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Generating survival times to simulate
Cox proportional hazards models with
time-varying covariates
Peter C. Austina,b,c*†

Simulations and Monte Carlo methods serve an important role in modern statistical research. They allow for
an examination of the performance of statistical procedures in settings in which analytic and mathematical
derivations may not be feasible. A key element in any statistical simulation is the existence of an appropriate
data-generating process: one must be able to simulate data from a specified statistical model. We describe data-
generating processes for the Cox proportional hazards model with time-varying covariates when event times
follow an exponential, Weibull, or Gompertz distribution. We consider three types of time-varying covariates:
first, a dichotomous time-varying covariate that can change at most once from untreated to treated (e.g., organ
transplant); second, a continuous time-varying covariate such as cumulative exposure at a constant dose to radi-
ation or to a pharmaceutical agent used for a chronic condition; third, a dichotomous time-varying covariate
with a subject being able to move repeatedly between treatment states (e.g., current compliance or use of a
medication). In each setting, we derive closed-form expressions that allow one to simulate survival times so that
survival times are related to a vector of fixed or time-invariant covariates and to a single time-varying covariate.
We illustrate the utility of our closed-form expressions for simulating event times by using Monte Carlo simu-
lations to estimate the statistical power to detect as statistically significant the effect of different types of binary
time-varying covariates. This is compared with the statistical power to detect as statistically significant a binary
time-invariant covariate. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Simulations and Monte Carlo methods serve an important role in modern statistical research. They
allow for an examination of the performance of statistical methods in settings in which analytic and
mathematical derivations may not be feasible. A key element in any statistical simulation is the exis-
tence of an appropriate data-generating process: one must be able to simulate data from an underlying
statistical model.

Time-to-event outcomes occur frequently in the biomedical literature. In the medical literature, the
Cox proportional hazards regression model is the most common approach for examining the effect
of explanatory variables on time-to-event outcomes. Using this model, one is modeling the effect of
explanatory variables on the hazard of the outcome. Prior studies have described methods to simulate
data from a Cox proportional hazards model [1,2]. Use of these data-generating processes allows for the
examination of the performance of the Cox proportional hazards regression model in different settings.

Two advantages of the Cox proportional hazards regression model are its abilities to incorporate
time-varying covariate effects and time-varying covariates [3, 4]. The former refers to a variable that

aInstitute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
bDepartment of Health Management, Policy and Evaluation, University of Toronto, Canada
cDalla Lana School of Public Health, University of Toronto, Canada
*Correspondence to: Peter C. Austin, Institute for Clinical Evaluative Sciences, G1 06, 2075 Bayview Avenue Toronto, Ontario
M4N 3M5, Canada.

†E-mail: peter.austin@ices.on.ca
Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/
onlineopen#OnlineOpen_Terms.

3946

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3946–3958



P. C. AUSTIN

is measured at baseline and whose value remains fixed over the duration of follow-up; however, the
effect of this variable on the hazard of the outcome is allowed to change over the duration of follow-
up. The latter refers to a variable whose value itself changes over the duration of follow-up. Examples
of time-varying covariates in biomedical research include the receipt of an organ transplant, cumula-
tive dosage of radiation or of a pharmaceutical agent, and compliance or adherence with a medication
intended for chronic use. In the first example, receipt of an organ transplant is a dichotomous expo-
sure or treatment. Subjects may change their exposure status from unexposed to exposed at most once
during the follow-up interval. Once exposed, a subject remains exposed for the duration of follow-up.
In the second example, cumulative dosage of radiation or to a pharmaceutical agent is a continu-
ous time-varying covariate, whose value is nondecreasing over time. In the third example, current
medication use also represents a dichotomous exposure. However, subjects may move both from unex-
posed to exposed and from exposed to unexposed during the course of follow-up. Thus, subjects may
both initiate and discontinue treatment, and this pattern may be repeated during the course of follow-
up. Throughout the remainder of the manuscript, we focus on simulating data in the presence of
time-varying covariates and do not consider time-varying covariate effects. Correctly accounting for
time-varying covariates is important because it allows one to avoid the issue of survivor-treatment or
immortal-time bias [5–8]. Given a cohort study in which treatment or exposure occurs at some point
during follow-up, this bias can occur when the analyst treats the exposure as being known and fixed
at baseline. In so doing, the time until the application of the exposure is termed ‘immortal-time’,
because by definition the exposed subject could not have died prior to the application of the expo-
sure. Beyersmann et al. demonstrated that the biased hazard ratio will always be less than the true
hazard ratio [6].

To conduct simulations of the performance of different statistical methods for use in settings with
time-varying covariates, there is a need to describe data-generating processes for the Cox proportional
hazard model in the presence of time-varying covariates. The paper is structured as follows. In Section 2,
we present previous work on generating survival times to simulate Cox proportional hazards models with
fixed or time-invariant covariates. These are covariates whose values are fixed at baseline and which do
not subsequently change over the duration of follow-up. In Section 3, we extend these results to settings
in which there is a time-varying covariate. We consider the case of the Cox-exponential model, the
Cox–Weibull model, and the Cox–Gompertz model. In Section 4, we present an application of these
methods to investigate the statistical power to detect as statistically significant the effect of different
types of time-varying covariates on the hazard of an outcome. Finally, in Section 5 we summarize our
findings and place them in the context of the existing literature.

