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Quantifying the impact of between-study
heterogeneity in multivariate
meta-analyses

Dan Jackson,**" Ian R. White® and Richard D. Riley”

Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular /2
statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are
pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity
in the multivariate setting is therefore raised. It is the univariate R? statistic, the ratio of the variance of the
estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this
statistic provides our basis. This statistic is then used to derive a multivariate analogue of /2, which we call / I%.

We also provide a multivariate H? statistic, the ratio of a generalisation of Cochran’s heterogeneity statistic
and its associated degrees of freedom, with an accompanying generalisation of the usual /2 statistic, / I%I Our
proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in
multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally
appropriate in the context of multivariate meta-regression, where study level covariate effects are included in
the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate
random effects model. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Meta-analysis, the statistical process of pooling the results from separate studies concerned with the
same treatment or issue, is a well-established tool in medical statistics. Meta-analysis does, however,
present both computational and conceptual difficulties associated with between-study heterogeneity.
This additional source of variation is usually modelled using the random effects model [1-3]. Here,
the between-study variance allows for any apparent over-dispersion of studies’ results.

If the between-study variance is assumed to be zero, then the model is conventionally referred to as
the fixed effects model. This model simplifies the resulting interpretations, and eases computation, but
the assumption of no between-study variation seems generally implausible, unless it is known that the
studies are performed in the same way and involve individuals sampled from the same population.

Tests for the presence of heterogeneity exist but have low power [4], and their use to choose between
fixed and random effects models is generally discouraged [4—6]. Statistics that quantify the impact of
heterogeneity have been proposed as an alternative to this testing [5], and /2, which describes the pro-
portion of variability in point estimates that is due to heterogeneity rather than within-study sampling
error, is now almost always provided in addition to the results from the standard heterogeneity test. In
addition to /2, Higgins and Thompson [5] suggested two further heterogeneity statistics, H? and R?;
we describe all three of these heterogeneity statistics in Section 4. The very popular /2 has, however,
recently received criticism from Riicker ez al. [7] who show how this quantity depends on the size of the
studies. Although this dependence is clearly explained by Higgins and Thompson [5], this has resulted
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in some questioning its use. Our position is that the heterogeneity statistics are useful descriptive statis-
tics when used in conjunction with the estimate of the between-study variance and all the other usual
inferential statistics, such as the pooled effect.

More recently, multivariate meta-analysis [8—11] has become established. Here, multiple study out-
comes are combined in a single multivariate analysis, to account for their correlation. For example,
diagnostic test studies provide estimates of sensitivity and specificity, which are usually negatively cor-
related between studies. The multivariate methods are generalisations of their more commonly used
univariate counterparts and possess many advantages, but they also have their limitations [10]. The most
commonly referred to advantage of the multivariate approach is the ‘borrowing of strength’ that can
occur as a result of the utilisation of correlation. This applies to both the pooled estimates and the
between-study variance estimates. For example, it has been shown that the multivariate model gives a
smaller mean-square error and, on average, standard error of the pooled estimates than the univariate
method [12]. Now that multivariate meta-analysis has arrived, and the importance of univariate mea-
sures for quantifying the impact of heterogeneity is well understood, an obvious missing component is
the development of appropriate multivariate measures of heterogeneity. Although there has been method-
ological development in the form of White’s / 2 statistics [13], as described in Section 5.4, the intention
here is to develop some multivariate heterogeneity statistics that are either generalisations or analogues
of the established univariate statistics.

We follow Higgins and Thompson [5] by conceptualising the heterogeneity statistics as quantifying
the impact of between-study heterogeneity. By this, we refer to the impact of both the between-study
variances and correlations, that is, the entire between-study covariance matrix. Testing the null
hypothesis that there is no between-study variation, and estimating the magnitude of this, are related
procedures that address different statistical questions. We focus on the impact that the heterogeneity
has on the precision of the estimated treatment effect, by comparing the precision of estimates from a
random effects meta-analysis to those from a fixed effects analysis. For example, if the random effects
model provides pooled estimates with similar precision to those from a fixed effects meta-analysis, then
the heterogeneity is considered to have little impact.

Although we focus on the relative precision of estimates, the random effects model gives smaller
studies greater weight so that the heterogeneity can also impact directly on the point estimate of
treatment effect if small studies provide estimates that differ to those from larger ones. If this is
the case, then a special investigation is required because the various heterogeneity measures do not
attempt to quantify the impact of small study effects or publication bias. This type of issue is exacer-
bated in the multivariate setting because, in addition to these possibilities, the borrowing of strength
may also depend on the amount of heterogeneity. We therefore might anticipate that the multivariate
methods provide greater capacity for random and fixed effects analyses to provide notably different
point estimates. Here, we do not attempt to quantify the impact of heterogeneity on the location of
the point estimate of treatment effect, or the amount of borrowing of strength afforded by multivari-
ate rather than univariate analyses, but these are also important issues and may form the subject of
future work.

The unfashionable (because 72 has become so popular) R? statistic, the ratio of the variances
of the pooled treatment effect under the random and fixed effects models, is the most natural to
extend multivariately. We begin with this as our basis and define an R statistic; univariately, R is
the square root of the established R? statistic. We then apply this to define a multivariate /2 statis-
tic, 1 12e- Our / 1% statistic describes the proportion of the variation of the pooled vector of estimates
under the random effects model, which is due to between-study variation. We also provide a multi-
variate H? statistic, the ratio of a generalisation of Cochran’s heterogeneity statistic and its associated
degrees of freedom, and an accompanying generalisation of the usual /2 statistic / 1%1 The R statis-
tic is based on the covariance matrix of the estimated treatment effects, and H?2 is based on the
residuals from a fixed effects model fit. Hence, they can also be used in the context of multivariate
meta-regression [14], where covariate effects are included, and for any procedure for fitting the random
effects model.

