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Identifying combined design and
analysis procedures in two-stage trials
with a binary end point
Jack Bowden*† and James Wason

Two-stage trial designs provide the flexibility to stop early for efficacy or futility and are popular because they
have a smaller sample size on average than a traditional trial has with the same type I and II error rates. This
makes them financially attractive but also has the ethical benefit of reducing, in the long run, the number of
patients who are given ineffective treatments. Designs that minimise the expected sample size are often referred
to as ‘optimal’. However, two-stage designs can impart a substantial bias into the parameter estimate at the end
of the trial. In this paper, we argue that the expected performance of one’s chosen estimation method should also
be considered when deciding on a two-stage trial design. We review the properties of standard and bias-adjusted
maximum likelihood estimators as well as mean and median unbiased estimators. We then identify optimal two-
stage design and analysis procedures that balance projected sample size considerations with those of estimator
performance. We make available software to implement this new methodology. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

When investigating new and potentially promising treatments in the early stages of drug development,
it is common to conduct a small-scale single-arm trial. The outcome is often defined simply in terms of
a binary response (e.g. success or failure). The success probability of the current standard treatment is
usually assumed to be known, p0 say, so that the experimental treatment may warrant further investiga-
tion if it has a success probability p such that p > p1 > p0, where p1 represents the smallest clinically
relevant improvement. Two-stage designs that allow the possibility to stop early for efficacy or futility
are a popular choice for such trials because they have a smaller sample size on average compared with a
traditional trial with the same type I and II error rates. This makes them financially and ethically attrac-
tive. Although the main purpose of such a trial is to make a decision on whether to stop or continue
research into the experimental treatment, accurate estimation of its success probability is still important
to appropriately power future studies. However, two-stage designs can impart a substantial bias into the
parameter estimate for p. As we will show, this is especially true for designs that minimise the expected
sample size.

In this paper, we review and evaluate several methods for estimating the response probability in a
two-stage trial, concentrating on their bias and mean squared error (MSE). This comparison is greatly
aided by applying the sample space ‘T -mapping’ approach proposed by Jovic and Whitehead [1]. In
light of these results, we propose a modification to the admissible design method described in Jung
et al. [2] and Mander et al. [3]. Given desired type I and II error rates as well as prior beliefs about the
likely value of p, our modification provides a tool enabling the user to identify two-stage design and
analysis procedures that balance sample size considerations against the desire for accurate estimation.
By incorporating estimator accuracy into the decision framework governing design choice, our approach
is similar in spirit to that of Liu [4] but is substantially different in terms of its details and scope. In
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Section 2, we introduce the T -mapping procedure and use this as a common framework for exploring
five distinct estimators for p. In Section 3, we explore their bias and MSE across the design space of
some common two-stage trials. In Section 4, we introduce our algorithm for choosing an optimal design
and analysis procedure and demonstrate its use. We conclude with a discussion in Section 5.

1.1. Notation

Following the notation in [1], let Xi D .0; 1/ denote the failure or success of person i in a two-stage trial
of n2 people, for which n1 patients are recruited at stage 1. If S1 D

Pn1
iD1Xi is 6 l1, then the trial is

stopped at stage 1 for futility (and acceptance ofH0), and if S1 is > u1, the trial is stopped at stage 1 for
efficacy (and rejection of H0). If l1 C 1 6 S1 6 u1 � 1, then the trial recruits a further n2 � n1 patients
leading to a total sample size of n2. Finally, if S2 D

Pn2
iD1Xi is > u2, then H0 can be rejected at stage

2. For trials that allow stopping at stage 1 for efficacy and futility, the values of n1; n2; l1; u1 and u2 can
be chosen to satisfy the desired type I and II error probabilities. Define h.n; s/ D .ns/ p

s.1 � p/n�s as
the binomial probability of observing s responses out of n given p, and let H.n; s/D

Pn
iDs h.n; i/.

