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Abstract
MicroRNAs are master regulators of gene expression and control many biological pathways such
as cell growth, differentiation and apoptosis. Deregulation of microRNA expression and activity
results in a myriad of diseases including cancer. Recently, several reports have indicated that
single nucleotide polymorphisms (SNPs) in microRNAs and microRNA-target sites impact
microRNA biology and associate with cancer risk, treatment response and outcome. In this review
we will describe these findings and discuss the possible future of utilizing these SNPs as
diagnostic and prognostic markers in the clinic.
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1. Introduction
Sequence analysis of the human diploid genome estimates that human populations are
99.5% identical at the DNA level (Levy et al., 2007; J. Wang et al., 2008). Therefore, factors
leading to human diversity must arise from the remaining 0.5% of variable genetic
information, comprised primarily of single nucleotide polymorphisms (SNPs).
Approximately 10 million SNPs have been identified in the human genome, occurring at a
frequency of approximately 1–3% (or 1 out every 100–300 nucleotides) in the normal
population (Levy, et al., 2007; Sachidanandam et al., 2001; J. Wang, et al., 2008). SNPs can
occur in coding and non-coding regions of the genome. While the vast majority of SNPs
located in non-coding regions of the genome were believed to be silent, new evidence
suggests that SNPs coincident with cis-regulatory elements play a critical role in defining
human diversity and disease by regulating the nature and timing of gene expression
(Buonocore et al., 2010; Dimas et al., 2009; Pastinen, Ge, & Hudson, 2006).
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Cis-regulatory elements are sequence motifs in DNA and RNA that control gene expression
(Pastinen, et al., 2006; Pastinen & Hudson, 2004). Cis-regulatory elements are often
controlled by the concomitant expression of a requisite trans-acting factor. Transacting-
factors function in response to stimuli and allow cells to fine tune gene expression and adapt
to environmental or extracellular cues. Uncovering the relationship between cis-regulatory
elements and the trans-acting factors that govern their expression is important to further our
understanding of normal biological processes as well as disease.

2.1 MicroRNAs
MicroRNAs are a class of trans-acting RNAs found in eukaryotic organisms that bind to a
cis-regulatory element in a target mRNA and regulate gene expression by inhibiting protein
translation (Hobert, 2004). The first microRNAs discovered, lin-4 (R. C. Lee, Feinbaum, &
Ambros, 1993; Wightman, Ha, & Ruvkun, 1993) and let-7 (Reinhart et al., 2000), were
identified in C. elegans for their ability to control developmental timing and cell fate
specification. The discovery that let-7 homologs displayed temporal expression in flies and
mice indicated that microRNAs may have similar functions in higher order species
(Pasquinelli et al., 2000). This prompted cloning efforts, which elucidated hundreds of new
genes that encode for these trans-acting, small RNAs in worms, flies, mice and humans
(Lagos-Quintana, Rauhut, Lendeckel, & Tuschl, 2001; Lagos-Quintana, Rauhut, Meyer,
Borkhardt, & Tuschl, 2003; Lagos-Quintana et al., 2002; Lau, Lim, Weinstein, & Bartel,
2001).

MicroRNA genes are catalogued in the miRbase database (Griffiths-Jones, Grocock, van
Dongen, Bateman, & Enright, 2006). According to the most recent release of miRbase,
21,264 precursor microRNAs and 25,141 mature microRNAs have been identified in 193
eukaryotic species as well as viruses (Kozomara & Griffiths-Jones, 2011). Of these, 1,600
precursor microRNAs and 2,042 mature microRNAs were cloned from human sources
(Kozomara & Griffiths-Jones, 2011). MicroRNAs represent approximately 2% of the
amount of protein-coding genes (Griffiths-Jones, 2004). MicroRNAs are believed to
regulate up to 30% of all protein-coding genes (John et al., 2004; Krek et al., 2005; Lewis,
Shih, Jones-Rhoades, Bartel, & Burge, 2003; Lim et al., 2005). As microRNA discovery
extends to various cell, tissue and tumor types with the aide of deep-sequencing, the amount
of annotated microRNAs will likely increase.