We set out the rest of the paper as follows. We briefly present the univariate and multivariate models
in Section 2 and apply these to our sample datasets in Section 3. We present the univariate heterogeneity
statistics in Section 4. In Section 5, we derive our multivariate measures; and in Section 6, we apply our
proposed measures, and their univariate counterparts, to our examples. We explain how our measures of
heterogeneity may be used in the context of multivariate meta-regression in Section 7 and conclude with
a discussion in Section 8.
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2. Univariate and multivariate random effects meta-analysis

We present the multivariate random effects meta-analysis model and explain how this reduces to the
usual univariate model in a single dimension. We denote the vector of outcomes (or estimates) for
the ith study as Y;. For example, Y; may be a vector containing the log hazard ratios of overall and
disease-free survival.

The entries of Y; may be correlated, and it is assumed that

Yilpi ~ N(wi,S;)

where N denotes a multivariate normal distribution, p; is the true underlying effect for the i th study and
S; is the covariance matrix of Y;. The matrices S; are referred to as the within-study covariance matri-
ces; their entries are estimated in each study in practice but regarded fixed and known when pooling
the studies’ results. Estimating the within-study covariances or correlations, to provide the off diagonal
entries of the S;, is often difficult in practice, but a variety of approaches are possible [10].

The multivariate random effects model allows for the possibility that the ;; may vary from one study
to the next and further assumes that

wi~ N, X)

where p is the (overall) treatment effect vector and ¥ is the between-study covariance matrix.
Marginally, this provides the conventional multivariate random effects meta-analysis model

Yi ~N(u.S; + X) (D

where the Y; are further assumed to be independent. If all entries of X are constrained to zero, then the
model reduces to a fixed effects model.

The conventional univariate random effects model is simply the marginal distribution of the first (say)
study outcome. In one dimension, and written in the more usual univariate notation, this means that each
study provides a univariate ¥; ~ N(u, Ul-z + 72). If all within-study and between-study correlations are
assumed to be zero, then the multivariate random effects model is the collection of the univariate random
effects models for each of the study outcomes.

The standard procedure for making inferences about the treatment effect approximates the true
between-study covariance with 3 [10]. After performing this estimation, the pooled (maximum
likelihood) estimates are given by

n -1 n
= (Z (S + ﬁ)‘l) (Z (S + 2)*3@-) )

i=1 i=1

where n is the number of studies, and these estimates are approximately normally distributed with
covariance matrix

. -1
C = var(p) = (Z Si+2 )_1) 3)

i=1

Alternatively, the covariance matrix can be obtained from the observed Fisher information matrix, and
Stata’s mvmeta [13] uses this method as its default. Equations (2) and (3) require an estimated between-
study covariance matrix, and a variety of estimates are available [10]. A fixed effects model is fitted
by constraining all entries of ¥ to zero in (2) and (3). If some studies have missing outcomes, then,
assuming that these are missing at random, such studies can be incorporated into these matrix solutions
by allocating notional estimates with very large within-study variances and corresponding within-study
correlations of zero, or better by modifying these equations to use the marginal model from (1) for the
observed data. If inferences for particular subsets of outcomes are required, then these are obtained from
the corresponding marginal distributions from (2) and (3). In one dimension, this reduces to the usual
univariate formulae, that is,(2) and (3) reduce to i = > w;Y;/ > w/ and var(ji) = 1/ ) w} where, in
the more usual univariate notation, w} = 1/(c? + £2).
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3. Examples

In this section, we apply the methods described in Section 2 to some contrasting examples and infor-
mally assess the impact of the between-study heterogeneity on the precision of the pooled estimates. We
used the Stata program mvmeta with its defaults throughout. Hence, we adopted the restricted maximum
likelihood estimation of the between-study covariance matrix and used the entire observed Fisher infor-
mation matrix (including the variance components) to compute the covariance matrix of the treatment
effect parameters. White [13] described in detail the alternative estimation methods, but we used the
defaults here because these acknowledge the uncertainty in the estimation of the between-study covari-
ance matrix and because restricted maximum likelihood is well established in multivariate meta-analysis.
Hence, the uncertainty in the between-study covariance matrix is reflected in the results that follow, but
we do not wish to imply that this is fully taken into account.

3.1. Example 1: the periodontal data

The periodontal data from Berkey ez al. [15, 16] involve five studies providing the mean difference
between surgical and non-surgical procedures for treating periodontal disease, with improvement in
probing depth and improvement in attachment level as the two endpoints of interest (measured in mm
one year after treatment). We show the data in Table I, and the within-study covariances are known. The
within-study correlations are positive as one might expect because both outcomes are associated with
positive patient outcomes.

We show the results from the univariate and multivariate random effects meta-analyses in Table II.
The univariate and multivariate analyses are in good agreement and indicate that the surgical proce-
dure improves probing depth by about 0.35 mm more than the non-surgical procedure, but that the
non-surgical procedure improves attachment level by a similar amount than the surgical procedure.
There is, however, a large amount of between-study variation whose impact is clear from the covari-
ance matrix of the estimated treatment effects from random and fixed effects multivariate meta-analyses.
These covariance matrices are, using mvmeta’s defaults,

& [ 0.0038 0.0027
R=10.0027 0.0080

and

G 0.0008 0.0002
F=| 0.0002 0.0003

respectively. Because the within-study covariance matrices are regarded as known, Cp is treated as a
constant, and is given by (3) with all entries of X set to zero. From an inspection of the relative magni-
tudes of the diagonal entries of these two covariance matrices, it appears that heterogeneity has a greater

Table 1. Periodontal data, providing the mean difference between surgical and non-surgical procedures for
treating periodontal disease, with improvement in probing depth and improvement in attachment level as the
two end points of interest (measured in mm, one year after treatment).

Study g S11 Y2 S22 S12

1 0.47 0.0075 —0.32 0.0077 0.0030
2 0.20 0.0057 —0.60 0.0008 0.0009
3 0.40 0.0021 —0.12 0.0014 0.0007
4 0.26 0.0029 —0.31 0.0015 0.0009
5 0.56 0.0148 —0.39 0.0304 0.0072

Table II. Parameter estimates for the periodontal data in example 1 using the random effects model.