All subsequent formulae will assume a two-stage design allowing stopping for efficacy and futility—
we will refer to this generically as a ‘Shuster-type’ design [5]. If early stopping for efficacy is deemed
inappropriate, we can easily modify these formulae by fixing u1 to be any integer value greater than n1,
n1 C 1 say, and noting that (assuming n is a positive integer) h.n; v/ is zero whenever v is negative or
greater than n. We will refer to a trial of this sort as a ‘Simon-type’ design [6]. We illustrate these two
classes of designs in Figure 1, and we will consider both types in this paper.

2. Estimating p: a review of methods

It is necessary for subsequent development to briefly consider hypothesis testing within the context of a
two-stage trial. We can transfer the standard definition of a p-value to this setting using a p-value func-
tion. This expresses, at the point the trial ends, the probability of seeing even more extreme evidence
against the null hypothesis than that observed and requires a methodology for ordering the design space.
For a Shuster-type design, we can define the Fairbanks and Madsen (FM) ordering [1, 7] as follows. If
after n1 observations the number of responses, s1, leads to the trial stopping (for efficacy or futility), then
the only way that the trial could have produced evidence at least as strong against H0 would be if > s1
responses had been observed. However, if after n1 observations the value of s1 leads to a continuation to
stage 2—and a total of s2 responses were observed among the n2 subjects, then there are two possible
ways of observing equal or more extreme evidence. The trial could have stopped at stage 1 if s1 had
been > u1. Alternatively, the trial could have proceeded to stage 2 with any possible value of s1 as long
as > s2 responses were eventually observed. Thus, we can specify the p-value function given the final

Figure 1. The two-stage design, with stopping efficacy and futility (Shuster-type) and futility only (Simon-type).
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stage M D f1; 2g and final response number S D f0; : : : ; n2g. Jovic and Whitehead map the pair M;S
to a single statistic T as follows:

T D

8<
:
.n2 � n1/C S1 if M D 1 and S1 > u1
S1 if M D 1 and S1 6 l1
S2 if M D 2 and l1C 16 S1 6 u1 � 1 when M equalled 1.

(1)

T can take any value between 0 and n2. As T increases, so too does the strength of evidence against
H0 under the FM ordering.

2.1. The median unbiased estimate

Jovic and Whitehead utilise T -mapping to express the p-value function, K.t; p/, for the observed value
of T D t and true parameter value p as follows:

K.t; p/D

8<
:
H.n1; t � .n2 � n1// if t > .n2 � n1/C u1
H.n1; t / if t 6 l1
H.n1; u1/C

Pu1�1
iDl1C1

H.n2 � n1; t � i/h.n1; i/ if l1C 16 t 6 .n2 � n1/C u1:
(2)

(also as shown in Table I). They use it as a basis for calculating a fiducial estimate for p that is approxi-
mately median unbiased. This is achieved by finding a pC: K.t; pC/ D 0:5, a p�: K.t C 1; p�/ D 0:5
and taking the average: 1

2
.pC C p�/. We will refer to this as the median unbiased estimate (MUE).

Although not explored in this paper, the same approach is used to find conservative lower and upper
confidence bounds for p by setting K.t; p/ and K.t C 1; p/ to ˛=2 and 1� ˛=2, respectively.

We now introduce several further estimators for the parameter p and express them using the T -
mapping approach. This helps to facilitate a clearer understanding of their relative utility for two-stage
designs explored in later sections.