While many microRNAs display cell and tissue-specific expression patterns (Blower et al.,
2007; Landgraf et al., 2007; Wienholds et al., 2005), elucidating the factors that govern
microRNA expression in response to particular environmental cues and the specific mRNAs
that are regulated in response to these cues remains a critical challenge to understanding
how microRNAs function in human biology. Several recent studies have begun to uncover
how extracellular stimuli such as growth factors (Seike et al., 2009; Suarez, Fernandez-
Hernando, Pober, & Sessa, 2007), hormones (Klinge, 2009; Porkka et al., 2007), hypoxia
(Kulshreshtha et al., 2007), DNA damage (Wagner-Ecker, Schwager, Wirkner, Abdollahi, &
Huber, 2010; Weidhaas et al., 2007; Zhou et al., 2010) effect microRNA expression.
Identifying the particular microRNAs and requisite mRNA targets that are sufficient to elicit
a context-dependent, microRNA-mediated cellular response is critical, as they will likely
provide useful diagnostic and prognostic biomarkers. Furthermore, uncovering how
microRNA associated SNPs play a role in altering the normal biological processes in
response to these cues is critical to understanding the molecular basis of how these variants
play a role in disease onset and progression and will allow for the development of targeted
therapeutics in the future.

MicroRNAs play a role in regulating many biological pathways including cell growth,
differentiation and apoptosis (reviewed by (Esquela-Kerscher & Slack, 2006; He & Hannon,
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2004) all of which are deregulated in cancer. MicroRNAs can function as both oncogenes
and tumor suppressors (Croce, 2009; Hammond, 2006; B. Zhang, Pan, Cobb, & Anderson,
2007). Conditional deletion (He et al., 2007) or over-expression (Hayashita et al., 2005;
Medina, Nolde, & Slack, 2010) of single microRNA genes is sufficient to drive
tumorigenesis in mice. Consistent with these findings, it was found that 50% of all
microRNA genes are in fragile regions of the genome that are frequently deleted, amplified
and mis-expressed in human cancers (Calin & Croce, 2006; Calin et al., 2002; Calin et al.,
2004). The role of SNPs in microRNAs and their binding sites are not surprisingly critical in
cancer as well, as will be discussed in this review.

2.2 MicroRNA biogenesis
MicroRNA genes are located in the introns of protein-coding genes as well as in intergenic
regions of the genome previously thought to be transcriptionally inactive (Saini, Griffiths-
Jones, & Enright, 2007). About 45% of human microRNA genes are clustered together in
groups of 2 or more and are individually generated from the polycistronic transcript (Saini,
et al., 2007).

In mammalian systems, microRNAs are transcribed from the genome by RNA polymerase-
II as a long primary transcript (or pri-microRNA) that is capped and polyadenylated (Cai,
Hagedorn, & Cullen, 2004; Y. Lee et al., 2004). The pri-microRNA folds into a stem-loop
structure and is bound by the double-strand RNA binding protein DGCR8 at the base of the
stem (Han et al., 2004; Han et al., 2006). DGCR8 associates with the RNaseIII enzyme
Drosha, which cleaves both strands of the pri-microRNA stem generating a shorter ~70
nucleotide stem-loop called the pre-microRNA (Gregory et al., 2004; Y. Lee et al., 2003)
(Figure 1).

Exportin5 cooperatively binds the pre-microRNA hairpin and Ran-GTP and facilitates
export of the RNA from the nucleus to the cytoplasm (Yi, Qin, Macara, & Cullen, 2003;
Zeng & Cullen, 2004). In the cytoplasm the pre-microRNA is bound by the RNaseIII
enzyme Dicer (Bernstein, Caudy, Hammond, & Hannon, 2001; Bernstein et al., 2003),
which measures approximately 2-helical turns (22 nucleotides) up from the base and cleaves
both strands of the stem generating a 22 nucleotide microRNA duplex (Macrae et al., 2006;
H. Zhang, Kolb, Jaskiewicz, Westhof, & Filipowicz, 2004) (Figure 1).