151 2 211 Y22 212
Univariate 0.361 (0.060) —0.346 (0.089) 0.012 0.033 —
Multivariate 0.353 (0.061) —0.339 (0.089) 0.012 0.033 0.012

We show the standard errors of the treatment effect parameters in parentheses.

- _______________________________________________________________________________________________|
Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3805-3820



Statistics
D. JACKSON, I. R. WHITE AND R. D. RILEY

impact on the second outcome than on the first. Because the univariate and multivariate analyses are
in such good agreement, it might be anticipated that the conventional univariate heterogeneity statistics
(Section 4) will give a good indication of the impact of heterogeneity on the marginal inferences for both
outcomes. The best way to quantify the impact of heterogeneity on the joint inferences of both outcomes,
when using the multivariate model, is less clear however.

3.2. Example 2: the sleep data

Our second example is the sleep data of McDaid et al. [17]. This is another bivariate example, and the
full dataset is available from the authors on request. Here, we have 26 studies providing the mean effect
of treatment for obstructive sleep apnoea/hypopnoea syndrome in terms of change in Epworth Sleepiness
Scale (Y7) and change in systolic blood pressure (Y3). Twenty three studies give information on Y7, but
only 10 studies give information on Y5, so there is a considerable scope for borrowing strength for p,
in a multivariate meta-analysis. The within-study correlations, and hence the off diagonal entries of the
within-study covariance matrices, are unknown but Y7 and Y, may be positively correlated because both
a lack of sleep and high blood pressure may be associated with elevated stress levels. Here, we perform
an illustrative multivariate analysis assuming all within-study correlations are 0.4, which provide modest
correlations within studies; other values could also be explored in a sensitivity analysis, and other options
for dealing with the unknown within-study correlations are possible [10]. We show the results from the
univariate and multivariate random effects meta-analyses in Table III. Here, the estimated between-study
correlation is one so that the estimated random effects lie at the edge of their parameter space, which has
consequences for the estimation [12].

The results in Table III suggest that the treatment for obstructive sleep apnoea/hypopnoea syndrome
is effective for both outcomes. Again, there is considerable heterogeneity whose impact is shown by
the covariance matrix of the estimated treatment effects from random and fixed effects multivariate
meta-analyses

¢ [ 0152 02647 [ 0035 0.025
R=1 0264 1.809 ["~F~| 0.025 0.784

The univariate and multivariate estimates are very different, particularly for the second outcome
(Table III). In particular, the estimate of the marginal between-study variance of the second outcome is
sensitive to the choice between univariate or multivariate meta-analyses. Thus, the conventional univari-
ate heterogeneity statistics cannot be expected to give a good indication of the impact of heterogeneity
on the marginal inferences for the second outcome when using the multivariate model, or the joint
inferences for both outcomes.

3.3. Example 3: the prognostic value of MYCN and chromosome 1p

This is similar to the example used by Riley [11], but here, we include 73 observational studies that
examine two effects: overall and disease-free survival. The full dataset is available from the authors upon
request. These studies assess the prognostic value of up to two factors, MYCN and chromosome 1p, in
patients with neuroblastoma and were also used as an example by Jackson et al. [10]. Patients either
have a ‘high’ or ‘low’ level of MYCN and either chromosome 1p presence or deletion. Studies provide
up to four estimates of effect, each of which is an estimated unadjusted log hazard ratio of survival,
either of the high relative to the low level group of MYCN, or chromosome 1p deletion to its presence.
The within-study correlations are unknown to the authors but are taken here in an illustrative analysis as
0.7. The log hazard ratios are highly likely to be positively correlated within and between studies across
all four outcomes, because MYCN and chromosome 1p are often highly correlated in a patient, whereas
overall and disease-free survival are inherently correlated by their definitions. We used the variables Y

Table III. Parameter estimates for the sleep data in example 2 using the random effects model.

251 2 211 22 Y12
Univariate —2.68 (0.41) —3.03 (1.29) 2.56 591 —
Multivariate —2.49 (0.39) —4.64 (1.34) 2.52 13.70 5.87

We show the standard errors of the treatment effect parameters in parentheses.
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Table IV. Parameter estimates for the MYCN and chromosome 1p data in example 3 using the random
effects model.

M1 M2 "3 jo
Univariate 1.58 (0.14) 1.33 (0.29) 1.69 (0.13) 1.26 (0.23)
Multivariate 1.59 (0.11) 1.18 (0.28) 1.71 (0.12) 1.15 (0.20)

211 Y22 ¥33 Tyq
Univariate 0.33 0.44 0.37 0.22
Multivariate 0.31 0.57 0.45 0.39

Y12 213 Y14 223 Y24 Y34
Univariate — — — — — —
Multivariate 0.11 0.36 0.28 0.01 0.36 0.27

The parameters jt1 and po denote the average log hazard ratios for disease-free survival for high to low MYCN and
the deletion to the presence of chromosome 1p, respectively. Parameters jt3 and jt4 denote these same hazard ratios for
overall survival. We show the standard errors of the treatment effect parameters in parentheses.

and Y> to denote the log hazard ratio for disease-free survival for high to low MYCN and the deletion
to the presence of chromosome 1p markers, respectively; Y3 and Y4 denote the corresponding overall
survival log hazard ratios. Thirty four, 8, 50 and 10 studies report Y; to Y4, respectively.

The average log hazard ratio estimates in Table IV are significantly greater than zero; and hence,
chromosome 1p and MYCN have a prognostic value for both disease-free and overall survival. The
heterogeneity also has notable impact for this example and

~ 0.0125 0.0050 0.0073 0.0075 T

Co — 0.0050 0.0792 0.0019 0.0266

R=1 0.0073 0.0019 0.0146 0.0074
L 0.0075 0.0266 0.0074 0.0400 _|

and

r 0.0049 0.0019 0.0010 0.0017

Co — 0.0019 0.0125 0.0009 0.0024

F= 1 0.0010 0.0009 0.0038 0.0022
L 0.0017 0.0024 0.0022 0.0155 _|

The estimates of the marginal between-study variances are quite sensitive to the choice between univari-
ate and multivariate meta-analyses. For an example such as this, in a relatively high dimension and where
there is much missing data and borrowing of strength occurs [10], there is little to provide reassurance
that the conventional univariate heterogeneity statistics will adequately quantify the impact of hetero-
geneity in the multivariate analysis. Furthermore, particular subsets of the treatment effects are jointly of
interest, such as those relating to the two types of survival and the two markers separately. Methods for
quantifying the impact of heterogeneity for more than a single outcome are particularly valuable here,
and something more sophisticated than the established univariate statistics is required.