2. Background

Let h.t jx/D h0.t/ exp.ˇ0x/denote the conventional Cox proportional model with fixed or time-invariant
covariates, where t denotes time, x is the vector of time-invariant covariates, ˇ is the vector of regression
coefficients, and h0.t/ is the baseline hazard function (the hazard function of the outcome occurring for
those subjects with x= 0). The model describes the effect of the covariates on the hazard of the occurrence
of the outcome.

The survival function of the above model is S.t jx/ D exp.�H0.t/ exp.ˇ0x//, where H0.t/ is the
cumulative baseline hazard function, which is defined asH0.t/D

R t
0
h0.u/du. The distribution function

of the event times under the Cox proportional hazards model is F.t jx/ D 1 � exp.�H0.t/ exp.ˇ0x//.
Both Leemis and Bender et al. have demonstrated that a survival time, T , can be generated by
T D H�10 Œ� log.u/ exp.�ˇ0x/�, where u � U (0,1) (where U (0,1) denotes the standard uniform dis-
tribution) [1, 2]. Simulating survival or event times from a Cox model with time-invariant covariates
requires inverting the cumulative hazard function.

As noted by Bender et al., among the commonly used distributions for survival times, only the expo-
nential, the Weibull, and the Gompertz distributions also share the assumption of proportional hazards
with the Cox model. The parameters required for each distribution, the hazard function, the cumu-
lative hazard function, the inverse of the cumulative hazard function, and the formula for simulating
survival times from each distribution in the setting of time-invariant covariates are described in Table I
(see Ref. [2] for further details). Although there are several different parameterizations of the Weibull
distribution, we use the parameterization of Bender et al.
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Table I. Characterization of the exponential, Weibull, and Gompertz distributions.

Characteristic Exponential distribution Weibull distribution Gompertz distribution

Parameter Scale parameter Scale parameter � > 0 Scale parameter � > 0
� > 0 Shape parameter � > 0 Shape parameter –1< ˛ <1

Hazard function h0.t/D � h0.t/D ��t
��1 h0.t/D � exp.˛t/

Cumulative hazard function H0.t/D �t H0.t/D �t
� H0.t/D

�
˛ .exp.˛t/� 1/

Inverse cumulative hazard
function H�10 .t/D ��1t H�10 .t/D .��1t /1=� H�10 .t/D 1

˛ log
�
˛
�
t C 1

�
Simulating survival
times (u� U (0,1)) T D�

log.u/
� exp.ˇ 0x/ T D

�
�

log.u/
� exp.ˇ 0x/

�1=�
T D 1

˛ log
�
1�

˛ log.u/
� exp.ˇ 0x/

�

3. Generating survival times to simulate Cox proportional hazards models with
time-varying covariates

In Section 2, we described the three commonly-used distributions that also satisfy the proportional
hazards assumptions and previous work that described how one could simulate event times from these
distributions when covariates were time-invariant. In this section, we extend these results to settings in
which there is a time-varying covariate. We assume that there is a single time-varying covariate, which
we denote by ´.t/, while we assume that the other covariates, x, are time-invariant. Furthermore, we let
ˇ denote the vector of regression coefficients associated with the vector of fixed covariates x, while ˇt
is the regression coefficient associated with ´.t/. We also assume that the logarithmic link function is
used to relate the hazard function to the linear predictor: h.t jx.t//D h0.t/ exp.ˇt´.t/Cˇ0x/. Then, the
cumulative hazard function is given by: H.t; x; ´.t//D

R t
0

exp.ˇt´.u/C ˇ0x/h0.u/du.
We consider three different types of time-varying covariates: the first is a dichotomous time-varying

covariate that can change at most once from untreated to treated (e.g., organ transplant); the second is
a continuous time-varying covariate such as cumulative exposure to a fixed dose of radiation or a phar-
maceutical agent; the third is a dichotomous time-varying covariate with a subject being able to move
repeatedly from untreated to treated and back to untreated. We examine each of these types of time-
varying covariates in subsequent sections. We present detailed derivations for the setting in which event
times follow a Weibull distribution. Derivations for the other two distributions are presented in detail
in appendices.

3.1. Dichotomous time-varying covariate with at most one change from untreated to treated

Let t0 denote the time at which the time-varying covariate changes from unexposed (Z = 0) to exposed
(Z = 1). Thus, ´.t/ D 0 for t < t0, while ´.t/ D 1 for t > t0. We determine the cumulative hazard
function for t < t0 and for t > t0, because the cumulative hazard function will have different functional
form over these two domains. Therefore, the definition of the inverse of the cumulative hazard function
will have a piece-wise definition.