The duplex is unwound by an RNA helicase (Chu & Rana, 2006; Salzman, Shubert-
Coleman, & Furneaux, 2007) and the mature microRNA is loaded into 1 of 4 Argonuate
proteins (Ago1–4) (Carmell, Xuan, Zhang, & Hannon, 2002; Farazi, Juranek, & Tuschl,
2008; Peters & Meister, 2007). The other strand of the duplex (or microRNA*) is often
degraded. However in some cases, like miR-199 and miR-199* both strands of the
microRNA duplex are loaded into an Ago protein (Czech et al., 2009; Okamura, Liu, & Lai,
2009). Ago is the heart of the microRNA-induced silencing complex (miRISC), which is
guided by the microRNA to complementary elements in the 3′ UTR of a target mRNA
(Carmell, et al., 2002; Peters & Meister, 2007). The miRISC negatively regulates gene
expression by either mRNA cleavage or inhibiting translation (Valencia-Sanchez, Liu,
Hannon, & Parker, 2006).

2.3 Determinants for microRNA target selection
To better understand how SNPs may be important in disrupting microRNA regulation of
targets, it is important to understand the complexity of microRNA target selection. Target
selection is based predominantly on the extent of Watson-Crick base pairing between the
microRNA and mRNA and this is linked directly to the mechanism by which the mRNA is
silenced. Nucleotides 2–7 (from the 5′ end of the microRNA), also called the microRNA
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‘seed’, are a major determinant of mRNA target selection (Lewis, et al., 2003). Mutation(s)
in either the seed or seed-complementary site inhibited microRNA activity and could be
rescued with a compensatory mutation(s) highlighting the importance of seed sequence
complementarity (Vaucheret, Vazquez, Crete, & Bartel, 2004; Vella, Choi, Lin, Reinert, &
Slack, 2004). Complementarity in the seed region leads to translation repression (Pillai et al.,
2005).

While Watson-Crick base pairing in the seed is absolutely critical for target recognition,
there are other enhancing features that can strengthen microRNA target selection.
Complementarity at position 8 of the microRNA, and the presence of an adenosine residue
in the target mRNA opposite of nucleotide 1 enhance target recognition (Lewis, Burge, &
Bartel, 2005). Additionally, more than 4 contiguous Watson-Crick base pairs between
nucleotides 12–17 at the 3′ end of the microRNA also enhance target recognition (Grimson
et al., 2007).

MicroRNA-directed cleavage occurs by hydrolysis of the phosphodiester backbone in the
target mRNA opposite nucleotides 10 and 11, when there is complementarity between (at
least) nucleotides 2–15 (Meister et al., 2004). While 1 or 2 single nucleotide mis-matches or
G:U wobbles are tolerated, canonical Watson-Crick base pairing is absolutely critical
between nucleotides 9–12 (Felice, Salzman, Shubert-Coleman, Jensen, & Furneaux, 2009;
Martinez & Tuschl, 2004). However, it was recently demonstrated that centered pairing
requiring 11–12 contiguous Watson-Crick base pairs, between nucleotides 4–15 of the
microRNA, is also sufficient to direct target RNA cleavage (Shin et al.). While examples of
microRNA-directed mRNA cleavage can occur in humans, computational analysis indicated
that the amount of target sites predicted to fit this criteria are extremely rare (John, et al.,
2004; Yekta, Shih, & Bartel, 2004).

3.1 SNPs in microRNAs and microRNA target sites
Because microRNA biogenesis and target selection is highly sequence dependent, germline
sequence variants (such as SNPs) and posttranscriptional base modifications (such as ADAR
editing) in either the microRNA or microRNA-target site can have profound effects on
microRNA function. Interestingly, the first evidence that a microRNA-associated SNP could
elicit gross morphologic defects was inherent to the initial discovery of the let-7 microRNA.
The temperature sensitive let-7(n2853) mutation that results in C. elegans lethality is in fact
a single nucleotide G>A point mutation at position 5 of the microRNA (Reinhart, et al.,
2000). This mutation inhibits let-7 from targeting the lin-41 mRNA and results in reiteration
of larval cell divisions in the adult worm (Reinhart, et al., 2000). While the let-7(n2853)
mutation is chemically induced, it provides proof of principle evidence for this concept.