4. Conventional univariate measures of heterogeneity

Higgins and Thompson [5] originally defined three univariate measures of the impact of heterogene-
ity, R?, H? and 12, which we will extend multivariately. Variations have, however, subsequently been
suggested [18]. We use the univariate notation in this section, ¥; ~ N (u;,07 4+ 2). We use 72 to
denote DerSimonian and Laird’s [1] estimate of the between-study variance and Q to denote Cochran’s
heterogeneity statistic [1, 18]. Hence, we have

A2 Q—(}’l—l)

7°=max | 0, - -

Zwi—Zw?/iwi

i=1 i=1 i=1
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where
n
0 => wi(y—7’
i=1
w; =07 2and y =Y w;y;/ Y w;. Higgins and Thompson define
H*=0/(n—-1)
JEN
of + 12

where 07 is the ‘typical within-study variance’

(”-ini

2 i=1

($u) - f

0, =
i=1 i=1

and /2 = (H? — 1)/H?, where I? is truncated to zero if (H? — 1)/H? < 0. Higgins and Thompson
suggest that ‘mild heterogeneity’ might correspond to /2 < 0.3 and ‘notable heterogeneity’ might
correspond to substantially more than /2 = 0.5, but these are only tentative suggestions. Overlapping
intervals for /2 have subsequently been provided to avoid over-interpretation of /2 statistics [6]. Higgins
and Thompson’s definition of R? is equivalent to defining

VR

R=—
Ve

where Vi and Vg are the length of the confidence intervals for the treatment effect that arise from the
random and fixed effects model, respectively, assuming that standard normal quantiles are used to con-
struct both intervals; ¢ distribution quantiles are sometimes suggested when using random effects models
in meta-analysis [14]. Higgins and Thompson define R in terms of the treatment effect’s standard errors
under the random and fixed effects models, but it is the relative length of the confidence intervals that
generalises multivariately. We use the notation Vg and Vg because multivariately, these quantities become
generalised notions of the volumes of confidence regions that arise from the two models. This involves
a slight clash of notation with Higgins and Thompson who use vg and vg to denote the variance of the
estimates of treatment effect. Simulation-based [19] and analytical [18] investigations of the univariate
measures of heterogeneity have been performed.

5. Multivariate measures of heterogeneity

From a comparison of the éR and Cr obtained from multivariate meta-analyses for our three examples,
and our interpretation of the impact of heterogeneity as referring to the relative precision of estimates
resulting from random and fixed effects multivariate meta-analyses, it is clear that the heterogeneity has
a considerable impact for all three examples. The aim is to quantify this impact.

5.1. Multivariate R statistic

The univariate R statistic is perhaps the univariate heterogeneity statistic that is most naturally extended
to achieve this aim. Let p denote the number of treatment effect parameters that the heterogeneity statis-
tic applies to, which for now we assume is the dimension of the meta-analysis, and we also assume that
standard normal quantiles are used to construct both random and fixed effects confidence regions. As
alluded to earlier, we denote the volumes of the confidence regions for all p outcomes in p that arise
from the random and fixed effects models as Vg and Vg, respectively, and we define

Vi 1/p
(3
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This R statistic reduces to the usual univariate meta-analysis measure when p = 1. In one dimension, Vg
and VE are the lengths of the random and fixed effects confidence intervals; and in two and three dimen-
sions, they are areas and volumes, respectively. In four or more dimensions, Vg and Vg are generalised
notions of volumes of the random and fixed effects confidence regions. We calculate R as shown in
equation (4) irrespective of the method used to estimate the between-study covariance matrix, the form
that this takes, or the method used to obtain éR once the between-study covariance has been estimated.

One interpretation of R is as the ratio of the geometric means of the standard errors of the random and
fixed effects estimates of treatment effect that result when their normal approximations are reparame-
terised in terms of the rotated co-ordinate system where the principal axes are used. In linear algebra, this
is referred to as writing the normal approximation’s associated quadratic form in its standard position.
R is therefore an average ratio of the lengths of random and fixed effects confidence intervals across all
outcomes.

We show in Appendix A that (4) can be conveniently written as

R= (|éR|/|cF|)ﬁ - (|éRc;1|)ﬁ (5)

where |C,| is the determinant of C,. The matrices CR and Cp are obtained when fitting the random and
fixed effects models, respectively, so that the measure (5) is easy to obtain from the standard output from
statistical software. Equation (5) provides further interpretation of our R statistic because the determi-
nant of a covariance matrix is referred to as the generalised variance. This is considered to be a good
scalar dispersion statistic for multivariate data. Equation (5) shows that R is a function of the ratio of the
generalised variances of the estimated treatment effect under the random and fixed effects models.

5.2. Multivariate 1122 statistic

It is the univariate /2 statistic that is most commonly used in practice, so a multivariate version of this
can be expected to be especially valuable. Higgins and Thompson [5] provide the univariate relationship
I? = (H? — 1)/H? (their Equation (10)) and show that H? and R? measure similar quantities. This
suggests the definition

R?Z—1 |Cr|"/? —|Cg|'/?
R2 |Cr|!/?

Iz =

(6)

The quantity |CR| 1/ is the square of the geometric mean of the standard errors of the estimated treat-
ment effect from the random effects model when its associated quadratic form is in its standard position.
Hence, |CR | /P is an average variance resulting from the random effects model, and / 1% is the proportion
of this variance, which is explained by between-study heterogeneity. The proposed multivariate / 1% is
therefore an analogue of the univariate /2 statistic, with a similar but not identical interpretation to its
established univariate counterpart. If all studies are the same ‘size’ (S; = S for all i), then (6) simplifies
to the usual /2 statistic univariately, but this is not the case in general. We return to the apparent issue
of truncating potentially negative 1122 statistics to zero so that these cannot be negative, just as in the
univariate case when equating /2 = (H? — 1)/H? as described in Section 4, in Section 5.5.