3.1.1. Exponential distribution of event times. If event times follow an exponential distribution, one
can simulate survival time as

T D

8<
:

� log.u/
� exp.ˇ 0x/ if� log.u/ < � exp.ˇ0x/t0

� log.u/�� exp.ˇ 0x/t0C� exp.ˇ 0xCˇt /t0
� exp.ˇ 0xCˇt /

if� log.u/> � exp.ˇ0x/t0
(1)

where u� U (0,1). The derivation of this expression is presented in Appendix A.
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3.1.2. Weibull distribution of event times. If event times follow a Weibull distribution, then, if t < t0,
the cumulative hazard function is equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇ0x/��u��1duD � exp.ˇ0x/

tZ
0

�u��1du

D � exp.ˇ0x/Œu� �t0 D � exp.ˇ0x/t� :

If t > t0, then the cumulative hazard function is equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇt´.u/C ˇ
0x/��u��1du

D �� exp.ˇ0x/

tZ
0

exp.ˇt´.u//u
��1duD �� exp.ˇ0x/

�

2
4 t0Z
0

exp.ˇt´.u//u
��1duC

tZ
t0

exp.ˇt´.u//u
��1du

3
5

D �� exp.ˇ0x/

2
4 t0Z
0

u��1duC

tZ
t0

exp.ˇt /u
��1du

3
5

D �� exp.ˇ0x/

"�
1

�
u�
�t0
0

C exp.ˇt /

�
1

�
u�
�t
t0

#

D � exp.ˇ0x/

�
1

�
t�0 C exp.ˇt /

1

�
t� � exp.ˇt /

1

�
t�0

�
:

Therefore, we have thatH.t; x; ´.t//D

(
� exp.ˇ0x/t� if t < t0

� exp.ˇ0x/
�
1
�
t�0 C exp.ˇt /1� t

� � exp.ˇt /1� t
�
0

	
if t > t0

.

The domain of the cumulative hazard function can be partitioned into two intervals: D1 = (0,t0/ and
D2 = [t0,1/. Let R1 D

�
0; � exp.ˇ0x/t�0

�
and R2 D

�
� exp.ˇ0x/t�0 ;1

�
denote the range of the cumula-

tive distribution function associated with the domainsD1 andD2, respectively. We determine the inverse
of the cumulative hazard function for values in R1 and R2 separately.

The inverse of the cumulative hazard function when H.t; x; ´.t// < � exp.ˇ0x/t�0 is given by:
H.t; x; ´.t// D � exp.ˇ0x/t� , thus .H.t; x; ´.t//=� exp.ˇ0x// D t� . Thus, t D .H.t; x; ´.t//=

� exp.ˇ0x//1=� . Therefore, we have that

H�1.t; x; ´.t//D



t

� exp.ˇ0x/

�1=�
if t< � exp.ˇ0x/t�0 :

The inverse of the cumulative hazard function when H.t; x; ´.t// > � exp.ˇ0x/t�0 is given by:
H.t; x; ´.t//� � exp.ˇ0x/t�0 C � exp.ˇt / exp.ˇ0x/t�0 D � exp.ˇt / exp.ˇ0x/t� . Then



H.t; x; ´.t//� � exp.ˇ0x/t�0 C � exp.ˇt / exp.ˇ0x/t�0

� exp.ˇt / exp.ˇ0x/

�1=�
D t:

The inverse of the cumulative hazard function isH�1.t; x; ´.t//D
�
t�� exp.ˇ 0x/t�

0
C� exp.ˇt / exp.ˇ 0x/t�

0

� exp.ˇt / exp.ˇ 0x/

�1=�
when t > � exp.ˇ0x/t�0 .
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Therefore, we can simulate a survival time as

T D

8̂<
:̂
�
� log.u/
� exp.ˇ 0x/

�1=�
if� log.u/ < � exp.ˇ0x/t�0�

� log.u/�� exp.ˇ 0x/t�
0
C� exp.ˇt / exp.ˇ 0x/t�

0

� exp.ˇt / exp.ˇ 0x/

�1=�
if� log.u/> � exp.ˇ0x/t�0

(2)

where u� U (0,1).

3.1.3. Gompertz distribution of event times. If event times follow a Gompertz distribution, one can
simulate a survival time as

T D

8<
:

1
˛

log
�
1C ˛.� log.u//

� exp.ˇ 0x/

�
if � log.u/ < � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�

1
˛

log
�

˛.� log.u//
� exp.ˇ 0xCˇt /

� exp.˛t0/�1�exp.ˇtC˛t0/
exp.ˇt /

�
if � log.u/> � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�

(3)

where u� U (0,1). The derivation of this expression is presented in Appendix B.

3.2. Continuous time-varying covariate

In this section, we assume that the time-varying covariate ´.t/ is proportional to t : ´.t/ D kt , with
k > 0. This would be the case when a subject is exposed to a uniform dose during each unit of time
during follow-up. Examples include subjects who take a certain dose of medication each day, or workers
who are exposed to a fixed dose of radiation each day. In this section, we do not require a piece-wise
definition of the cumulative hazard function. Thus, we can proceed more simply than in Section 3.1.

3.2.1. Exponential distribution of event times. If survival times follow an exponential distribution, an
event time can be generated as

T D
1

ˇtk
log



1C

ˇtk.� log.u//

� exp.ˇ0x/

�
(4)

where u� U (0,1). The full derivation of this expression is reported in Appendix C.

