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Abstract: The effects of temperature on the operation of two ion-coupled cotransporters of 

the SLC6A family, namely rat GAT1 (SLC6A1) and KAAT1 (SLC6A19) from  

Manduca sexta, have been studied by electrophysiological means in Xenopus laevis 

oocytes expressing these proteins. The maximal transport-associated current (Imax) and the 

apparent substrate affinity (K05) were measured. In addition to the expected increase in 

transport rate (Q10 = 3–6), both transporters showed greater K05 values (i.e., a decrease in 

apparent affinity) at higher temperatures. The transport efficiency, estimated as Imax/K05, 

increased at negative potentials in both transporters, but did not show statistically 

significant differences with temperature. The observation that the apparent substrate 

affinity is inversely related to the transport rate suggests a kinetic regulation of this 

parameter. Furthermore, the present results indicate that the affinities estimated at room 

temperature for mammalian cotransporters may not be simply extrapolated to their 

physiological operating conditions. 
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1. Introduction 

Functional studies of ion-coupled cotransporters have strongly taken advantage of the possibility of 

heterologous expression in Xenopus oocytes, which may be studied with relatively simple 

electrophysiological techniques, such as the two-electrode voltage-clamp (TEVC). This approach 

suffers, however, of an important drawback when mammalian transporters are investigated, because 

temperatures above 30 °C are not easily tolerated by the oocytes, and therefore, most studies have been 

performed at room temperature (20 to 25 °C) [1–4]. 

In the relatively few papers reporting the effects of temperature on the activity of cotransporters [5–9], 

the focus of the observations was generally on the rate of transport and on the effects on the  

presteady-state currents, i.e., the electrical signal arising from the initial steps of the transport  

cycle [1,10,11]. In a recent work from our laboratory on the rabbit intestinal oligopeptide transporter 

PepT1 [12], we observed that the apparent substrate affinity was significantly affected by temperature. 

In particular, a decrease in apparent affinity was measured in the physiological voltage range when 

increasing the temperature from 20 to 30 °C. This effect was associated with a strong increase in the 

maximal transport current and with an acceleration of the kinetics of the presteady-state currents. All 

together, these observations point to a kinetic interpretation of the apparent substrate affinity in which 

a greater substrate concentration is required to keep up with the ability of a faster turnover of the 

transporter. In fact, we have already reported this kind of relationship in the GABA transporter  

GAT1 [13–16]. 

To better investigate these points, we have studied the effects of temperature on the apparent 

substrate affinity in two other transporters, namely the rat neuronal GABA transporter GAT1 and the 

neutral amino acid transporter KAAT1, cloned from the gut of the invertebrate Manduca sexta [17]. 

The aim of the investigation was first of all to verify if the apparent substrate affinity was similarly 

affected by temperature and, secondarily, to examine the overall efficiency of the transport, 

considering in addition that, while rGAT1 (and PepT1) are from mammalian (homeotherm) animals, 

KAAT1 originates from a poikilotherm invertebrate [18]. 

2. Results and Discussion 

2.1. Apparent Affinity Changes Induced by Temperature in rGAT1 

For these experiments, a staircase voltage protocol was used to minimize temperature fluctuations 

during the recording [12]. For rGAT1, the protocol was applied from a holding potential (Vh) = −40 mV 

and consisted of five steps spanning the range from −120 to +40 mV in 40 mV intervals. The steps 

were 400 ms in duration to allow for the complete decline of the presteady-state currents, particularly 

at the lower temperature. The current traces in response to this protocol at 20 and 30 °C are shown  

in Figure 1A,B, in the absence or presence of GABA 300 µM. As expected [4,19,20], the  

presteady-state currents visible in the absence of GABA (arrows) are abolished by its addition. It may 

be noted that these currents are strongly accelerated at the higher temperature, and accordingly, the 

transport-associated currents become significantly larger. Dose-response experiments were performed 

in a series of oocytes at these two temperatures in order to obtain the values of the maximal transport 
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current (Imax) and of the substrate concentration, eliciting the half-maximal current (K05) by fitting the 

data to the Michaelis-Menten equation: 
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Figure 1. Temperature effects on the kinetic properties of rGAT1. Top row: currents in the 

