrows indicate hypoxic areas adjacent to necrotic and well-vascularized areas, respectively.
18F-Fmiso maps, as well as the images of the H&E- and pimonidazole-stained tumor tissue sections, were adapted with permission from
Cho et al. [6].
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Figure 4. Summary of PR analysis. (A) Composite color images of individual tumor subtissue features, as identified by PR analysis. The
presented images in the five slices in tumors A, B, C, and D refer to perfused (red), hypoxic (green), and necrotic (blue/black) tissues.
Note that the black areas adjacent to the blue voxels are also part of the necrotic core. The tumor sizes are 478 mm3 (A), 744 mm3

(B), 870 mm3 (C), and 1230 mm3 (D). (B) Fractions of the three tissue features in the four tumors.
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components at the periphery. As the contrast agent penetrates the
necrotic tissues via diffusion, only areas adjacent to the hypoxic
compartment are depicted in blue; the black tumor areas, unreached
by Gd-DTPA, are also part of the necrotic tumor areas. Qualita-
tively, it is apparent that the fraction of well-vascularized/perfused
tumor area decreases while the necrotic tumor compartment in-
creases with tumor size. Notably, multiple extensions of the hyp-
oxic compartment penetrate the well-perfused regions, depicting
areas less effectively supplied with oxygen because of reduced or
dysfunctional vasculature.
For quantification, image pixels above background are labeled well
perfused, hypoxic, or necrotic on the basis of which one of the three
patterns has maximum weight, and their fractional area was calcu-
lated as percentage tumor area (Figure 4B). Areas of low-contrast
signal (less than 25% of the maximum intensity simultaneously in
the red/green/blue channel) are the black regions within the tumors
in Figure 4A. The fractions of black voxels in the tumors of A, B, C,
and D are 0%, 3%, 12%, and 55%, respectively. Their numbers are
added to the “blue” voxels to obtain the total necrotic fractional area.
As seen qualitatively, the well-vascularized fractional area decreased and
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the necrotic fractional area increased with tumor size (Figure 4B).
While the well-vascularized tumor does not display significant amounts
of hypoxia, hypoxic areas were identified in the medium-sized to large
tumors. These data indicate that in tumors with extensive necrosis (tu-
mor D, Figure 4A) the overall hypoxic fraction decreases (Figure 4B).
Medium-sized tumors, which have not yet completely outgrown their
vascular supply, display the largest hypoxic fraction (Figure 4B).
To quantify the perfusion/permeability for the three types of

tumor microenvironments, we estimated Akep values. To reduce
the contribution from voxels containing a pattern mixture, we con-
sidered only voxels from the highest quartile for well-perfused, hyp-
oxic, or necrotic weights W, respectively. Representative average
signal versus time curves and corresponding Akep coefficient histo-
grams from the voxels in the necrotic, hypoxic, and well-vascularized
tumor regions from tumors B and D are shown, respectively, in blue,
green, and red in Figure 5. The shape and magnitude of the curves
(Figure 5, A and C ) are virtually identical to the representative curves
for perfused, hypoxic, and necrotic areas, respectively, published in Cho
Figure 5. Pharmacokinetic analysis of DCE-MRI curves. (A, C) Averag
from pixels of predominantly blue (necrotic), green (hypoxic), and re
(B, D) Corresponding histograms of Akep values in the three types of
Note that in these types of quantification the tumor areas that show
quartile for well-perfused, hypoxic, or necrotic weights W, respectiv
et al. [6], but exhibit a higher signal-to-noise ratio. The corresponding
Akep histograms (Figure 5, B and D) show three distinct populations
with some overlap for the three microenvironments. Again, previously
differential Akep distributions were obtained on the basis of manu-
ally selected pixels from DCE-MRI, H&E, pimonidazole, and late
18F-Fmiso slope images [6], while here the representative pixels are
selected automatically.

The summary statistics of the Akep distributions for all four
tumors are presented in Table 1 (for tumor A, Akep was estimated
over the entire tumor, because the tumor appeared to consist entirely
of well-perfused tissue). In all cases, the Akep values for well-perfused
tumor regions were significantly higher than for hypoxic regions (P <
.00001, Student’s t test), which in turn were significantly higher than
those of necrotic regions (P < .00001). Additionally, the results from
fitting the average uptake curves for the hypoxic, well-perfused, and
necrotic areas are presented. As expected, their respective Akep values
are very close to the population averages (Table 1). This analysis fur-
ther confirms that the identification of three different contrast agent
e signal versus time curves (normalized to the pre-contrast series)
d (perfused) areas from tumors B (744 mm3) and D (1230 mm3).
tissues as identified by unsupervised PR analysis of DCE-MRI data.
no contrast uptake, as well as pixels falling outside of the highest
ely, were excluded.
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uptake patterns results in three significantly different distributions of
Akep, and each pattern could be assigned to a distinct tumor micro-
environment using DCE-MRI data alone.
Discussion
An unsupervised PR approach was applied to previously acquired
in vivo DCE-MRI data from a Dunning rat R3327-AT prostate
cancer syngeneic tumor model to identify noninvasively tumor areas
based on differential uptake kinetics of the contrast agent Gd-DTPA.
Well-perfused tumor areas are characterized by rapid contrast uptake
followed by rapid washout; hypoxic areas, which are regions of reduced
vascularization, are identified by delayed contrast signal buildup and
washout; and necrotic areas exhibit slow or no Gd-DTPA uptake
and no discernible washout over the experimental observation. The
identified well-perfused, hypoxic, and necrotic regions of the tumors
included in the current analysis have been validated by comparison
to respective areas identified previously based on multimodality imag-
ing data [6].