2.2. The maximum likelihood estimate and bias-corrected maximum likelihood estimate

The maximum likelihood estimate (MLE) for p, Op, is S1=n1 when M D 1 and S2=n2 when M D 2.
This can be expressed using T -mapping as shown in Table I. The method of maximum likelihood does
not attempt to address the issue of bias induced by the two-stage design. In this context, Jung and Kim [8]
show that

Bias. Opjp/D
n1C n2

n1n2

u1�1X
iDl1C1

.i � n1p/

�
n1
i

�
pi .1� p/n1�i (3)

So, the bias in the MLE is a function of the true value of the parameter p, the stage 1 and 2 sample sizes
and the bounds for proceeding to stage 2. As a general solution to this problem, Whitehead [9] proposed
a bias-corrected maximum likelihood estimator Opa defined via the following relation:

Op D Opa CBias. Opj Opa/:

The bias-corrected approach can be applied to this setting using the MLE’s T -map and Equation (3). We
will refer to it as the bias-corrected MLE (BC-MLE).

2.3. The uniformly minimum-variance unbiased estimator and uniformly minimum-variance
conditionally unbiased estimator

Jung and Kim [8] show that, when evaluating a binary response in a multi-stage trial, the pair .M; S/ are
jointly complete and sufficient statistics for the parameter p. They then use the Rao–Blackwell theorem

to derive its uniform minimum variance unbiased estimate (UMVUE) by calculating E
h
S1
n1
jM;S

i
, the

expected value of the unbiased stage 1 estimate for p, given M and S . We will explore its utility in the
two-stage trial setting only. WhenM D 1, the UMVUE is simply equal to S1=n1. WhenM D 2, it is the
expected value of S1=n1 given that S2 patients responded in total and S1 was in the stage 1 continuation
region. This can be intuitively expressed using hypergeometric probabilities and is shown this way
(via T -mapping) in Table I.
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Pepe et al. [10] argue that in the context of two-stage Simon-type trial, the estimate for p is only
of real consequence when the trial continues to stage 2, as it is then used to plan future studies. They
therefore suggest the use of the estimator:

E

�
S2 � S1

n2 � n1
jS2;M D 2

�
:

Given M D 2, the second stage estimate is unbiased for p, and S2 is its complete sufficient statistic.
It is thus the UMVUE conditional on getting to stage 2. We refer to it as the UMVCUE and express it
using T -mapping in Table I. Note that the UMVCUE is very similar in form to the UMVUE at stage 2,
but it differs because the expectation is taken with respect to the second stage estimate and not the first.
This clarifies that whereas the UMVUE is unbiased over all possible realisations of a two-stage trial, it
is biased conditional on reaching stage 2. In order to provide an estimator that can always be applied
in a general two-stage trial, Pepe et al. suggest augmenting the UMVCUE with the stage 1 MLE when
the trial does indeed stop at stage 1. Although this ‘composite’ estimator is generally biased, Pepe et al.
show that it can actually have a smaller MSE than the UMVUE for small true values of p. We will apply
the same composite estimator in place of the standard UMVCUE in future sections where appropriate
and will refer to it as the ‘c-UMVCUE’.

3. Numerical example

To demonstrate the implementation of these estimators for a specific two-stage Shuster-type trial,
we initially take the data example in [1], giving design parameters � � .l1; u1; u2; n1; n2/ D
.4; 14; 16; 19; 54/. These values were chosen to provide at least 90% power to detect a response prob-
ability of 0.4 in the experimental treatment with a maximum type I error rate of 5%, assuming a known
response probability for standard treatment of 0.2. Figure 2 (left) shows all estimators’ values across the
entire sampling space of T for this design. Figure 2 (right) shows the estimators’ values for a Simon-type
design, achieved by setting u1 D 20. The greatest difference between the estimators occurs at T D l1C1
for the Shuster and Simon designs and at T D n2 � n1 C u1 for the Shuster design. Only the MUE and
UMVUE are monotonically increasing functions of T .

