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ABSTRACT

Motivation: The structures of homologous proteins are generally

better conserved than their sequences. This phenomenon is demon-

strated by the prevalence of structurally conserved regions (SCRs)

even in highly divergent protein families. Defining SCRs requires the

comparison of two or more homologous structures and is affected by

their availability and divergence, and our ability to deduce structurally

equivalent positions among them. In the absence of multiple homolo-

gous structures, it is necessary to predict SCRs of a protein using

information from only a set of homologous sequences and (if available)

a single structure. Accurate SCR predictions can benefit homology

modelling and sequence alignment.

Results: Using pairwise DaliLite alignments among a set of homolo-

gous structures, we devised a simple measure of structural conserva-

tion, termed structural conservation index (SCI). SCI was used to

distinguish SCRs from non-SCRs. A database of SCRs was compiled

from 386 SCOP superfamilies containing 6489 protein domains.

Artificial neural networks were then trained to predict SCRs with vari-

ous features deduced from a single structure and homologous

sequences. Assessment of the predictions via a 5-fold cross-validation

method revealed that predictions based on features derived from a

single structure perform similarly to ones based on homologous

sequences, while combining sequence and structural features was

optimal in terms of accuracy (0.755) and Matthews correlation coeffi-

cient (0.476). These results suggest that even without information from

multiple structures, it is still possible to effectively predict SCRs for a

protein. Finally, inspection of the structures with the worst predictions

pinpoints difficulties in SCR definitions.

Availability: The SCR database and the prediction server can be

found at http://prodata.swmed.edu/SCR.

Contact: 91huangi@gmail.com or grishin@chop.swmed.edu

Supplementary information: Supplementary data are available at

Bioinformatics Online

Received on August 30, 2012; revised on October 23, 2012; accepted

on November 18, 2012

1 INTRODUCTION

Proteins descending from a common ancestor usually conserve
certain features of sequence, structure or function. These features

can often be used to assess evolutionary relationships. Although

it is generally accepted that high sequence similarity implies

protein homology, it is not uncommon for homologous proteins

to exhibit significant sequence variability (Murzin et al., 1995),

underscoring the need for additional ways to deduce homolo-

gous relationships. In these cases, the use of 3-dimensional struc-

tures can aid homology inference (Cheng et al., 2008; Dietmann

and Holm, 2001), as structures tend to be more conserved than

sequences (Chothia and Lesk, 1986). Distantly related proteins

generally maintain similar structural folds, and as a result, a large

fraction of regions (e.g. �50%) can be structurally aligned even

given very low sequence identity (e.g. �20%) (Chothia and Lesk,

1986; Hilbert et al., 1993). Therefore, study of structurally con-

served regions (SCRs) and structurally variable regions (SVRs)

can help characterize protein families and is useful in applica-

tions that rely on homology, such as structure modelling and

sequence alignment (Bates and Sternberg, 1999; Chakrabarti

et al., 2006; Chivian and Baker, 2006; Greer, 1980).
SCRs are generally characterized by, but not limited to, a set

of key secondary structures arranged in an overall topology

shared by most members of a protein family. In practice,

SCRs are usually deduced by aligning a set of two or more hom-

ologous structures and then inspecting which positions were

alignable in the majority of the structures (Chothia and Lesk,

1986; Deane et al., 2001; Greer, 1980; Hilbert et al., 1993;

Sandhya et al., 2008). The number and divergence of available

homologous structures can affect SCR definition, as a positive

correlation exists between the fraction of structurally alignable

parts and sequence similarity (Hilbert et al., 1993). The exact

methodology of aligning structures also affects SCR definition.

SCR definitions have often relied on a structural superposition

procedure that aims to optimize scoring functions (e.g. RMSD)

based on intermolecular distances of structurally equivalent resi-

dues. A fixed distance cut-off is then selected to define all SCRs

(Chothia and Lesk, 1986; Hilbert et al., 1993). However, rigid

structural alignment methods based on minimizing intermolecu-

lar distances might be problematic, because proteins are fairly

elastic in evolution and can exhibit significant secondary struc-

ture deformations, shifts and rotations when divergent structures

are compared. Therefore, it has been noted that SCRs defined

with a fixed cut-off of intermolecular distance tend to underesti-

mate structurally equivalent positions for divergent homologues.