Sequencing analysis showed that microRNAs and microRNA target sites are highly
conserved through evolution (Chen & Rajewsky, 2006). Furthermore, SNPs in microRNA
genes are relatively rare (Saunders, Liang, & Li, 2007). These findings indicate that trans-
acting microRNAs and the requisite cis-regulatory elements they regulate were under
selective pressure during evolution. This suggests that the repertoire of SNPs that have been
identified in microRNAs and microRNA target sites may represent a class of functional
variants.

In theory, microRNA-associated SNPs can elicit cancer phenotypes by either creating a loss-
of-function scenario whereby the expression, activity or targeting of a tumor suppressor
microRNA is inhibited; or a gain-of-function scenario where by the expression, activity or
targeting of an oncogenic microRNA is enhanced. SNPs can have director or indirect effects
on microRNAs. Direct effects include SNPs in the pri-microRNA, pre-microRNA or mature
microRNA that impair or enhance microRNA processing or function (Figure 3). Indirect
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effects include SNPs in microRNA promoters that affect transcription (Figure 2) and SNPs
in an mRNA that create or destroy a target site (Figure 4). In the later half of this review we
will discuss cancer-associated microRNA SNPs that affect microRNAs via three different
mechanisms; microRNA transcription; microRNA precursor processing, and microRNA-
mRNA binding.

3.2 MicroRNA promoter SNPs
MicroRNA transcription is regulated by the same mechanisms that control protein-coding
genes (Hobert, 2004; Marson et al., 2008). A number of well-characterized transcription
factors control both mRNA and microRNA expression (He, He, Lim, et al., 2007;
O’Donnell, Wentzel, Zeller, Dang, & Mendell, 2005). Transcription factors bind to
conserved sequence motifs in the genome (typically) upstream of the gene for which they
are controlling the transcription of (Orphanides, Lagrange, & Reinberg, 1996; Roeder,
1996). Because the recognition of a transcription factor to a particular DNA locus is
sequence dependent (el-Deiry, Kern, Pietenpol, Kinzler, & Vogelstein, 1992; Maniatis,
Goodbourn, & Fischer, 1987), variants in transcription factor binding sites could potentially
alter microRNA expression (Figure 2). Computational analysis predicts that there are over
20,000 SNPs coincident with microRNA promoters in humans (Schmeier, Schaefer,
MacPherson, & Bajic, 2011). However, the functional and phenotypic relevance of virtually
all of these SNPs remains unclear.

The miR-34 family is transcriptionally upregulated following exposure to cytotoxic stress in
a p53-dependent manner (He, He, Lowe, & Hannon, 2007; Hermeking, 2007). Mapping of
the miR-34a and miR-34b/c promoters indicated that there are conserved p53 binding sites
upstream of the miR-34 family that are required for transcription (Chang et al., 2007; He,
He, Lim, et al., 2007). Loss of miR-34 function attenuates p53-mediated cell cycle arrest and
apoptosis (He, He, Lim, et al., 2007; Raver-Shapira et al., 2007), which is congruent with
increased cellular transformation and sensitivity to cytotoxic therapy (Kato et al., 2009). The
rs4938723 T>C SNP located 423 nucleotides upstream of miR-34b/c is located in a
transcription factor binding site and is predicted to attenuate GATA binding (Y. Xu et al.,
2011). The rs4938723 SNP is associated with an increased risk of hepatocellular carcinoma
in a case-control study of 501 Chinese individuals (Y. Xu, et al., 2011). While the precise
mechanism in which the rs4938723 SNP associated with increased HCC risk is unknown, it
phenocopies a TP53 loss-of-function mutation, and therefore likely inhibits expression of
the miR-34 family resulting in enhanced cellular transformation.

3.3 SNPs in microRNA precursors
MicroRNA biogenesis proceeds through sequential processing steps mediated by the
RNaseIII enzymes Drosha and Dicer (Kim, 2005) (Figure 1). These processing events rely
heavily on proper folding of the precursor RNAs into a stem-loop structure (Han, et al.,
2006). Variants in the pri-microRNA and/or pre-microRNA could alter secondary structure
and inhibit or enhance pri-microRNA processing (Figure 3).