3.1. Estimator performance

In order to assess the performance of each estimator in terms of bias and MSE, we need to assign the
correct probability to each specific realisation of T . For Shuster-type trials, we modify an expression in
[8] to give the probability that T D t given p using T -mapping as shown in Table I. Figure 3 shows
the results for all values of p in (0,1). Note that the bias of all estimators is symmetrical about p D 0:5.
By definition, the UMVUE is unbiased across the two-stage design, whereas all other estimators exhibit
some bias. The least biased of these is the BC-MLE.
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Figure 2. Value of estimators as a function of T for a Shuster-type trial (left) and a Simon-type trial (right). Note
that the composite estimator c-UMVCUE is used here.
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Figure 3. Bias (left) and MSE (right) for all estimators over the entire parameter space for the Shuster-type
two-stage design. Note that the composite estimator c-UMVCUE is used here.
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Figure 4. Conditional bias (left) and MSE (right) for all estimators over T D fl1 C 1; n2g for the Simon-type
design. Note that the standard UMVCUE is used here.

For values of p in approximately (0.35, 0.65), the BC-MLE has the smallest MSE, whereas for values
of p in (0, 0.2) and (0.8, 1), it is the c-UMVCUE that performs best. The fact that there are two regions
of p for which the c-UMVCUE works very well is counterintuitive but not wholly unexpected, given
previous observations with respect to Simon-type trials [10].

To illustrate estimator performance for a Simon-type design, we follow the advice of Pepe et al. and
evaluate the bias and MSE of each estimator conditional on reaching stage 2. The T -map for this condi-
tional probability is shown in Table I, and the results are shown in Figure 4. By definition, the UMVCUE
is unbiased, whereas other methods can exhibit substantial (conditional) bias. For example, when p is
close to 0, the bias of the UMVUE and MLE is close to 0.3. Of course, the smaller the value of p, the less
chance there is of reaching stage 2 in practice. The UMVCUE generally performs very well in terms of
MSE, too, but is marginally bettered by the other estimators for p in the region (0.3, 0.6). This indicates
that even though the MUE, MLE, BC-MLE and UMVUE are being applied here out of their original
context, they may still have some utility.

4. Optimal designs incorporating estimator performance

A two-stage design specification � is often chosen in order to minimise the expected sample size at
some value of p [5, 6, 11]. Although there is considerable merit in this, optimal designs that focus on a

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3874–3884
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single criterion can have poor properties when evaluated using other criteria of interest. For this reason,
Jung et al. [2] proposed searching for a set of admissible Simon-type designs that balance two criteria
of interest: the expected sample size under p D p0 and the maximum sample size n2. It was shown that
the admissible set contains designs that have expected sample sizes close to Simon’s optimal design but
with a considerably lower n2.

We can extend the idea of Jung et al. to different criteria as well as a greater number. For example,
Mander et al. [3] add the expected sample size under p D p1 as a third criterion. The method for finding
admissible designs for an arbitrary set of criteria is straightforward in the case of a two-stage design
with binary end points. Firstly, all possible candidate designs with correct type I error rate and power are
evaluated at the criteria. As the number of parameters is low and all parameters are integer-valued, this
is not generally computationally intensive. Secondly, all designs that minimise the weighted sum of the
chosen criteria for some set of weights are found (by searching over a fine grid of weights). These are
the admissible designs.

We propose finding admissible pairings of design and estimator that incorporate both expected sample
size (ESS) and estimator performance. Admissible pairings are with respect to three summary statistics,
namely, ESS, absolute bias and MSE. Because the three quantities are on different scales, we re-scale
each so that they take values in the interval [0, 1]. The re-scaled value of a quantity, x, for a particular
design is as follows:

x.d; e/�min.d;e/2D
max.d;e/2D �min.d;e/2D

where d indexes the design, e the estimator, and D is the set of feasible pairings (i.e. pairings with
designs that have the correct type I error rate and power). We always include a uniformly unbiased esti-
mator (i.e. UMVUE or UMVCUE depending on scenario), so that the minimum absolute bias is fixed
at 0. For each weighting of the three criteria, a pairing of a two-stage design together with an estimator,
.d; e/, is found, which minimises the weighted sum:

†d;e;p D !1jbiasj�.d; e; p/C!2MSE*.d; e; p/C!3ESS*.d; p/ (4)

where � indicates that the statistic is its re-scaled version, d is the two-stage design, e indicates the esti-
mator used and p is the parameter value at which the summary statistics are evaluated. The ! parameters
are constrained to be non-negative and sum to 1. Some further points are as follows: ESS is independent
of the estimator used, different definitions of bias and MSE are possible, and the value of the response
probability p used to evaluate each summary statistic can also be different. Some specific scenarios we
will explore are the following:

1. ESS is evaluated at p D p0, whereas the bias and MSE are evaluated at p D p1.
2. All three quantities are evaluated under a Uniform.p0; p1/ distribution.
3. Bias and MSE are evaluated across all possible trial realisations.
4. Bias and MSE are evaluated for trials reaching stage 2 only.

The first possibility reflects the situation where ESS under the null is of most interest, as advocated by
[6], whereas the bias and MSE are of interest for larger values of p. This could be because the results
may be used to plan a larger study, so the estimation properties are of more interest for values of p
that are more likely to result in trial success. The second possibility reflects the situation where little
is known about the effectiveness of the treatment, so the average properties over a plausible range of
response probabilities are of interest. The third and fourth possibilities are assumed for Shuster-type and
Simon-type trials, respectively.

4.1. Application to Shuster-type trials

In this section, we examine properties of admissible pairings for Shuster-type trials. Table II shows the
set of admissible pairings for p0 D 0:2, p1 D 0:4, ˛ D 0:1, ˇ D 0:2 under scenario 1. The table shows
a wide range of designs, although perhaps surprisingly few considering that there are three admissibility
criteria and five different estimators under consideration. Interestingly, only two of the five estimators
are utilised within the admissible pairings. Figure 5 shows the values of !1 and !2 from Equation (4)
supporting each estimator (left) and each design from Table II (right). The UMVUE is generally chosen
when more of the weight is on the bias of the design, whereas the bias-corrected MLE is generally cho-
sen when more of the weight is on the MSE. This observation agrees with the results from the specific
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Table II. Admissible pairings for a Shuster-type trial; p0 D 0:2, p1 D 0:4, ˛ D 0:1, ˇ D 0:2.

Design .n1; l1; u1; n2; u2/ ESS.p0/ Estimator jBias.p1/j MSE.p1/

1. (11, 2, 5, 31, 10) 17.6 BC-MLE 8.25E�03 1.79E�02
1. (11, 2, 5, 31, 10) 17.6 UMVUE 0 2.10E�02
2. (13, 3, 11, 34, 10) 18.3 BC-MLE 3.47E�03 1.08E�02
3. (16, 4, 13, 33, 10) 19.4 BC-MLE 2.61E�03 9.83E�03
4. (18, 4, 18, 31, 10) 21.7 UMVUE 0 8.98E�03
5. (17, 3, 13, 30, 10) 22.9 BC-MLE 1.51E�03 8.77E�03
6. (13, 3, 12, 34, 10) 18.3 BC-MLE 2.95E�03 1.08E�02
7. (13, 3, 13, 34, 10) 18.3 BC-MLE 2.79E�03 1.08E�02
7. (13, 3, 13, 34, 10) 18.3 UMVUE 0 1.15E�02
8. (16, 4, 14, 33, 10) 19.4 BC-MLE 2.21E�03 9.87E�03
9. (16, 4, 16, 33, 10) 19.4 UMVUE 0 1.01E�02
10. (17, 3, 17, 30, 10) 22.9 UMVUE 0 8.79E�03

Design numbers match with those in Figure 5 (right).

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

BC−MLE

UMVUE

Estimator

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1

7

6

3
4

9

10

8

2

5

Design number

Figure 5. Left: The values of !1 and !2 supported by the two chosen estimators. Right: The values of !1 versus
!2 as a function of the 10 distinct admissible design and analysis pairings (for a Shuster-type trial).

design featured in Figure 3, where for p D 0:4, the BC-MLE had the lowest MSE and the second lowest
absolute bias, whereas the UMVUE had the lowest bias and the second lowest MSE. Design 4 is an
exception to the rule.