While pharmacokinetic modeling of Gd-DTPA contrast uptake
curves separates viable and necrotic tumor tissues [6,23] and can suc-
cessfully quantify vascular changes in response to treatment [23–26],
to date it has not been shown to reliably distinguish among viable,
well-perfused and viable hypoxic tumor tissues [6,25–27]. Additional
techniques are required to assess tumor hypoxia in vivo [3,6,22,28].
Current clinical and preclinical methods to assess hypoxia in vivo
feature limited spatial sampling (biopsies) or spatial resolution (PET),
may lack anatomic information (PET), and are hampered by the num-
ber of serial exams feasible to monitor hypoxia changes during tumor
growth and treatment [5–8].

Here, the applied unsupervised PR approach, combining PCA with
cNMF, appeared to reliably separate the contrast uptake behavior of
viable tumor tissue into hypoxic and well-perfused compartments,
while also accounting through the weights W of the cNMF decom-
position for the fractional contribution of different tumor environ-
ments in each pixel. Thus, an intricate picture of the functional
tumor architecture emerges in the color overlays. The contrast agent
penetrates the necrotic areas (blue, black) through diffusion, and in
larger tumors, there are substantial fractions of dark, nonenhancing
areas. The hypoxic areas (green) tightly envelop the necrotic tissue.
The most illuminating is the interplay of red and green—the yellow
areas that indicate mixtures of hypoxic and well-perfused compo-
nents. In some cases, a delicate network of hypoxia “tentacles”
emerges, which penetrate the well-perfused periphery and may repre-
sent foci of acute hypoxia. This ability of decomposing subvoxel con-
trast agent uptake behavior is an advantage of this analysis approach
over pharmacokinetic modeling alone. Although the resulting param-
eters of pharmacokinetic modeling are affected by the fractional con-
tribution of more than one contrast agent uptake behavior in any given
voxel, they do not quantify the fractional contributions separately.
For quantification, the signal versus time curves from the assigned
well-vascularized, hypoxic, and necrotic tumor areas can be fitted
with a variety of available pharmacokinetic models (Tofts model
[9,10], shutter speed model [29], and so on) [30]. However, the dif-
ficulty of obtaining reliable arterial input function measurements in
small animals that are essential for some pharmacokinetic models
leads to the use/development of pharmacokinetic models such as
the Hoffman model [21] or reference region model [31]. Hence here
similarly to Cho et al. [6], the perfusion/permeability for the three
types of tumor microenvironments has been quantified by Akep val-
ues (Hoffman model [21]). The distributions of the Akep values for
the hypoxic compartment appear to be tumor specific. With increas-
ing Akep values of the well-vascularized areas, Akep values of the
hypoxic areas increase as well, indicative of generally better vascular
function. However, in a given tumor, the spatial distribution of
hypoxia and hypoxic fraction can be determined in the context of
the overall contrast uptake pattern.

Although the small number of tumors analyzed is a limitation of this
study, the tumors feature variable fractions of well-perfused, hypoxic,
and necrotic areas, as the selected tumors cover a large range of sizes.
The proposed method for fast and reliable Akep quantification, based on
the average uptake curves together with the spatial distribution of the
distinct and partially overlapping microenvironments and their
corresponding fractional areas, may be useful for patient stratification
to tailor treatment and/or to evaluate and monitor treatment response.

While only electrodes (Eppendorf, OxiLyte) measure absolute
pO2 values, exogenous and endogenous hypoxia markers estimate
directly or indirectly tumor areas of “radiobiologic” hypoxia [3,5,32].
The method proposed here—while not directly measuring absolute
tumoral pO2 values either—appears to delineate “radiobiologically”
hypoxic areas based on vascular features, as validated by comparison
to in vivo 18F-Fmiso PET and ex vivo pimonidazole data. Thus, the
proposed method appears to have a comparable future potential to
guide delivery of radiotherapy as other noninvasive methods, such as
18F-Fmiso PET, that are currently being investigated [33].