3.2.2. Weibull distribution of event times. If survival times follow a Weibull distribution, we have that

H.t; x; ´.t//D

tZ
0

exp.ˇ0xC ˇt´.u//��u
��1duD exp.ˇ0x/��

tZ
0

exp.ˇtku/u
��1du

D exp.ˇ0x/��

�
ˇt exp.ku1C�/

1C �

�t
0

D
exp.ˇ0x/��ˇt

1C �

�
exp

�
kt1C�

�
� 1

	
:

Therefore, we have that

.1C �/H.t; x; ´.t//

ˇt exp.ˇ0x/��
D exp

�
kt1C�

�
� 1:

Then exp.kt1C�/ D 1 C .1C�/H.t;x;´.t//
ˇt exp.ˇ 0x/�� ; kt1C� D log

�
1C .1C�/H.t;x;´.t//

ˇt exp.ˇ 0x/��

�
; t1C� D

1
k

log
�
1C .1C�/H.t;x;´.t//

ˇt exp.ˇ 0x/��

�
; and t D

h
1
k

log
�
1C .1C�/H.t;x;´.t//

ˇt exp.ˇ 0x/��

�i1=.1C�/
.

Therefore, we have that H�1.t; x; ´.t//D
h
1
k

log
�
1C .1C�/t

ˇt exp.ˇ 0x/��

�i1=.1C�/
.

One can then simulate a survival time as

T D

�
1

k
log



1C

.1C �/.� log.u//

ˇt exp.ˇ0x/��

��1=.1C�/
; (5)

where u� U (0,1).
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3.2.3. Gompertz distribution of event times. If event times follow a Gompertz distribution, one can
simulate a survival time as

T D
1

ˇtkC ˛
log

�
1C

.ˇtkC ˛/.� log.u//

� exp.ˇ0x/

�
; (6)

where u� U (0,1). The full derivation of this expression is presented in Appendix D.

3.3. Dichotomous time-varying covariate with multiple changes between treated and untreated

In this section, we consider the setting in which a subject may repeatedly move between untreated and
treated conditions. For the purposes of these derivations we will assume that all subjects are untreated
at t D 0. Let t1 denote the time at which the binary time-varying covariate changes from unexposed
(Z = 0) to exposed (Z = 1); let t2 denote the time at which the binary time-varying covariate changes
from exposed (Z = 1) to unexposed (Z = 0); finally, let t3 denote the time at which the time-varying
covariate changes from unexposed (Z = 0) to exposed (Z = 1). In these derivations, we assume that a
subject experienced three switches in treatment status (at times t1, t2, and t3/. The subsequent deriva-
tions can readily be modified to accommodate a different number of changes in treatment status. We
only present the derivations for the setting in which event times follow a Weibull distribution, because
all the derivations will be similar to those in Section 3.1.

If event times follow a Weibull distribution with scale parameter � and shape parameter �, then, using
methods similar to those above, the cumulative hazard function is equal to

H.t; x; ´.t//D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

� exp.ˇ0x/t� if t < t1

� exp.ˇ0x/
�
t�1 C exp.ˇt /

�
t� � t�1

�	
if t1 6 t < t2

� exp.ˇ0x/
�
t�1 C exp.ˇt /

�
t�2 � t

�
1

�
C
�
t� � t�2

�	
if t2 6 t < t3

� exp.ˇ0x/
�
t�1 C exp.ˇt /

�
t�2 � t

�
1

�
C
�
t�3 � t

�
2

�
C exp.ˇt /

�
t� � t�3

�	
if t3 6 t

:

The domain of the cumulative hazard function can be divided into four mutually exclusive intervals D1
= (0,t1/, D2 = [t1,t2/, D3 = [t2,t3/, D4 = [t3,1/. The range of cumulative hazard function over each of
these intervals is

R1 D
�
0; � exp.ˇ0x/t�1

�
;

R2 D
�
� exp.ˇ0x/t�1 ; � exp.ˇ0x/ f t�1 C exp.ˇt /.t

�
2 � t

�
1 /g
�
;

R3 D
�
� exp.ˇ0x/

˚
t�1 C exp.ˇt /

�
t�2 � t

�
1

��
; � exp.ˇ0x/

˚
t�1 C exp.ˇt /

�
t�2 � t

�
1

�
C
�
t�3 � t

�
2

���
; :

R4 D
�
� exp.ˇ0x/

˚
t�1 C exp.ˇt /

�
t�2 � t

�
1

�
C
�
t�3 � t

�
2

��
; 1

�

By inverting each of the piece-wise components of the cumulative hazard function, we have

H�1.t; x; ´.t//D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂ˆ̂̂̂:

�
t

� exp.ˇ 0x/

�1=�
if t 2R1�

t�� exp.ˇ 0x/t�
1
C� exp.ˇ 0xCˇt /t�1

� exp.ˇ 0xCˇt /

�1=�
if t 2R2


t�� exp.ˇ 0x/t�
1
�� exp.ˇ 0xCˇt /.t�2 �t

�
1 /C� exp.ˇ 0x/t�

2

� exp.ˇ 0x/

�1=�
if t 2R3


t�� exp.ˇ 0x/t�
1
�� exp.ˇ 0xCˇt /.t�2 �t

�
1 /�� exp.ˇ 0x/.t�3 �t

�
2 /C� exp.ˇ 0xCˇt /t�3

� exp.ˇ 0xCˇt /

�1=�
if t2R4

:

(7)
One can therefore simulate a survival time as H�1.� log.u/; x; ´/, where the value of � log.u/
determines which of the four component functions for the inverse of the cumulative hazard function
is used.