An interesting observation is that the same design can appear in multiple pairings, with different esti-
mators. Pairing 1 from Table II has the lowest ESS at p D p0, so if !3 is sufficiently high it will be
the chosen design no matter the values of !1 or !2. Other pairings of note are ‘5’, which minimises the
MSE, and ‘6’ or ‘7’, which are optimal when bias, MSE and ESS are given relatively equal weighting.
Apart from the first design listed, all the designs have a high efficacy boundary in the first stage—this is
likely just due to the fact that the expected sample size is evaluated at p D p0.

Amongst all feasible designs, the correlation between the ESS and bias of the BC-MLE is �0:38; the
correlation between its ESS and MSE is �0:43 and the correlation between its bias and MSE is 0.7. We
observe the same qualitative pattern for all estimators, but the precise correlation values vary. Designs
that have lower ESS generally perform worse in terms of estimator properties. Additionally, designs for
which the bias is large will generally have larger values of MSE as well. Of course, for any estimator
that is uniformly unbiased (under the stated criteria), all paired correlations involving bias are undefined.

Table III shows results for the second scenario, where instead of evaluating the quantities under a
single value of p, they are integrated over a U.p0; p1/ distribution. The design parameters are p0 D 0:2,
p1 D 0:4, ˛ D 0:1, ˇ D 0:2. In comparison with Table II, which showed results for the same design
parameters, there are a greater number of admissible designs. We could explain this by the MUE being
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Table III. Admissible pairings for a Shuster-type trial; p0 D 0:2, p1 D 0:4, ˛ D 0:1, ˇ D 0:2 with quantities
of interest evaluated assuming a U(p0; p1) distribution.

Design .n1; l1; u1; n2; u2/ ESS Estimator jBiasj MSE

(15, 3, 6, 27, 9) 19.6 BC-MLE 3.75E�03 1.26E�02
(15, 3, 6, 27, 9) 19.6 UMVUE 0 1.34E�02
(17, 4, 7, 25, 8) 19.7 MUE 3.03E�03 1.14E�02
(17, 4, 7, 25, 8) 19.7 UMVUE 0 1.19E�02
(19, 5, 7, 28, 9) 20.5 BC-MLE 1.43E�03 1.06E�02
(19, 5, 7, 28, 9) 20.5 MUE 3.55E�03 1.04E�02
(19, 5, 7, 28, 9) 20.5 UMVUE 0 1.09E�02
(20, 5, 7, 26, 9) 21.0 BC-MLE 1.02E�03 1.02E�02
(20, 5, 7, 26, 9) 21.0 MUE 3.36E�03 9.95E�03
(20, 5, 7, 26, 9) 21.0 UMVUE 0 1.03E�02
(22, 5, 8, 24, 8) 22.6 UMVUE 0 9.30E�03
(20, 4, 20, 24, 8) 22.9 MUE 3.83E�04 8.95E�03
(22, 5, 22, 24, 8) 23.3 MUE 1.52E�03 8.65E�03
(22, 5, 22, 24, 8) 23.3 UMVUE 0 8.91E�03
(20, 0, 14, 24, 8) 24.0 BC-MLE 2.46E�04 8.54E�03
(20, 0, 15, 24, 8) 24.0 BC-MLE 1.80E�04 8.56E�03
(22, 0, 16, 24, 8) 24.0 BC-MLE 9.04E�05 8.58E�03
(22, 0, 22, 24, 8) 24.0 MUE 2.67E�03 8.37E�03
(22, 0, 22, 24, 8) 24.0 UMVUE 0 8.61E�03

admissible as well as the bias-corrected MLE and UMVUE. Another observation of interest is that the
designs that put a high weight on ESS are notably different from the ones in Table II. This is because
ESS is evaluated over the interval Œp0; p1� rather than just at p0. The difference in designs is consistent
with the properties of different optimal designs as shown, for example, in [5].