5.3. Multivariate H* and 13, statistics

A multivariate H? statistic is also desirable, primarily to provide a direct extension of the univariate
I? statistic. The univariate H? statistic is defined directly in terms of Q as shown in Section 4. The
difficulty in using the matrix Q proposed by Jackson et al. [14] for the purposes of quantifying hetero-
geneity multivariately is discussed when presenting White’s 12 statistics in Section 5.4 but an alternative
multivariate generalisation of Q is

s=2 (Yi—Y)TS7'(Yi-Y)) (7
i=1

where Y is the fitted value from the fixed effects model. The subscript s emphasises that O is a scalar,
a x? test statistic that can be used to test the null hypothesis that there is no between-study heterogeneity.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3805-3820
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We make the obvious multivariate generalisation

_ o

v

H2

where v denotes the degrees of freedom of (g, that is, the total number of univariate estimates minus
the dimension of the meta-analysis. We can then define an /2 statistic on the basis of H?

H? -1

2 _

as another possible measure of heterogeneity. The H? statistic retains its interpretation from the uni-
variate case and the multivariate 4?2 and /3 statistics simplify to the conventional H? and I statistics
univariately. We suggest that /7 is truncated to zero if (H?—1)/H? < 0, following the usual convention
in the univariate case.

The quantity that the multivariate H? statistic estimates is derived in Appendix B.

5.4. White’s I? statistics

Another way to generalise the univariate /2 statistic multivariately is to exploit the fact that the univari-
ate 12 may be written in terms of Q, as max(0, (Q — (n — 1))/ Q) [18]. A multivariate Q matrix has
recently been suggested, which can be used to estimate the between-study covariance matrix. Jackson
et al. [14], however, ‘note that the proposed Q matrix is not based on matrix operations’. Hence, it is not
clear that any standard matrix operation would be capable of transforming this Q matrix into a hetero-
geneity statistic. It is, at best, extremely difficult to base any truly multivariate measure of heterogeneity
on this Q matrix; and hence, /2 is hard to generalise multivariately in this way.

Despite these issues, White [13] has recently proposed multivariate 12 statistics that reduce to the uni-
variate measure in one dimension. This defines /2 statistics as the ratios of the estimated between-study
variances and the sum of these variances and ‘typical within-study variances’, where these within-study
variances are the ratio of coefficients from the recently proposed multivariate DerSimonian and Laird
estimating equations [14]. This may not be inappropriate, but White’s 72, just like the conventional
univariate one, depends crucially on this typical variance. Any method for computing such a variance
becomes increasingly problematic as the dimension of the meta-analysis increases. Furthermore, White’s
12 statistics do not truly reflect the multivariate nature of the model fit, or the association between the
estimates, because they are merely functions of the estimated marginal between-study variances and the
within-study covariance matrices. Despite these limitations, we will compare White’s /2 statistics with
those that we develop here.

5.5. Multivariate R and 1 122 statistics for subsets of the outcomes

One might be especially interested in quantifying heterogeneity for a subset of the outcomes; for exam-
ple, some effects might be considered to relate to primary trial outcomes. Both the R and / 122 measures
can be easily applied to just a subset of the estimated effects by taking the corresponding submatrices
of C and Cr and by performing the calculations shown in (5) and (6) where p is taken as the dimen-
sion of the subset of the outcomes under consideration. We show in Appendix C that our multivariate R
statistics, for all or just some of the outcomes, are greater than or equal to one if (3) is used to obtain the
variance of the pooled estimates; and hence, the corresponding / 1% statistics are greater or equal to zero.
Therefore, no truncation of / 1% statistics to zero in such instances is ever required. Because other methods
for obtaining the variance of the pooled estimates, for example, using the observed Fisher information
matrix, approximate the variance (3), we anticipate that the truncation out of / I% statistics is not likely to
be a common occurrence irrespective of the procedure used, but we suggest that this is performed
where necessary.

It is also possible that one might be interested in quantifying heterogeneity for certain contrasts or
linear combinations of the effects. For example, a linear combination of sensitivity and specificity might
be important in determining the value of a diagnostic test [20]. Upon obtaining the covariance matrix of
the fixed and random effects models’ estimates of these linear combinations, these could also be used in
(5) and (6) to obtain multivariate R and / 12e statistics for any linear combinations of interest.

However, the properties of O, if we instead sum over a subset of the outcomes (and so use the
corresponding subvectors of Y; and S?i, and submatrices of Si_l, when computing (7)) are not clear. We
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Table V. A Summary of the existing and proposed heterogeneity statistics.

Available for each Auvailable for all
Statistic Interpretation outcome separately?  outcomes jointly?

Univariate /2 The proportion of total variation in the estimates of Yes No
treatment effect that is due to heterogeneity between
studies in a univariate meta-analysis

Univariate R The inflation in the confidence interval for a single Yes No
summary estimate under a random effects model
compared with a fixed effects model
in a univariate meta-analysis

Univariate H 2 The relative excess in Q over its degrees of freedom Yes No
in a univariate meta-analysis

White’s 12 Proportions of total marginal variation in the Yes No
estimates of treatment effect that are due to
heterogeneity between studies in a
multivariate meta-analysis

Multivariate R The inflations in the confidence regions for pooled Yes Yes
estimates under a random effects model compared
with a fixed effects model in a multivariate
meta-analysis

Multivariate 1 122 The proportion of variation in the pooled estimates Yes Yes
of treatment effect that is due to heterogeneity
between studies in a multivariate meta-analysis

Multivariate H>  The relative excess in Q; over its degrees of No Yes
freedom in a multivariate meta-analysis

Multivariate / [2{ A direct generalisation of the univariate /2 No Yes
statistic in a multivariate meta-analysis

Table VI. Summary of heterogeneity statistics for the periodontal data in example 1.

p 1 12 R 1% H? 1% 12 1%
1 1 0 2.14 0.78 — — 0.72 0.72
1 0 1 479 0.96 — — 0.94 0.94
2 1 1 3.10 0.90 16.03 0.94 — —

The variable p is the number of treatment effect parameters that the statistic applies to, and columns 1 and . indicate
whether the statistics apply to this particular parameter. R, / 123, H?and I 12_1 are the proposed multivariate heterogeneity

statistics; qu and / I%V are the conventional univariate 2 statistic and White’s [13]11 2 statistic, respectively.

therefore propose that H? and / 121 be used to quantify the heterogeneity for all treatment effect param-
eters, whereas R and 1122 can be used for all, or a subset of, these parameters as desired. We provide
a summary of all the various heterogeneity measures and in Table V, where the interpretations of the
conventional univariate heterogeneity statistics are as described by Higgins and Thompson [5].