The proposed analysis tool is fast, can be automated, and is easily
implemented clinically. Thus, it appears that DCE-MRI, combined
with powerful analysis techniques, is an attractive alternative to eval-
uate hypoxia in vivo, as it contains inherently anatomic information,
does not use a radioactive tracer, has higher spatial resolution than
PET, and is widely available. In addition, the combined information
of tumor anatomy, vascularity, and hypoxia extracted from DCE-MRI
data may potentially have a considerable impact on the evaluation of
drug delivery, as well as the development of hypoxia-targeted therapies,
including hypoxia-activated prodrugs and antiangiogenic agents.
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Supplementary Section
The proposed approach requires the implementation of principal
component analysis (PCA) and constrained nonnegative matrix fac-
torization (cNMF). While both methods are established in the data
analysis field, combining these tools to analyze dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) data leading
to the identification of tumor microenvironments in vivo from
DCE-MRI alone is new and methodical details are given below.

Algorithm Description
Let DCE-MRI data be acquired at m time points in 3D (spatial)

imaging grid D(p, q, r) with the first s time points acquired before con-
trast agent injection. Define i as an index spanning all pixels in the spa-
tial matrix, i.e., i = 1,… , n (n—number of pixels in D, n = p × q × r).

(1) Construct the data matrix Ṽ(i, j), where

i = 1;…; n ðn total number of pixels in DÞ;

j = 1;…;m ðm number of time points in DCE�MRIÞ:

(2) Offset Ṽ(i, j) by the average of the s first pre-contrast scans:

Vði; jÞ= Ṽði; jÞ − ∑ p = 0

s Ṽði; pÞÞ
h i

= s:

(3) PCA of V:

In the exploration of large data sets, such as obtained in DCE-
MRI, PCA is an invaluable tool for the identification of the sources
of largest variations called principal components (PCs) and represent-
ing the data in a lower dimensional space defined by the orthonormal
PCs [1,2]. PCA is a standard routine in series of commercial and
open source software, such as MATLAB, SAS, SPSS, R, and so
on. In this particular implementation, no mean centering of the data
is required, and the PCs and their scores are obtained through sin-
gular value decomposition of the data covariance matrix rather than
the data correlation matrix (see algorithm description below) [2].

(3.1) Calculate C—the covariance matrix of V:

C =
1

n − 1
VTV;

where VT denotes the transposed matrix to V.

(3.2) Calculate eigenvectors Q and eigenvalues Λ of the
covariance matrix C, i.e.,
CQ = QΛ:

The rows inQ are the PCs, shown as temporal curves in Figures 1, A
andC , and 2A. The percentage of total variability, associated with a given
PC, is calculated as the fraction of its corresponding eigenvalue from the
total variance in the data set (=sum of all eigenvalues).
(3.3) Calculate the scores
R = V Q :
The scores are displayed as spatial maps in Figures 1, B and C ,
and 2A.
(3.4) Estimate k—the number of significant PCs, explaining
>99% of the variability in the data.

(4) cNMF of V:

NMF belongs to the class of blind source separation/independent
component analysis methods, and a variety of algorithms for the
nonnegative decomposition of data are publicly available [3]. cNMF
was introduced primarily for fast recovery of biochemically meaning-
ful spectral patterns in 3D magnetic resonance spectroscopic imaging
data [4]. The algorithmic and computational details of NMF [5,6]
and cNMF [4,7,8] have been described previously. The specific steps
used for the analysis of the DCE-MRI data are outlined below.

Note that the signal versus time curves of DCE-MRI data, which are
normalized by the average of the pre-contrast series (see (2)), may have
small negative values related to the noise fluctuations around zero in the
pre-contrast series. As an extension of NMF, cNMF enables the non-
negative factorization even in such situations, by forcing the negative
values to almost zero in the updates of W and S during the iterations.

The goal is to represent V as

V ≈W S; ½1�

where S(k, m) contains k (see (3.4)) DCE signal versus time patterns
and W(n, k) are the weights of each pattern contributing to the indi-
vidual observed pixel; W ≥ 0; S ≥ 0.

(4.1) Initialize W as n × k nonnegative pseudorandom values
drawn from the standard normal distribution; initialize S as
the solution of the constrained (nonnegative) linear least squares
of Equation 1.
S = argmin
W;S

∥V − WS∥2 subject to S ≥ 0:

(4.2) Update W using the following rule:
Wn;k ←Wn;k

VST
� �

n;k

VSST
� �

n;k

:

Force negative values inW to be approximately zero (ɛ = 2.2204 × 10−16)
(4.3) Update S using the following rule:
Sk;m ← Sk;m
WTV
� �

k;m

WTWV
� �

k;m

:

Force negative values in S to be approximately zero.
(4.4) Repeat (4.2) and (4.3) until
δðqÞ − δðqþ1Þ
� �

= δðqÞ < 10�8; where δ = ∥V − WS∥:
(5) Present S as temporal curves and W as spatial maps.



(6) To quantify the perfusion/permeability for the three types of tumor
microenvironments, Akep values were estimated using in-house written
software using Interactive Data Language (IDL, Boulder, CO).
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