absence (black) or presence (red) of 300 µM GABA at 20 °C (A) and 30 °C (B), in 

response to the staircase voltage protocol shown in the inset. The arrows point to the 

presteady-state currents that disappear in the presence of GABA. The bottom row shows 

the results of the Michaelis-Menten analysis performed on dose-response curves obtained 

using the same experimental protocol: voltage dependence of Imax (C) and of K05 (D) at the 

indicated temperatures. Data are means ± SE from seven oocytes (three batches). The 

current data were normalized to the value at −120 mV and 20 °C for each oocyte before 

averaging. The K05 value at +40 mV is omitted because its estimate is unreliable. Data 

marked with asterisks were significantly different at the two temperatures (Student’s t-test, 

p < 0.05). 

 

Figure 1C,D show the results of this analysis: Imax is strongly increased at 30 °C compared to 20 °C; the 

Q10 of the effect is variable with voltage from 2.7 at −40 mV up to almost 6 at −120 mV. This value is 

higher than those reported before [6,7], however, it must be noted that the previous data were obtained 

using a fixed GABA concentration and therefore, did not account for changes in apparent affinity. 

Indeed, the effect of temperature on K05 may be seen in Figure 1D: at 20 °C, this parameter is  

voltage-dependent as previously reported [13,19,20], and increases at negative potentials, with values 
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between 5 and 20 µM. At 30 °C, and in the same oocytes, K05 is significantly larger at all potentials, 

while the voltage-dependence is qualitatively maintained. 

2.2. Apparent Affinity Changes Induced by Temperature in KAAT1 

The same kind of experiments was repeated in another transporter, the Manduca sexta intestinal 

transporter KAAT1. Although clearly not a neurotransmitter transporter, this protein has a significant 

homology with the mammalian neutral amino acid transporter B0AT1, another member of the SLC6A 

family [21,22]. KAAT1 shows several distinct features, among which is the capability to accept 

various neutral amino acid as substrates and to use potassium as a driving ion [18]. 

In this case, threonine was used as a substrate, since this amino acid elicits a large transport current 

in KAAT1 when the driving ion is sodium [23]. 

Figure 2. Temperature effects on the kinetic properties of KAAT1 with threonine as a 

substrate. Top row: currents in the absence (black) or presence (red) of 1 mM threonine at 

20 °C (A) and 30 °C (B) in response to the staircase voltage protocol shown in the inset. 

The bottom row shows the results of the Michaelis-Menten analysis performed on  

dose-response curves obtained using the same experimental protocol: voltage dependence 

of Imax (C) and of K05 (D) at the indicated temperatures. Data are means ± SE from six 

oocytes (two batches). The current data were normalized to the value at −120 mV and 20 °C 

for each oocyte before averaging. Some Imax and K05 values at the most positive potentials 

are omitted because their estimate is unreliable. All data at 30 °C (except the K05 value  

at −140 mV) were significantly different (p < 0.05) from those at 20 °C (Student’s t-test).  

 



Int. J. Mol. Sci. 2012, 13 15569 

 

The results of these experiments are shown in Figure 2. In this case, the holding potential was kept 

at −60 mV, and the voltage protocol covered the interval −140 to +20 mV to account for the more 

negative operating range of this transporter [11]. The staircase consisted of nine 20 mV steps of shorter 

duration compared to those used for rGAT1, because the decline of the presteady-state currents is 

much faster in this transporter. 

Dose-response curves were obtained in this case as well, and the data analyzed with the  

Michaelis-Menten equation (Equation 1). As illustrated in Figure 2C, raising the temperature from 20 

to 30 °C produces a considerable increase in Imax, which is, however, not as large as in the case of 

rGAT1 (Figure 1C), but is, instead, similar to that observed in the oligopeptide transporter PepT1 [12], 

with Q10 values between 3 and 4. The action of temperature on K05 is shown in Figure 2D. It may be 

noted that the voltage-dependence of this parameter at 20 °C is different from that exhibited by rGAT1 

(Figure 1D), i.e., it shows an increase at more positive potentials, rather than a decrease; in fact  

this behavior confirms previous determinations [24], and it is very likely related to the different 

characteristics of the presteady-state currents in the two transporters [11,16]. Concerning the effect of 

temperature, a significant increase in the value of K05 is evident at 30 °C, compared to 20 °C, although, 

in analogy with Figure 1D, the shape of the curve is qualitatively unchanged. 