3.4. Comparison of generating survival times with time-varying covariates with generating survival
times with time-invariant covariates

In this section, we briefly compare our results with prior work on generating survival times for the Cox
model with time-invariant covariates. In Table I, we described the formulas for generating survival times

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3946–3958
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with time-invariant covariates (based on the prior work of Bender et al. [2]). We compare these with
our formulas for simulating event times with a binary time-varying covariate that changes at most once
from untreated to treated (Section 3.1). In our derivations, if one fixes t0 to be equal to 0 (i.e., treatment
occurs only at time zero, and then remains fixed during the duration of follow-up), then each formula
for generating survival times reduces to the comparable formula from Bender et al. in Table I. Similarly,
if the binary covariate is time-varying, but if the effect of that covariate is zero .ˇt D 0/, then each
expression reduces to the comparable formula in the Table I.

4. Application — power calculation for Cox regression model with a time-varying
covariate

We illustrate the utility of our data-generating processes by using Monte Carlo simulations to esti-
mate the statistical power to detect as statistically significant the hazard ratio associated with different
dichotomous time-varying covariates. So that our simulations would reflect a realistic setting, we used
data from the Ontario Myocardial Infarction Database (OMID), a population-based database of patients
hospitalized with an acute myocardial infarction (AMI or heart attack) created by linking electronic
administrative health care databases in the Canadian province of Ontario. The creation of the OMID
database is described in greater detail elsewhere [9]. For this illustration, we selected the 115,856 patients
hospitalized with an AMI in Ontario between 2000 and 2005. Each patient was followed until his or her
death, with subjects being censored on March 31, 2006. Thirty-two percent of the patients had died by
March 31, 2006, while the remaining 68% were still alive on this date.

Our objective was to determine the statistical power to detect as statistically significant the effect of
treatment after adjusting for the predictors of mortality contained in the Ontario AMI mortality prediction
rule: age, gender, measures of cardiac severity (congestive heart failure, cardiogenic shock, arrhythmia,
and pulmonary edema), and comorbid status (diabetes mellitus with complications, stroke, acute and
chronic renal disease, and malignancy). The nine measures of cardiac severity and comorbid conditions
were derived from the ICD-9/10 codes present in the secondary diagnostic fields of the hospitalization
database. The derivation and validation of the prediction rule is described elsewhere [10].

We estimated the statistical power to detect as statistically significant the regression coefficient asso-
ciated with a dichotomous treatment in a sample of 2500 subjects whose covariates were similar to
that of the Ontario AMI population. We used a Cox proportional hazards regression model to regress
time-to-death on age, sex, and the nine risk factors that comprise the Ontario AMI mortality prediction
model in the sample of 115,856 AMI patients. For each of the 115,856 subjects, we determined the
linear predictor .ˇtX/ from the fitted regression model. We then chose a sample of size 2500 from the
overall population of 115,856 using random sampling with replacement. We considered five different
types of binary treatments: first, 50% of the subjects were assigned to a fixed, time-invariant treatment
at baseline. The remaining subjects were untreated for the duration of follow-up. Second, all subjects
were assigned to receive a treatment. The time of receipt of treatment was generated for each subject
from a U (1,13581) distribution (i.e., each subject changed from untreated to treated on a day chosen at
random between 1 and 13,581). Once treatment was received (at the randomly generated time), subjects
remained treated or exposed for the duration of follow-up. Note that in this setting, subjects could die
prior to the time that treatment was to be assigned. The third scenario was similar to the second, with the
sole difference being that a U (1,6000) distribution was used to generate times at which treatments were
assigned. Fourth, 50% of subjects were assigned to receive a time-varying treatment. For those subjects
assigned to receive the treatment, there were three switches between treatment status. Subjects switched
from untreated to treated at time (1/3) * 13,581, from treated to untreated at time (2/3) * 13,581, and
from untreated to treated at time 13,581. The fifth scenario was similar to the fourth, except that there
were only two switches between treatment status. Subjects switched from untreated to treated at time
(1/3) * 13,581 and from treated to untreated at time equal to (2/3) * 13,581.