6. Applying the proposed heterogeneity statistics to our examples

We summarized the various heterogeneity measures for our three example datasets in Tables VI, VII
and VIII, where we continue to use p to denote the number of treatment effect parameters that the
heterogeneity statistics apply to. We present all the heterogeneity statistics in our tables but restrict our
interpretations to the /2 statistics. This is because the univariate /2 statistic is easily the most popular,
but the reader may also use the R and H? statistics to interpret the impact that the heterogeneity has in
each case.
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Table VII. Summary of heterogeneity statistics for the sleep data in example 2.

D i U2 R % H? 1% 12 1%

1 1 0 2.09 0.77 — — 0.75 0.75
| 0 1 1.52 0.57 — — 0.39 0.60
2 1 1 1.67 0.64 2.83 0.65 — —

The variable p is the number of treatment effect parameters that the statistic applies to, and columns 1 and o indicate
whether the statistics apply to this particular parameter. R, 13, H2 and | 121 are the proposed multivariate heterogeneity
statistics; I,f and / I%V are the conventional univariate 2 statistic and White’s [13] I? statistic, respectively.

Table VIII. Summary of heterogeneity statistics for the MYCN and chromosome 1p data in example 3.

P 11 12 13 1a R 1% H? g I; Iy

1 1 0 0 0 1.61 0.61 — — 0.60 0.59
1 0 1 0 0 2.52 0.84 — — 0.72 0.77
1 0 0 1 0 1.96 0.74 — — 0.62 0.66
1 0 0 0 1 1.61 0.61 — — 0.42 0.57
2 1 1 0 0 2.03 0.76 — — — —

2 1 0 1 0 1.65 0.64 — — — —

2 1 0 0 1 1.57 0.60 — — — —

2 0 1 1 0 2.23 0.80 — — — —

2 0 1 0 1 1.90 0.73 — — — —

2 0 0 1 1 1.77 0.68 — — — —

3 1 1 1 0 1.91 0.73 — — — —

3 1 1 0 1 1.79 0.69 — — — —

3 1 0 1 1 1.63 0.62 — — — —

3 0 1 1 1 1.92 0.73 — — — —

4 1 1 1 1 1.77 0.68 2.66 0.63 — —

The variable p is the number of treatment effect parameters that the statistic applies to, and columns 1 - p4 indicate
whether the statistics apply to this particular parameter. R, / 1%, H?and I 1%1 are the proposed multivariate heterogeneity

statistics; I,f and / I?V are the conventional univariate /2 statistic and White’s [13] 2 statistic, respectively.

6.1. Example I: the periodontal data

The standard univariate /2 and White’s /2 statistics are in good agreement in Table VI. The / 1% statis-
tic for the first outcome is, however, noticeably larger than the others (0.78 compared with 0.72). This
suggests that the heterogeneity may have a little more impact for the first outcome than the standard
univariate statistic indicates. Interestingly, the /2 statistics relating to both outcomes jointly (p = 2)
are almost as great as those for the second outcome alone. This suggests that the very considerable het-
erogeneity, coupled with the uncertainty in the estimates of the between-study covariance matrix from
pooling just five studies, has more impact for the joint analysis than an average of the univariate mea-
sures might be thought to indicate. To summarise, the univariate heterogeneity statistics describe the
impact of the heterogeneity for the marginal inferences quite well, as anticipated, but the multivariate
heterogeneity statistics add further insight. All the /2 statistics are greater than 0.7, and some are larger
than 0.9, which indicates that the heterogeneity has a considerable impact.

6.2. Example 2: the sleep data

The univariate and multivariate heterogeneity statistics for the first outcome in Table VII are in good
agreement, but those for the second outcome differ greatly as anticipated. Because the standard univari-
ate and White’s /2 statistics for the second outcome depend on the univariate and multivariate estimates
of X5, respectively, it is clear from Table III that they must be in poor agreement. Those more familiar
with the standard univariate measure might suspect that White’s 72 is unduly effected by the large mul-
tivariate estimate of X,, because this 7?2 is a function of this particular and rather extreme entry of the
estimated between-study covariance matrix. Although / I% tempers White’s 12 for the second outcome
slightly, it confirms that the impact of the heterogeneity is more considerable for 1, in a multivariate
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meta-analysis than a univariate meta-analysis, even after taking into account the entire model fit. The
multivariate / 1% and / 1%1 heterogeneity statistics for both treatments, and hence the joint inference and
the meta-analysis as a whole, are in good agreement. The /2 statistics are not as large as those for
the previous example, but they are all greater than 0.3, indicating that the heterogeneity has a quite
considerable impact.

6.3. Example 3: the prognostic value of MYCN and chromosome Ip

White’s /2 statistics are generally larger than the usual univariate /2 statistics in Table VIII, as antici-
pated from the larger estimated between-study variances from the multivariate model shown in able IV.
However, the 11% statistics for single treatment effect parameters (p = 1) are even larger than White’s,
suggesting that the impact of the heterogeneity is even greater. It seems that allowing for the uncertainty
in the model fit, coupled with the relatively high dimension of the multivariate meta-analysis and the
amount of missing data, means that the heterogeneity has a little more impact than either of the previ-
ously suggested /2 statistics indicate. These larger multivariate heterogeneity statistics are also apparent
for the p > 2 statistics, which are averages of the corresponding p = 1 heterogeneity statistics. The
general picture from Table VIII is that the impact of the heterogeneity is really quite considerable for
this example, and much more so than suggested by the univariate or White’s /2 statistics.