Patients with chronic lymphocytic leukemia (CLL) frequently have homozygous deletions at
chromosome 13q13.4 (Calin, et al., 2002). This genomic locus encodes a polycistronic
transcript from which, miR-15a and miR-16-1 are processed (Calin, et al., 2002; Lagos-
Quintana, et al., 2001). These microRNAs are dynamically expressed during the cell cycle
(Rissland, Hong, & Bartel, 2011) and target genes involved in regulating cell cycle
progression (Linsley et al., 2007; Liu et al., 2008). They have also been shown to target
genes involved in apoptosis and function as tumor suppressors (Bonci et al., 2008; Cimmino
et al., 2005). In 2005, Carlo Croce’s group identified a homozygous C>T SNP coincident
with the pri-miR-16-1 locus in two CLL patients with intact 13q13.4 (Calin et al., 2005).
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This SNP associated with decreased miR-16 expression in CLL cell lines derived from
patients and inhibited pri-miR-16 processing in vitro (Calin, et al., 2005). Moreover, this
SNP is associated with CLL-like disease in mice (Raveche et al., 2007), highlighting the
importance of these microRNAs in tumorigenesis.

The miR-146 family, comprised of miR-146a and miR-146b, is transcriptionally activated in
THP1 cells in response to LPS stimulation in an NF-κB-dependent manner (Taganov,
Boldin, Chang, & Baltimore, 2006). NF-κB-mediated upregulation and ectopic expression
of miR-146a/b inhibits migration and invasion of breast (Bhaumik et al., 2008; Hurst et al.,
2009) and pancreatic (Li et al., 2010) cancer cell lines. Inhibition of migration and invasion
attributed to targeting of IRAK-1 leading to subsequent inhibition of NF-κB by miR-146a in
a negative feedback loop (Bhaumik, et al., 2008; Hurst, et al., 2009). A G>C SNP
(rs2910164) in the pre-miR-146a was identified by associating with an increased risk of
papillary thyroid carcinoma (Jazdzewski et al., 2008). Subsequent analysis showed
association of the rs2910164 SNP with hepatocellular carcinoma (T. Xu et al., 2008),
prostate cancer (B. Xu et al., 2010), and esophageal squamous cell carcinoma (Guo et al.,
2010) in Han Chinese individuals. In a recent study the rs2910164 SNP was shown to
associate with a decreased risk of bladder cancer and reduced risk of recurrence (M. Wang
et al., 2012). Functional analysis established that the G>C alteration attenuates Drosha-
mediated processing resulting in reduced miR-146a expression (Jazdzewski, et al., 2008).
Interestingly, several reports have linked decreased miR-146a expression to androgen-
independent prostate cancer (Lin, Chiang, Chang, & Ying, 2008; B. Xu et al.). The
rs2910164 SNP is associated with hormone-refractory prostate cancer (B. Xu, et al., 2010).
Therefore, it is plausible that miR-146a governs prostate cancer biology. However, in breast
(Hurst, et al., 2009) and bladder (M. Wang, et al., 2012) cancer cell lines the rs2910164 SNP
leads to upregulation of miR-146a expression. The discrepancy in data regarding the affect
of the rs2910164 SNP on miR-146a expression highlights the ability of SNPs to dynamically
alter microRNA expression in a tissue specific manner.

A homozygous T>C SNP (rs11614914) in pre-miR-196a-2 is associated with an increased
risk of lung (Tian et al., 2009), breast (Hoffman et al., 2009) and gastric cancer (Peng et al.,
2010) in Chinese populations, whereas, in Caucasian populations where the allele frequency
is reversed, a C>T homozygous variant of the rs11614914 SNP associated with an increased
risk of oesophageal cancer in non-smokers (Ye et al., 2008). While the T>C variant reduces
the expression of miR-196a-2 (Hoffman, et al., 2009), the target genes sufficient to drive
tumorigenesis are unknown and it is possible that this microRNA can function as both a
tumor suppressor and oncogene. Homozygous rs11614914 T>C variants were associated
with poor survival in patients diagnosed with non-small cell lung cancer indicating the
importance of these SNPs as possible diagnostic markers for cancer prognosis (Hu et al.,
2008). Taken together these observations indicate that SNPs in pre-microRNA regions can
play a dynamic role in microRNA processing and cancer biology.