For each of the five scenarios, we randomly generated event times using the linear predictor .ˇtX/,
the time at which treatment status was changed from untreated to treated using a Cox–Weibull model
with shape and scale parameters of 0.6 and 0.001, respectively. We allowed the hazard ratio for the effect
of treatment to vary from 0.5 to 0.95 in increments of 0.05. We considered two different censoring mech-
anisms. First, event times were censored at the 32nd percentile of event-times so that, as in the OMID
database, events would only be observed to occur for 32% of the subjects, with the remaining 68% of
subjects being censored. Using this censoring mechanism there was a fixed time at which all subjects

3952

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3946–3958



P. C. AUSTIN

0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hazard ratio

S
ta

tis
tic

al
 p

ow
er

Exposure fixed at baseline (50% of subjects exposed)
Treatment assigned at time ~ U(1,13581)
Treatment assigned at time ~ U(1,6000)
50% of subjects assigned to time−varying treatment (three switches)
50% of subjects assigned to time−varying treatment (two switches)

Fixed censoring time

0.5 0.6 0.7 0.8 0.9
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Hazard ratio

S
ta

tis
tic

al
 p

ow
er

Exposure fixed at baseline (50% of subjects exposed)
Treatment assigned at time ~ U(1,13581)
Treatment assigned at time ~ U(1,6000)
50% of subjects assigned to time−varying treatment (three switches)
50% of subjects assigned to time−varying treatment (two switches)

Random censoring time

Figure 1. Statistical power to detect a binary treatment as statistically significant.

were censored. Second, for each subject, we determined a random censoring time so that censoring
times were uniformly distributed between one and the 75th percentile of event times. Each subject’s sur-
vival time was the lower of the event time and the censoring time. This second approach used a random
censoring time.

In the sample of 2500 subjects with simulated outcomes, we used a Cox model to regress survival time
on treatment status (as a time-varying covariate), age, sex, and the nine variables in the AMI mortality
risk model. We noted whether the regression coefficient associated with treatment status was statistically
significant (P 6 0.05). This process was repeated 1000 times, and the proportion of samples in which
the treatment effect was statistically significant was determined.

In the second scenario under the first censoring mechanism, the percentage of subjects who died prior
to receipt of treatment varied from 23% to 28%, while in the third scenario this percentage was approx-
imately 16%. The statistical power to detect as statistically significant the different forms of binary
treatments under the first censoring mechanism are described in the left panel of Figure 1. The highest
statistical power was observed when 50% of the subjects were assigned to a time-invariant treatment at
baseline and the remaining subjects were untreated over the duration of follow-up. The two scenarios in
which time-to-treatment was randomly determined from a uniform distribution had intermediate levels
of statistical power. The two scenarios in which half of the subjects were assigned to a treatment that
involved alternating between untreated and treated had the lowest statistical power. With one exception,
comparable findings were observed under a random censoring mechanism (right panel of Figure 1).
The single exception was that with a random censoring mechanism, the power to detect as statistically
significant a treatment that involved three switches approached that of a time-invariant treatment that
was fixed at baseline.

5. Discussion

We described data-generating processes for the Cox proportional hazards model with time-varying
covariates when event times follow an exponential, Weibull, or Gompertz distribution. We considered
three types of time-varying covariates: first, a dichotomous time-varying covariate that can change at
most once from untreated to treated (e.g., organ transplant); second, a continuous time-varying covariate

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3946–3958

3953



P. C. AUSTIN

such as cumulative exposure to a constant dose of radiation or to a pharmaceutical agent when the med-
ication is used for a chronic condition; third, a dichotomous time-varying covariate with a subject being
able to move repeatedly between treatment states. In each setting, we derived closed-form expressions
that allow one to simulate event times so that event times are related to a vector of time-invariant covari-
ates and to a single time-varying covariate. Formulas 1 to 6 are the closed-form expressions for the first
two types of time-varying covariates for exponential, Weibull, and Gompertz distributions.

Several prior studies have developed methods for simulating event time data for the Cox proportional
hazards model. As noted in Section 2, both Leemis and Bender et al. described methods to generate sur-
vival times for a Cox proportional hazards model with time-invariant covariates [1, 2]. Mackenzie and
Abrahamowicz described methods for simulating survival data that allowed for time-dependence of the
hazard ratio and that allow one to specify the marginal distribution of event times and covariate distri-
butions [11]. Finally, Beyersmann et al. described methods to simulate competing risks data in survival
data [12].

A small number of prior papers have examined data-generating processes for survival times with
time-varying covariates. Leemis et al. briefly described methods based on inverting the cumulative
hazard function to generate survival times in settings with time-varying covariates [13]. The current
study builds and extends this prior work of Leemis et al., who did not use the logarithmic link func-
tion for relating the hazard function to the linear predictor. All of our derivations were based on the
logarithmic link function, because this is the link function that is almost universally used with the
Cox proportional hazard regression model in the biomedical sciences. Furthermore, the derivations by
Leemis et al. involve a single time-varying covariate and did not incorporate time-invariant covariates.
Finally, Sylvestre and Abrahamowicz examined two different algorithms for simulating event times
conditional on time-varying covariates [14]. The first algorithm was based on a permutational algo-
rithm, while the second was based on a binomial model. They considered a modification of the first
to incorporate a rejection sampler. An advantage to the methods described in the current paper is that
we have presented closed-form expressions for simulating event times. This should result in greater
efficiency in Monte Carlo simulations compared with methods based on the algorithms used in the
prior paper. Sylvestre and Abrahamowicz noted that the permutational algorithm will be computa-
tionally intensive when the number of events need to be generated is large [14, p. 2621]. In contrast,
our closed form expressions should be relatively insensitive to the number of events that need to
be generated.