Extensions of these SCRs with other geometric features such as

backbone conformations have been shown to improve the per-

formance of comparative modelling (Deane et al., 2001;

Montalvao et al., 2005). More ‘elastic’ alignment methods,*To whom correspondence should be addressed.
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such as those based on comparison of intramolecular contacts,

emphasize similarities in the local structural environment and

allow deducing correspondences even for structural elements

with larger deviations (Fong and Marchler-Bauer, 2009;

Hasegawa and Holm, 2009; Holm and Sander, 1996).

Although the number of solved structures is growing rapidly,

it still pales in comparison with the amount of available sequence

data (Levitt, 2007). There are still quite a number of protein

families with few or even no experimental structures. For these

cases, it is necessary to rely on predictive methods to identify

SCRs. A few methods have been developed to predict the con-

servation of various structural properties similar to SCRs with

measured success. Hydrophobicity plots and wavelet analysis

have been used to predict ‘hydrophobic cores’, hydrophobic

regions that determine the ‘native-like’ structure of a protein

(Hirakawa et al., 1999). However, hydrophobic cores do not

comprise the entire set of SCRs, because not all structurally

conserved residues are buried within a hydrophobic environ-

ment. In the MegaMotifBase database, conserved ‘structural

motifs’ were defined based on multiple homologous structures

as short isolated fragments that exhibit both high sequence and

structural conservation (Pugalenthi et al., 2008). These structural

motifs were subsequently predicted without information about

multiple structural homologues by using a neural network en-

semble (Pugalenthi et al., 2009). However, the structural motifs

in MegaMotifBase are different from general SCRs, which har-

bour residues that are not necessarily highly conserved in terms

of sequence. In fact, owing to the requirement of both sequence

and structural conservation, the fraction of residues in the motifs

defined in MegaMotifBase is quite low (�20%), as compared

with the fraction of structurally conserved residues (�60%) in

even highly divergent protein families (Hilbert et al., 1993). To

our knowledge, methods for prediction of SCRs in absence of

multiple structures are currently not available.
In this work, we approach the process of SCR delineation as

two separate challenges. When a given protein family has mul-

tiple known structures, SCRs can be defined by accurate struc-

tural alignments. However, in the absence of structural

homologues, SCRs can be predicted given information from a

single structure and/or homologous sequences. Here, based on

DaliLite (Holm and Sander, 1996) alignments of homologous

structures, we introduce structural conservation index (SCI) as

a simple measure of positional structural conservation. Using

SCI, we constructed a database of SCRs found in SCOP

(Murzin et al., 1995) superfamilies with five or more non-redun-

dant members. This database was used to develop an SCR pre-

dictor based on artificial neural networks, with inputs of various

features derived in each case from homologous sequences and at

most a single structure. We further analysed the results of SCR

predictions and identified common problems and difficulties in

SCR definitions.

2 METHODS

2.1 Compilation of the SCR database

2.1.1 Selection of protein superfamilies Our dataset was based

on the SCOP (version 1.75) database, which contains protein domain

structures divided hierarchically into classes, folds, superfamilies, families,

protein domains, species and PDB domains (from highest to lowest).

We were particularly interested in the conservation at the superfamily

level, which is the largest grouping of evolutionarily related proteins in

SCOP that share common structural folds.

To define the dataset, we only considered the structures in the

ASTRAL SCOP40 database (Chandonia et al., 2004). ASTRAL contains

a subset of SCOP domains with a level of non-redundancy corresponding

to at most 40% sequence identity. We excluded certain superfamilies that

we anticipated to have poor alignments by the DaliLite algorithm. In

particular, SCOP classes g–k (small proteins, coiled coil proteins, low

resolution proteins, peptides and fragments, and designed proteins)

were removed. A handful of individual folds and superfamilies in the

remaining six classes (all alpha proteins, all beta proteins, a/b proteins,

aþb proteins, multi-domain proteins, and membrane and cell surface

proteins and peptides) were also omitted from the dataset as they

exhibited either high structural variability or topologies, such as repeating

or duplicated domains and circular permutations, that could pose prob-

lems for DaliLite (a.6.1, a.100.1, a.118, a.138.1, b.34.5, b.82.1, b.84.2,

b.108.1, c.1.8, c.10.2, c.37.1, c.47.1, d.2.1, d.3.1, d.52.3, d.133, d.169.1,

d.198.1, d.211.1, d.325.1, f.4.1). Finally, superfamilies with fewer than five

domains were removed to ensure that there were enough members to

provide meaningful structural conservation measurement. In total, 386

superfamilies with a total of 6489 protein domains were used.