4.2. Application to a Simon-type trial

We next examined admissible pairings for Simon-type trials. Estimation of p was only considered if
the trial reached stage 2, and therefore we used conditional definitions of bias and MSE. The scenario
examined was the same as that in Table II, except that early stopping for efficacy was not possible. That
is, the expected sample size was evaluated at p D p0, and the conditional estimation properties were
evaluated at p D p1. The admissible designs and analysis pairings, together with their properties, are
shown in Table IV. Note that we revert to using the standard UMVCUE in this example.

Compared with Table II, there are fewer unique designs within the admissible pairings (three in total),
and the range of expected sample sizes is much narrower, but we utilise four out of the five estimators
examined. This indicates that there are near-optimal designs that have good (conditional) estimation
properties. The only estimator not present is the BC-MLE. The UMVCUE appears multiple times, as it
is unbiased, although it also has the largest MSE. If one puts a low weight on the bias, then the MUE is
a good alternative estimator. Interestingly the UMVUE has the highest conditional bias and the lowest
conditional MSE for the design (13, 3, 34, 9). A noteworthy observation is that the traditional method of
carrying out two-stage cancer trials, that is, the null-optimal design coupled with the MLE, is one of the
admissible pairings. Also, the potential reward of deviating from the optimal design varies considerably

Table IV. Admissible pairings for a Simon-type trial; p0 D 0:2, p1 D 0:4, ˛ D 0:1, ˇ D 0:2.

Design .n1; l1; n2; u2/ ESS.p0/ Estimator jBias.p1/j MSE.p1/

(13, 3, 34, 9) 18.3 UMVCUE 0 8.23E�03
(13, 3, 34, 9) 18.3 UMVUE 0.041 5.07E�03
(13, 3, 34, 9) 18.3 MUE 0.024 5.38E�03
(13, 3, 34, 9) 18.3 MLE 0.016 6.32E�03
(10, 2, 38, 10) 19.0 MUE 0.022 4.99E�03
(10, 2, 38, 10) 19.0 UMVCUE 0 6.98E�03
(7, 1, 37, 10) 19.7 UMVCUE 0 6.95E�03
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with the estimator used. For example, using the UMVCUE, one can reduce the MSE by around 23% for
a 4% increase in ESS. On the other hand, if one uses the MUE, the potential gain in estimation properties
is much smaller (an 8% decrease in bias and a 7% decrease in MSE).

5. Discussion

Much attention has focused on identifying clinical trial designs that minimise the expected (or max-
imum) sample size, and for good reason. However, these ‘optimal’ designs can inadvertently lead to
response probability estimates with poor properties. In this paper, we argue that although the sample size
will always be the main priority, optimal design and analysis plans can easily be sought that trade off
small amounts of expected sample size for expected estimator performance. For example, in Table III,
the .15; 3; 6; 27; 9/ design is optimal in terms of ESS, but the near-optimal design .17; 4; 7; 25; 8/ has
around a 10% lower MSE for each estimator considered for only a 0:5% higher ESS. To some, this
might be a trade-off worth making. Software for implementing this methodology can be found at
http://www.mrc-bsu.cam.ac.uk/software.html.

Our results have shown that the bias-corrected MLE and UMVUE estimators consistently appear as
admissible. For Shuster-type trials, the UMVUE will often be desirable if one places more weight on
bias than MSE and the bias-corrected MLE if vice versa. For Simon-type trials, the UMVCUE performs
very well, and the median unbiased estimator also becomes admissible in some scenarios and generally
appears to have higher bias and lower MSE compared with the bias-corrected MLE.