We illustrated the utility of our data-generating processes by estimating the statistical power to detect
as statistically significant a time-varying treatment after adjusting for a set of fixed or time-invariant
covariates. We found that the statistical power to detect a non-null hazard ratio when the treatment or
exposure was time-varying was lower than the power to detect a non-null hazard ratio when the treatment
was fixed at baseline. The use of the described data-generating processes will allow biostatistical inves-
tigators to estimate statistical power and select appropriate sample sizes in complex settings in which
there are both time-invariant and time-varying covariates.

Statistical simulations are playing an increasingly important role in modern statistical research. They
allow the investigation of performance and properties of estimators and models in settings in which
analytic calculations are either very difficult or not tractable. Given the ubiquitous use of the Cox pro-
portional hazards model in biomedical research and the frequency with which time-varying covariates
occur in medical research, the data-generating processes described in the current paper will be of use to
statisticians examining different properties of the Cox regression model.

Appendix A. Dichotomous time-varying covariate with at most one change from
untreated to treated: exponential distribution of event times

If event times follow an exponential distribution, then, if t < t0, the cumulative hazard function is
equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

� exp.ˇ0x/duD � exp.ˇ0x/

tZ
0

duD � exp.ˇ0x/t:
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If t > t0, then the cumulative hazard function is equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇt´.u/C ˇ
0x/�du

D � exp.ˇ0x/

tZ
0

exp.ˇt´.u//duD � exp.ˇ0x/

2
4 t0Z
0

exp.ˇt´.u//duC

tZ
t0

exp.ˇt´.u//du

3
5

D � exp.ˇ0x/

2
4 t0Z
0

duC

tZ
t0

exp.ˇt /du

3
5D � exp.ˇ0x/

�
Œu�

t0
0 C Œexp.ˇt /u�

t
t0

	
D � exp.ˇ0x/ Œt0C exp.ˇt /t � exp.ˇt /t0� :

Therefore, we have that H.t; x; ´.t//D

(
� exp.ˇ0x/t if t < t0

� exp.ˇ0x/ Œt0C exp.ˇt /t � exp.ˇt /t0� if t > t0
.

The domain of the cumulative hazard function ((0,1// can be partitioned into two mutually exclusive
intervals:D1 = (0,t0/ andD2 = [t0,1/. The range of the cumulative hazard function over each ofD1 and
D2 are R1 = (0,� exp.ˇ0x/t0/ and R2 = [� exp.ˇ0x/t0,1/, respectively. We will determine the inverse
of the cumulative hazard function for values in R1 and R2, separately.

The inverse of the cumulative hazard function when H.t; x; ´.t// < � exp.ˇ0x/t0 is given by:
H.t; x; ´.t// D � exp.ˇ0x/t ; thus t D H.t; x; ´.t//=� exp.ˇ0x/. Therefore, H�1.t; x; ´.t// D
t=� exp.ˇ0x/ if t < � exp.ˇ0x/t0.

The inverse of the cumulative hazard function when H.t; x; ´.t//> � exp.ˇ0x/t0 is given by

t D
H.t; x; ´.t//� � exp.ˇ0x/t0C � exp.ˇ0xC ˇt /t0

� exp.ˇ0xC ˇt /
:

Therefore, the inverse of the cumulative hazard function is

H�1.t; x; ´.t//D
t � � exp.ˇ0x/t0C � exp.ˇ0xC ˇt /t0

� exp.ˇ0xC ˇt /
if t > � exp.ˇ0x/t0:

Thus, we can simulate a survival time as

T D

8<
:

� log.u/
� exp.ˇ 0x/ if � log.u/ < � exp.ˇ0x/t0

� log.u/�� exp.ˇ 0x/t0C� exp.ˇ 0xCˇt /t0
� exp.ˇ 0xCˇt /

if � log.u/> � exp.ˇ0x/t0
;whereu� U.0; 1/:

Appendix B. Dichotomous time-varying covariate with at most one change from
untreated to treated: Gompertz distribution of event times

If event times follow a Gompertz distribution, then, if t < t0, the cumulative hazard function is equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇ0x/� exp.˛u/du

D � exp.ˇ0x/

tZ
0

exp.˛u/duD � exp.ˇ0x/

�
1

˛
exp.˛u/

�t
0

D
� exp.ˇ0x/

˛
Œexp.˛t/� 1� :
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If t > t0, then the cumulative hazard function is equal to

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇt´.u/C ˇ
0x/� exp.˛u/du

D

tZ
0

exp.ˇt´.u// exp.ˇ0x/� exp.˛u/duD � exp.ˇ0x/

tZ
0

exp.ˇt´.u// exp.˛u/du

D � exp.ˇ0x/

2
4 t0Z
0

exp.ˇt´.u// exp.˛u/duC

tZ
t0

exp.ˇt´.u// exp.˛u/du

3
5

D � exp.ˇ0x/

2
4 t0Z
0

exp.˛u/duC

tZ
t0

exp.ˇt / exp.˛u/du

3
5

D � exp.ˇ0x/

2
4 t0Z
0

exp.˛u/duC exp.ˇt /

tZ
t0

exp.˛u/du

3
5

D � exp.ˇ0x/

"�
1

˛
exp.˛u/

�t0
0

C exp.ˇt /

�
1

˛
exp.˛u/

�t
t0

#

D
� exp.ˇ0x/

˛
Œexp.˛t0/� 1C exp.ˇt / exp.˛t/� exp.ˇt / exp.˛t0/� :

Therefore, we have that

H.t; x; ´.t//D

(
� exp.ˇ 0x/

˛
Œexp.˛t/� 1� if t < t0

� exp.ˇ 0x/
˛

Œexp.˛t0/� 1C exp.ˇt / exp.˛t/� exp.ˇt / exp.˛t0/� if t > t0
:

As with the exponential and Weibull distribution, we will determine the inverse of the cumulative hazard

function for values above and below the threshold value
�
� exp.ˇ 0x/

˛
Œexp.˛t0/� 1�

�
.