The results illustrated above for rGAT1 and KAAT1 confirm the effect already observed in rabbit 

PepT1 [12] and suggest that a change in apparent affinity with temperature might be a feature shared 

by different transporters, even those belonging to diverse gene families. It must be noted, however, that 

some results indicating no significant effects have been also reported in other transporters [25]. 

2.3. Overall Efficiency 

The increase in Imax and the decrease in apparent affinity reported above will counteract each other 

in determining the overall efficiency of the process. According to enzyme kinetics criteria [26], this 

parameter may be estimated as the ratio Imax/K05, and it is plotted in Figure 3 for the two transporters. 

Figure 3. Temperature dependence of the efficiency of transport. The ratios Imax/K05 have 

been calculated from the data in Figure 1C,D for rGAT1 and from the data in  

Figure 2C,D for KAAT1. The values are in arbitrary units because of the normalization of 

the maximal current in Figures 1 and 2. Error bars are standard errors of the mean. 
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In both cases, the transport efficiency increases as the membrane potential is made more negative. 

However, no statistically significant differences between 20 and 30 °C are observed in both 

transporters, especially in the physiological range of membrane potentials, around −70 mV for a 

neuronal presynaptic membrane, or surrounding glial cells, where rGAT1 is generally located, and at 

about −200 mV for the luminal side of absorptive intestinal cells, in the case of KAAT1 [27].  

3. Experimental Section  

3.1. Oocyte Expression 

Oocytes and RNAs were prepared as previously described in detail [28]. Briefly, to prepare the 

mRNA, the cDNA encoding the rGAT1 and KAAT1 proteins cloned into the pAMV vector (generous 

gift from C. La Barca and H. Lester) were linearized with NotI; cRNAs were then synthesized in vitro 

in the presence of Cap Analog and 200 units of T7 RNA polymerase. All enzymes were supplied by 

Promega Italia (Milan, Italy). Adult female Xenopus laevis (Xenopus Express, Le Bourg, Vernassal, 

Haute-Loire, France) were anaesthetized in MS222 (tricaine methansulfonate, Sigma-Aldrich srl, 

Milan, Italy) 0.10% (w/v) solution in tap water, and portions of the ovary were removed through an 

incision on the abdomen. These procedures were carried out according to institutional and national 

ethical guidelines (permit no12/09). The oocytes were treated with collagenase Type IA, (Sigma-Aldrich 

srl, Milan, Italy) 1 mg/mL in calcium-free ND96, for at least 1 h at 18 °C. After 24 h at 18 °C in 

modified Barth’s saline solution (MBS), selected oocytes were injected with 12.5 ng of cRNA in 50 nL 

of water, using a manual microinjection system (Drummond Scientific Company, Broomall, PA, USA). 

The oocytes were then incubated at 18 °C for 3–4 days in MBS before electrophysiological studies.  

3.2. Electrophysiology and Data Analysis  

Transport activity was estimated in terms of the transmembrane current generated under voltage 

control, using the two-electrode voltage-clamp technique (TEVC, Oocyte Clamp OC-725B, Warner 

Instruments, Hamden, CT, USA). Intracellular glass microelectrodes were filled with KCl 3 M and had 

tip resistances between 0.5–4 MΩ. Agar bridges (3% agar in 3 M KCl) connected the bath electrodes 

to the experimental chamber.  

The experiments were run under the WinWCP version 4.4.6 software (J. Dempster, University of 

Strathclyde, UK, 2012). Data were analyzed using Clampfit 10.2 (Molecular Devices, LLC, 

Sunnyvale, CA, USA, 2012), while figures were prepared with Origin 8.0 (OriginLab Corp., 

Northampton, MA, USA, 2008).  

As usual, the transport-associated current was obtained by subtracting the records in the absence of 

substrate from those in its presence.  