7. Multivariate meta-regression

The multivariate random effects model may be extended to a multivariate meta-regression model where
the treatment effect vector w includes study level covariate effects. For example, if the first outcome
depends on a covariate x, we replace (1 with oy + 81x;. We refer to all parameters in the mean of (1) as
treatment effect parameters, irrespective of whether they are intercept or covariate effects. The inference
for the treatment effect parameters follows in an analogous way to (2) and (3); here, the model is fitted
as a weighted linear regression model, where all weights are regarded as known [14].

All our heterogeneity measures are immediately applicable to a multivariate meta-regression. We can
obtain the covariance matrix of the estimates of all treatment effect parameters under the assumptions
of fixed and random effects meta-regression models and obtain R and / I% statistics for any combinations
of treatment effect parameters of interest. Now that covariate effects are included, we may be especially
interested in all parameters for a particular outcome, for example. Equation (B5) continues to provide the
expected value of O, where the degrees of freedom v is the number of observations minus the total num-
ber of treatment effect parameters (intercept terms plus covariate effects). Hence, we define H? = Q/v
and / %1 = (H? — 1)/ H? as heterogeneity statistics for a meta-regression; but, just as in meta-analysis,
we only use these to quantify the impact of heterogeneity for all treatment effect parameters.

8. Discussion

We have proposed some multivariate measures of the impact of heterogeneity in a multivariate
meta-analysis. All aspects of the data contribute to the calculations; and hence, our measures can be
expected to perform well regardless of the amount of borrowing of strength involved and any vagaries
of the particular dataset under consideration. A considerable advantage of our proposals is that they
are relatively easily computed from standard output. A potential limitation of our proposals is that it
is tempting to interpret them in an overly simplistic fashion. For example, the Cochrane handbook [6]
has important things to say about the interpretation of univariate /2 statistics, and these same issues
apply here. Perhaps most importantly, the Cochrane handbook makes it clear that the use of particular
thresholds when interpreting heterogeneity statistics can be misleading.

Perhaps one advantage of H? and / 1%1 is that they both reduce to the conventional measures univari-
ately. The multivariate R statistic also simplifies to the univariate R, but /3 is an analogue of /2 that only
simplifies to /2 univariately if all studies are the same size. [ 1% has a similar but different interpretation
to the conventional univariate /2 statistic. Another advantage of H? and 11%1 is that their computation
does not require fitting the random effects model; only the fixed effects model fit is required. This eases
their computation, and these multivariate heterogeneity statistics can be obtained without comparing
the fixed effects results to any particular random effects model. Hence, H? and / 1%1 provide a means
to quantify the heterogeneity concisely in situations where many possible random effects models and
estimation methods are to be considered. Alternative R and / 122 statistics are obtained for different fitted
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random effects models, for example, using different estimation procedures for estimating the between-
study covariance matrix. Alternatively, one could fit a reduced random effects model, where perhaps all
between-study variances are assumed to be identical. Irrespective of how the between-study covariance
matrix has been estimated, and the assumptions made about its form, the R and 11,22 statistics may be
calculated for each fitted model. This may also be considered an advantage of these statistics, however,
because the impact of heterogeneity may be thought to depend on this modelling and estimation.

There is therefore no single ‘best” multivariate heterogeneity statistic, but the meta-analyst who desires
a single heterogeneity statistic, and is committed to using /2 in the univariate scenario, is likely to find
the 7 12{ statistic appealing. However, the meta-analyst who requires a more thorough investigation into
the impact of the heterogeneity, on all the various combinations of treatment effects of interest, is more
likely to use R and /3.

Our measures quantify the impact of heterogeneity in an analogous way to the conventional univari-
ate heterogeneity statistics, but the multivariate scenario allows a much richer array of possibilities. We
are currently developing statistics that describe the amount borrowing of strength afforded by multivari-
ate, rather than univariate, meta-analyses and other related quantities that might also be of interest. In
addition to such possibilities, we now advocate routinely reporting the estimated between-study covari-
ance matrix, and the covariance matrix of the estimate of the treatment effect, although we recognise
that we ourselves have not always fully reported them. These quantities enable others to make use of
all aspects of the model fit in any subsequent analysis and provide many insights into the properties
of the fitted multivariate model. We also advocate providing our and other heterogeneity statistics as
further descriptive statistics because they also add insight. For example, by comparing univariate and
multivariate measures of heterogeneity, meta-analysts can directly assess the impact of heterogeneity for
univariate and multivariate analyses of their data.

The uncertainty in the univariate heterogeneity measures is usually considerable, however, and this
can also be expected multivariately. A related concern is that the properties of the proposed multivari-
ate statistics are poorly understood, and we accept that these deserve further investigation and this may
form the subject of a future paper. Attempting to derive multivariate confidence regions corresponding
to the proposed measures is at best extremely difficult. We leave the best way to do this, and indeed the
question of whether this is necessary or desirable, as an open research question, but those who require an
indication of the uncertainty in their measures might consider bootstrapping. In any case, practitioners
typically use the univariate heterogeneity statistics as descriptive statistics. The statistics are interpreted
as measuring the impact of the heterogeneity for their particular meta-analysis, and any regard for the
properties of the measures under repeated sampling is a secondary consideration.

Other multivariate measures are also possible, and a statistic similar in concept to (5), but based on
the trace of the covariance matrices, may warrant consideration. Some meta-analysts use quantiles from
the ¢ distribution when calculating confidence intervals using the random effects model and may wish
to scale up our R statistics by the ratio of # and standard normal quantiles to reflect this, which provides
another variation of our methods.