The inverse of the cumulative hazard function when H.t; x; ´.t// <
� exp.ˇ 0x/

˛
Œexp.˛t0/� 1� is

given by: H.t; x; ´.t// D � exp.ˇ 0x/
˛

Œexp.˛t/� 1�. Thus, ˛H.t;x;´.t//
� exp.ˇ 0x/ D exp.˛t/ � 1; exp.˛t/ D

1C ˛H.t;x;´.t//
� exp.ˇ 0x/ I ˛t D log

�
1C ˛H.t;x;´.t//

� exp.ˇ 0x/

�
I and t D 1

˛
log

�
1C ˛H.t;x;´.t//

� exp.ˇ 0x/

�
. Thus, H�1.t; x; ´.t/D

1
˛

log
�
1C ˛t

� exp.ˇ 0x/

�
if t < � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�.

The inverse of the cumulative hazard function when H.t; x; ´.t// > � exp.ˇ 0x/
˛

Œexp.˛t0/� 1� is given

by: H�1.t; x; ´.t//D 1
˛

log
�

˛t
� exp.ˇ 0xCˇt /

� exp.˛t0/�1�exp.ˇtC˛t0/
exp.ˇt /

�
if t > � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�.

Thus, we can simulate a survival time as

T D

8̂̂̂
<
ˆ̂̂:

1
˛

log
�
1C ˛.� log.u//

� exp.ˇ 0x/

�
if� log.u/ < � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�

1
˛

log
�

˛.� log.u//
� exp.ˇ 0xCˇt /

� exp.˛t0/�1�exp.ˇtC˛t0/
exp.ˇt /

�
if � log.u/> � exp.ˇ 0x/

˛
Œexp.˛t0/� 1�

;whereu� U.0; 1/:3956
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Appendix C. Continuous time-varying covariate: exponential distribution of
event times

If survival times follow an exponential distribution, we have that

H.t; x; ´.t//D

tZ
0

exp.ˇ0xC ˇt´.u//�duD � exp.ˇ0x/

tZ
0

exp.ˇt´.u//du

D � exp.ˇ0x/

tZ
0

exp.ˇtku/duD � exp.ˇ0x/

�
1

ˇtk
exp.ˇtku/

�t
0

D
� exp.ˇ0x/

ˇtk
Œexp.ˇtkt/� 1� :

Consequently, we that the inverse cumulative hazard function is

H�1.u/D
1

ˇtk
log



1C

ˇtku

� exp.ˇ0x/

�
:

Therefore, an event time can be generated as

T D
1

ˇtk
log



1C

ˇtk.� log.u//

� exp.ˇ0x/

�
;

where u� U (0,1).

Appendix D. Continuous time-varying covariate: Gompertz distribution of
event times

If survival times follow a Gompertz distribution, we have that

H.t; x; ´.t//D

tZ
0

exp.ˇt´.u/C ˇ
0x/h0.u/duD

tZ
0

exp.ˇt´.u/C ˇ
0x/� exp.˛u/du

D

tZ
0

exp.ˇtku/ exp.ˇ0x/� exp.˛u/duD � exp.ˇ0x/

tZ
0

exp.ˇtkuC ˛u/du

D � exp.ˇ0x/

�
1

ˇtkC ˛
exp..ˇtkC ˛/u/

�t
0

D
� exp.ˇ0x/

ˇtkC ˛
Œexp..ˇtkC ˛/t/� 1� :

Thus, we have that .ˇtkC˛/H.t;x;´.t//
� exp.ˇ 0x/ D exp..ˇtkC ˛/t/� 1;

Then exp..ˇtk C ˛/t/ D 1 C .ˇtkC˛/H.t;x;´.t//
� exp.ˇ 0x/ ; .ˇtk C ˛/t D log

h
1C .ˇtkC˛/H.t;x;´.t//

� exp.ˇ 0x/

i
I and

t D 1
ˇtkC˛

log
h
1C .ˇtkC˛/H.t;x;´.t//

� exp.ˇ 0x/

i
.

Therefore, the inverse of the cumulative hazard function is

H�1.t; x; ´.t//D
1

ˇtkC ˛
log

�
1C

.ˇtkC ˛/t

� exp.ˇ0x/

�
:

Then, one simulate a survival time as

T D
1

ˇtkC ˛
log

�
1C

.ˇtkC ˛/.� log.u//

� exp.ˇ0x/

�
;

where u� U (0,1).
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