3.4 SNPs in microRNA target sites
Sequence complementarity is a major determinant for microRNA-target recognition (Bartel,
2009). Therefore, SNPs in mRNAs can alter microRNA binding by either creating a new
site or destroying an existing target site (Figure 4). Computational analysis indicates that
there are approximately 20,000 SNPs coincident with conserved human microRNA target
sites with putative functionality (Chen & Rajewsky, 2006). Michel George’s group was the
first to report that a 3′ UTR SNP could create an aberrant microRNA target site. They
showed that a homozygous SNP in the 3′ UTR of myostatin caused muscular hypertrophy in
Texel sheep (Clop et al., 2006). The G>A SNP creates an aberrant target site for miR-1 and
miR-206, which are highly expressed in skeletal muscle and specifically target the variant
allele (Clop, et al., 2006). Whereas, Matthew State’s group showed that a Tourette’s
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syndrome associated SNP in the 3′ UTR of SLITRK1 destroyed a target site for miR-189,
and was the first evidence that a 3′ UTR SNP could inhibit microRNA binding (Abelson et
al., 2005). Since these seminal observations, microRNA binding site SNPs have been
identified in cancer and appear to function as biomarkers for disease risk, treatment response
and outcome.

Let-7 is a tumor suppressor microRNA that regulates the expression of the KRAS (Johnson
et al., 2005), MYC (Kumar, Lu, Mercer, Golub, & Jacks, 2007) and HMGA2 (Y. S. Lee &
Dutta, 2007; Mayr, Hemann, & Bartel, 2007) oncogenes. Let-7 expression is frequently
down regulated in many types of cancer and this is associated with poor prognosis in lung
cancer (Karube et al., 2005; Takamizawa et al., 2004). A heterozygous T>G SNP
(rs61764370) in the 3′ UTR of KRAS associates with an increased risk for non-small cell
lung carcinoma in 2 case-controlled studies (Chin et al., 2008), as well as, increased risk for
ovarian cancer (E. Ratner et al.), triple negative breast cancer (Paranjape et al.), melanoma
(Chan et al.), and hereditary breast and ovarian cancer (Pilarski et al.). The T>G variant is
coincident with a let-7 target site in the 3′ UTR of KRAS and attenuates let-7-mediated
suppression (Chin, et al., 2008), resulting in KRAS overexpression.

Furthermore, the rs61764370 SNP was recently shown to associate with resistance to
platinum-based therapy in ovarian cancer and increased cancer specific death in these
patients (E. S. Ratner et al., 2011). Additionally, evidence from Graziano et al., indicated
that metastatic colorectal cancer patients with the rs61764370 SNP undergoing salvage
cetuximab-irinotecan therapy displayed chemotherapy resistance, with poor overall survival
and progression-free survival (Graziano et al., 2010). These findings suggest that this
germline, non-coding sequence variant in the KRAS 3′ UTR phenocopies somatic,
activating (gain-of-function) KRAS mutations found in the open-reading-frame in treatment
response. This data highlights the potential utility for the rs61764370 SNP as a companion
diagnostic in the clinic.

While the rs61764370 SNP was identified by direct sequencing of the KRAS 3′ UTR, other
groups have utilized in silico analysis to identify candidate SNPs in microRNA target sites
for genotype-phenotype correlations (Nicoloso et al., 2010; Sethupathy, Giang, Plotkin, &
Hannenhalli, 2008). Analysis of microRNA target site SNPs in genes associated with the
DNA damage repair pathway demonstrated that a heterozygous T>C SNP (rs8679) in the
PARP1 3′ UTR associated with increased risk for developing bladder cancer, but not breast
cancer (Teo et al., 2012). This SNP is coincident with several predicted microRNA target
sites in the PARP1 3′ UTR, in particular miR-145, which is frequently down-regulated in
bladder cancer (Ichimi et al., 2009). It is possible that the rs8679 SNP in combination with
reduced miR-145 expression contribute to increased bladder cancer risk.