The cautiously minded statistician is likely to want to perform separate univariate meta-analyses in
addition to a multivariate meta-analysis, to see if the univariate and multivariate results differ qualita-
tively. Similarly, it may be of interest to see how the univariate heterogeneity measures compare with
those proposed here. If the various heterogeneity statistics differ substantially, then this is of interest; and
the reasons for this should be explored and, if possible, explained. Our proposed methods measure the
impact of heterogeneity differently to the standard methods, and we think that they are preferable when
multivariate meta-analysis has been used because they accurately reflect the multivariate nature of the
model fit. Greater insight into the data is generally afforded by looking at the data in a variety of ways,
and we hope that our methods will embellish, rather than diminish, the established ways of measuring
the impact of heterogeneity in meta-analysis that we have taken as our inspiration here.

Appendix A

Let Ag;, i = 1,--- p, denote the eigenvalues of CR, and let Ar; denote the eigenvalues of Cp. The
confidence ellipsoids for the random effects and fixed effects meta-effects analyses are centred at the
corresponding point estimates and have axes figr £ c\/AR,ier,; and ity £ c\/AFeF i, where eg; and
er,; are the normalised eigenvectors corresponding to the eigenvalues Ag ; and Ar; [21, p. 153]; ¢ is the
square root of the critical point of )(f, (usually the 0.95 percentile). The ‘volume’ of the random effects
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confidence ellipsoid (the length of the interval in 1-d) is therefore

VR = kpcp

[]*r. (A1)

i=1

where k, = 2722/ pT(p/2);if p = 1, k, = 2;if p = 2, k, = w and if p = 3, k, = 4x/3, for
example. Because the product of the eigenvalues is the determinant of a square, matrix (A1) becomes

Vg = kpcp Y |CR|

Vi = kpc? /|Cr]

The ratio of the volume of the confidence ellipsoids is Vg / Vg. Combining the two equations immediately
above with (4) gives (5).

Similarly,

Appendix B

The univariate H? statistic estimates the quantity 1 + p = 1 4+ t2/0? when all studies are the same
size [5]. We can assess the properties of Q;, and hence what H? estimates, by assembling all the Y; into
a single vector Y and fitting a fixed effects meta-regression model

Y ~ N(XB.S) (B1)

where S = diag(S;). X is the regression design matrix; if all studies provide all outcomes, X is a column
of p by p identity matrices and 8 = . The real statistical model is

Y~ NXB,S+A) (B2)

where A denotes the assumed between-study covariance matrix of Y. This matrix is block diagonal
because the studies are assumed independent, and if all studies provide all outcomes, then this matrix is
diag(X).

Transform the data, Z = S~/2Y, and write W = S~1/2X|, so that (B1) and (B2) become

Z~ NWB, I (B3)
and
Z~N (WB1+57/2A5712) (B4)
Model (B3) is an unweighted regression, and as usual, we have
¢ =(I—H)e

where € is the vector of residuals from the regression of Z on W, H is the corresponding ‘hat’ matrix
and € are the true errors that can be obtained from (B4). We have the usual results that (I — H) is sym-
metrical, idempotent and its trace equals its rank, which equals the regression’s degrees of freedom (v).
The statistic Qj is the sum of the squared residuals when fitting model (B3), but model (B4) is assumed
correct so

Qs =uw(e’é)

Using the properties of (I — H) and interchanging trace and expectation operations, we evaluate the
expectation of Qj as

E(Q;) = tr((I— H)var(e)) = v + tr ((I —H) (S—I/ZAS—I/Z)) -
so that
E(H?) = tr((I—H)var(e)) = 1 + %tr ((I _H) (S—1/2AS—1/2))
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Hence, the multivariate H? statistic, like its univariate counterpart, is a measure of the relative excess
of Qg over its degrees of freedom, where this excess is measured by the trace of a matrix that takes
into account the model fit, via I — H, and the relative magnitude of the within-study and between-study
variance matrices.

If all studies provide all outcomes and are the same ‘size’, then we have S = diag(S;), A = diag(X),
and

H=-J
n

where J is an np by np matrix where all submatrices are p by p identity matrices. Also, the degrees of
freedom become v =np — p = (n — 1) p. Hence,

E(Qs)=(n—1)p+ (n—DHir(ES7H)

so that

1
E(H) =1+ ;tr(ZSl_l)

and /7 is ameasure of tr(XS7")/ (p + (X Sl_l)), which is an appropriate generalisation of the univari-
ate measure p/(1+ p). The trace of a covariance matrix is another useful scalar summary statistic for the
dispersion of a multivariate random variable (it is the sum of the variances and sometimes referred to as
the total variance), so this is appropriate. For example, fixed effects model corresponds to / I%I = 0; if the
between-study and within-study covariance matrices are the same, then this corresponds to 12 = 0.5,
and so on. The formulae for £(Q;) show that H? and I }1 measure a suitable quantities, but, unless all
studies are the same size, these quantities have less intuitive appeal than those that R and / 1% measure.

Appendix C

We assume that S; is positive definite for all i and that 3 has been constrained to be positive semi-
definite, so that (S; + )A:) is positive definite. All these matrices are Hermitian matrices (because they
are symmetric and their entries are real numbers). We write $ > 0 to indicate that ¥ is positive
semi-definite, which is equivalent to (S; + i) —S; = 0. We write A > B to mean that A— B > 0
so that

Si+3)=8;
and hence, using Corollary 7.7.4(a) from Reference [22, p. 471],
St =@+

so that, because the matrices on both sides of the aforementioned equation are also Hermitian, and using
the property described in Problem 2 from Reference [22, p. 475],

n n

Yositzy s+

i=1 i=1
so that

n -1 n -1
(Z(Si + i)‘l) > <Z S;l)
i=1 i=1
which, provided that (3) is used to evaluate CR, is the same statement as
Cr = Cr (Ch)

Using the positive semi-definite analogue of Observation 7.1.2 from Reference [22, p. 397], which means
that any principal submatrix of a positive semi-definite matrix is also positive semi-definite, we can take
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Cr and Cr in (C1) as referring to all or a subset of the outcomes as desired. Finally, using Corollary
7.4.4(b) of Reference [22, p. 471], we have that

|éR| = |Cg|

sothat R > 11in (5) and 11% = 01in (6).
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