3.3. Temperature Control 

Cold solutions in the reservoirs were heated to the desired temperature just before entering the 

recording chamber. A TC-344A in-line heater controller (Warner Instr. Corp., Hamden, CT, USA) 

with feedback control of the temperature was used. The actual temperature in close proximity of the 

oocyte was continuously monitored through a second thermistor placed in the bath. The effects of 
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small temperature oscillations were minimized by using short-duration protocols, such as the voltage 

staircases mentioned in the Results and Discussion section.  

3.4. Solutions  

The oocyte culture and washing solutions had the following composition (in mM): ND96: NaCl 96, 

KCl 2, MgCl2 1, CaCl2 1.8, Hepes 5, pH 7.6; MBS: NaCl 88, KCl 1, NaHCO3 2.4, Hepes 15, 

Ca(NO3)2 0.30, CaCl2 0.41, MgSO4 0.82, sodium penicillin 10 µg/mL, streptomycin sulphate  

10 µg/mL, gentamycin sulphate 100 µg/mL, nystatin 10 U/mL, pH 7.6; PBS: NaCl 138, KCl 2.7, 

Na2HPO4, KH2PO4, pH 7.6. 

The external control solution during the electrophysiological recordings had the following 

composition (mM): NaCl, 98; MgCl2, 1; CaCl2, 1.8, Mes 5 mM. The final pH value (7.6) was adjusted 

with HCl and NaOH.  

The substrates were added to this solution at the desired concentrations. For the dose-response 

experiments, the GABA concentrations were 1, 3, 10, 30, 100 and 300 µM; the threonine 

concentrations were 3, 10, 30, 100, 300 and 1000 µM. 

4. Conclusions  

All ion-coupled cotransporters tested so far to investigate the effects of temperature have shown 

changes in transport activity with Q10 values of about three or more [5–8,12,29]. These large effects, 

imply high activation energies for the rate-limiting step in the process, in the range of several tens of 

kiloJoules per mole (kJ/mol) and confirm, therefore, that the transport process must involve a relevant 

conformational change of the protein. 

For mammalian transporters, the observations obtained in these studies might lead to the 

expectation that, at their physiological body temperature, they might be much more efficient in 

substrate translocation. However, the overall transport efficiency will obviously depend on another 

property of the transporter: its apparent affinity for the substrate. 

Relatively little attention has been paid to this second aspect, and published reports are scarce. 

Some results implying a decrease in apparent affinity at low temperatures can be found in an earlier 

paper on the noradrenaline transporter [30], and subsequently, similar results were reported in the 

Drosophila serotonin transporter [8]. On the contrary, no temperature-induced changes in apparent 

affinity were observed in the human form of GAT1 [25]. In a recent study on the intestinal PepT1 

transporter from our laboratory [12], we confirmed the earlier observations, and we show here that two 

other cotransporters, the rat neuronal GABA transporter GAT1 implied in many important 

physiopathological issues, and the invertebrate intestinal amino acid transporter KAAT1, also exhibit 

this same feature. 

The explanation for this behavior may be directly found in the transport mechanism, which for the 

transporters under consideration appears very similar [13,24,31,32]. In these transporters, in fact,  

the initial steps of the cycle, involving the interaction with the driving ion(s) and the following 

intramembrane charge movement, precede the binding of the organic substrate. Furthermore, these 

steps are rate-limiting of the entire transport cycle [31–33]. Consequently, the lifetime of the 

conformational state in which substrate binding can occur will be shortened when the turnover rate is 
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increased (e.g., in the present case, by a higher temperature). A shorter life time of this state implies 

that a higher concentration of substrate will be needed to sustain the high turnover rate, leading 

therefore to a decreased apparent affinity. 

The membrane composition of the Xenopus oocyte is unlikely to be the same of a mammalian or of 

a Manduca cell, and therefore, the present results cannot be directly extrapolated to the respective 

native conditions. We show here that the increased Imax at higher temperature is counterbalanced by a 

lower apparent affinity, and that in both rGAT1 and KAAT1, the two effects approximately 

compensate for each other, so that the efficiency, estimated as the ratio Imax/K05, appears substantially 

temperature-independent. However, in the case of the GABA transporter, the lower apparent affinity at 

higher temperature is likely to produce consequences on the basal extracellular levels of the 

neurotransmitter, which are known to be very important in neurological pathophysiology [34,35]. 
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