In this same report a heterozygous A>G SNP (rs7180135) in the RAD51 3′ UTR associated
with a favorable response (improved 5-year cancer specific survival) to radiation therapy in
muscle-invasive bladder cancer (Teo, et al., 2012). This SNP is predicted to be coincident
with a miR-197 target site and disrupt microRNA targeting. Interestingly, miR-197 is
downregulated in cells following exposure to ionizing radiation (Weidhaas, et al., 2007). It
is possible that the rs7180135 SNP and downregulation of miR-197 following IR therapy
work synergistically to enhance the cellular DNA damage response, resulting in increased
survival. These reports indicate that microRNA target site SNPs can function similarly to
protein-coding mutations that associate with not only disease risk, but treatment response
and outcome as well.
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4. Looking into the future: utilizing SNPs as companion diagnostics
There is sufficient proof-of-principle evidence that microRNA SNPs can play a critical role
in predicting cancer risk, treatment response and outcome. Understanding the factors that
contribute to cancer risk can be a powerful future tool for clinicians and genetic counselors,
as well as in advancing our understanding of cancer biology. If a risk allele is identified
clinicians could advise patients to begin earlier, more frequent and intensive screening or
even stronger preventative measures, in hopes of preventing disease or catching it at an
earlier and more treatable stage. More interestingly, as microRNAs are stimulated by
external stimuli, it may also be possible to manage patients with such SNPs by modifying
lifestyle factors to maintain homeostasis of their inherited differences. This is an avenue of
active research that may prove most promising.

While assessing an individual’s risk can be a useful tool to catch cancer at an earlier time,
the question regarding what is the best treatment for individual cancer patients still remains.
There is mounting evidence that microRNA SNPs can predict treatment response and
outcome. For example, the miR-34 family protects cells against cytotoxic therapy (Kato, et
al., 2009). Therefore, the miR-34b/c promoter SNP (rs4938723) that inhibits miR-34
expression (Y. Xu, et al., 2011), could be hypothetically utilized as a companion diagnostic
with treatment. The KRAS 3′ UTR SNP (rs61764370) associates with poor response to
platinum-based therapy in ovarian cancer (E. S. Ratner, et al., 2011) and cetuximab-
irinotecan treatment in colorectal cancer patients (Graziano, et al., 2010). Consistent with
these findings patients harboring the SNP displayed poor outcome and poor overall survival.
These results indicate the potential utilization of microRNA-associated SNPs as companion
diagnostics. Application of these SNPs into treatment decisions will require further
confirmation in prospective randomized trials, yet the evidence for their potential as a new
class of inherited markers that could bring clinicians one-step closer to providing tailored/
personalized care for the treatment of cancer is already very promising.
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Abbreviations

DNA deoxyribonucleic acid

RNA ribonucleic acid

miRNA microRNA

SNP single nucleotide polymorphism

5′ UTR 5′ untranslated region

3′ UTR 3′ untranslated region

C. elegans Caenorhabditis elegans

DGCR8 DiGeorge syndrome critical region 8 (gene)

Ago Argonuate

SLITRK1 SLIT and NTRK-Like family member 1 (gene)

KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (gene)

HMGA2 high-mobility group AT-hook 2 (gene)
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PARP1 Poly [ADP-ribose] polymerase 1 (gene)

HCC hepatocellular carcinoma

CLL chronic lymphocytic leukemia

BCL2 B-cell CLL/lymphoma 2 (gene)

BRCA1 breast cancer 1, early onset (gene)

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells (gene)

THP1 Human acute monocytic leukemia cell line
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Figure 1.
The microRNA biogenesis pathway.
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Figure 2.
SNPs in microRNA promoters can prevent transcription factor binding and inhibit pri-
microRNA transcription.
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Figure 3.
SNPs in pri-microRNA (A) or pre-microRNA (B) precursors can inhibit the processing of a
tumor suppressor microRNA or can enhance the processing of an oncogenic microRNA.
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Figure 4.
SNPs in microRNA-target sites can either destroy an existing target site or create a target
site in the wrong mRNA.
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