The particular design and analysis plan identified by our method will clearly be sensitive to the values
of response probability p at which the quantities of interest are evaluated. We demonstrated approaches
using single values of p and also considered scenarios where p varied uniformly within a certain range
to demonstrate how additional uncertainty could be incorporated. Extensions to more sophisticated dis-
tributions for p are obvious. The chosen value or distribution of p could be inferred directly from
previously run phase II trials of similar regimens or from a previous phase I trial of the same regimen
that recorded efficacy data.

We chose to search for optimal designs that minimise ESS, bias and MSE as a way to illustrate the
general method. Others may prefer to incorporate different estimation summaries such as variance or
Pitman closeness; if used, the latter measure might well favour estimators that are median unbiased [12].
One may also wish to incorporate the ability of an estimation routine to furnish accurate confidence inter-
vals as well as point estimates. The MUE and UMVUE are certainly attractive from this point of view as
the p-value function defined by the FM ordering in Section 2 can be used directly to obtain confidence
intervals, whereas only bootstrap approximations have been so far developed for the UMVCUE [10,13].
Regardless of the estimation criteria used or the particular design under investigation, we recommend
considering all estimators in the optimisation procedure. From Figures 3 and 4, one can see that it is
not impossible for an estimator that is being applied in a setting far from its original purpose to offer
potential utility.

As further work, we also plan to extend this methodology to multi-stage trials and to trials with con-
tinuous end points by incorporating estimator performance into the admissible designs methodology of
Wason et al. [14]. A continuous end point makes the optimisation problem harder because one cannot
enumerate all feasible designs so easily.

Acknowledgements

We would like to thank the two reviewers whose comments greatly improved the content of this paper. This work
was supported by the Medical Research Council grant number G0800860.

References
1. Jovic G, Whitehead J. An exact method for analysis following a two-stage phase II cancer clinical trial. Statistics in

Medicine 2010; 29:3118–3125.
2. Jung S-H, Lee T, Kim KM, George SL. Admissible two-stage designs for phase II cancer clinical trials. Statistics in

Medicine 2004; 23:561–569.
3. Mander AP, Wason JMS, Sweeting MJ, Thompson SG. Admissible two-stage designs for phase II cancer clinical trials

that incorporate the expected sample size under the alternative hypothesis. Pharmaceutical Statistics 2012; 11:91–96.
4. Liu J. A type of sample size design in cancer clinical trials for response rate estimation. Contemporary Clinical Trials

2011; 32:140–146.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3874–3884

3883



J. BOWDEN AND J. WASON

5. Shuster J. Optimal two-stage designs for single-arm phase II cancer trials. Journal of Biopharmaceutical Statistics 2002;
22:39–51.

6. Simon R. Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials 1989; 10:1–10.
7. Fairbanks K, Madsen R. P-values for tests using a repeated significance test design. Biometrika 1982; 69:69–74.
8. Jung S-H, Kim KM. On the estimation of the binomial probability in multistage clinical trials. Statistics in Medicine 2004;

23:881–896.
9. Whitehead J. On the bias of maximum likelihood estimation following a sequential trial. Biometrika 1986; 73:573–581.

10. Pepe MS, Feng Z, Longton G, Koopmeiners J. Conditional estimation of sensitivity and specificity from a phase 2
biomarker study allowing early termination for futility. Statistics in Medicine 2009; 28:762–779.

11. Mander AP, Thompson SG. Two-stage designs optimal under the alternative hypothesis for phase II cancer clinical trials.
Contemporary Clinical Trials 2010; 31:572–578.

12. Ghosh M, Sen PK. Median unbiasedness and Pitman closeness. Journal of the American Statistical Association 1989;
84:1089–1091.

13. Bowden J, Glimm E. Unbiased estimation of selected treatment means in two-stage trials. Biometrical Journal 2008;
50:515–527.

14. Wason JMS, Mander AP, Thompson SG. Optimal multi-stage designs for randomised clinical trials with continuous
outcomes. Statistics in Medicine 2012; 31:301–312.

3884

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3874–3884