2.1.2 Structure alignments and SCR definition Using the pro-

gram DaliLite, all-against-all pairwise alignments were generated for the

domains in every superfamily. For each domain, we combined the align-

ments in a master–slave fashion to obtain a multiple structure-based se-

quence alignment. From these alignments, a value called the SCI was

assigned to each residue in every structure, measuring positional conser-

vation of 3-dimensional structure within the superfamily. For a target

residue, the SCI was defined as:

SCI ¼ Naligned= Naligned þNunaligned þNgap

� �
¼ Naligned=Ntotal ð1Þ

where Naligned, Nunaligned, Ngap and Ntotal are, respectively, the number of

residues alignable to the target residue (uppercase letters in DaliLite align-

ment), the number of unalignable residues (lowercase letters in DaliLite

alignment), the number of gaps in the position containing the target

residue and the total number of proteins in the superfamily (the target

residue itself is counted as one aligned residue). Thus, SCI is a measure of

the alignability of each amino acid by DaliLite, with a higher SCI sug-

gesting more structural conservation among superfamily members. After

manual inspection, the criterion of 80% conservation (SCI:� 0.8) was

used to define SCRs.

2.2 Prediction of SCRs

2.2.1 Neural network procedure We implemented a neural net-

work prediction procedure that explores information from a window of

positions centred at a target residue. Using Fast Artificial Neural

Network (http://leenissen.dk/fann), a neural network package based on

the feedforward/backpropagation training algorithm, we performed

5-fold cross validation experiments in which we predicted real-valued

SCIs for individual residues based on a variety of sequence and structural

features.

To generate the dataset for cross validation, we randomly selected a

single representative from each protein superfamily in the SCR database.

The 386 domains were then partitioned uniformly into 5 sets of 77 (one

with 78) domains. Each set was used as a testing set, with the remaining

four sets used for training the neural network. To prevent over-training,

the members not included in the testing set were randomly divided into (i)

a subset of 259 (258) domains that was fed into the neural network for

training and (ii) a monitoring subset of 50 domains. The monitoring

subset was used to find the training round that returned the lowest

mean-squared error (MSE) between the predicted and calculated SCIs,
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at which point the training procedure was considered to be complete.

We then reported the results on the testing set.

Inputs of neural networks were various positional features derived

from one 3-dimensional structure and/or sequence homologues. To ac-

count for a residue in the context of its neighbours, we included a window

of residue features, a technique popularized by secondary structure pre-

diction algorithms (Qian and Sejnowski, 1988). We fixed a local window

of size 2�kþ 1, centred on one residue, and containing features from

k residues before and k residues after. We considered the case when

windows near the start or end of the protein sequence would extend

beyond the sequence itself by adding a binary tag as an input feature

to indicate its occurrence.

We then monitored the MSE between the predicted and defined SCIs

to determine the parameters to be used in the neural network. Varying

parameters and monitoring the MSE suggested these best parameter set-

tings: one hidden layer of 20 neurons, and both activation steepness and

output steepness of 0.5.

2.2.2 Features derived from a 3-dimensional structure The

DSSP program (Kabsch and Sander, 1983) was used to calculate second-

ary structure (SS) and solvent accessibility for each residue. The SS values

were categorized into three states: �-helices (H, G and I), �-strands

(E and B) and loop regions (other letters reported by DSSP). The solvent

accessibility, a measure of the number of water molecules in contact with

a given residue, was normalized between 0 and 1 to give the relative

solvent accessibility (RSA). The number of C� atoms in a 14 Å radius

of the C� of the target residue (CB14) was also calculated and scaled by a

constant of 0.01 to yield values approximately between 0 and 1.

2.2.3 Features derived from sequence We used four iterations

of PSI-BLAST (Altschul et al., 1997) with an inclusion e-value of 1e-4 to

generate multiple sequence alignments which were used to derive three

positional features. The position-specific scoring matrix (PSSM), a meas-

urement of the amino acid occurrences, was obtained from the

PSI-BLAST checkpoint file. Conservation indices calculated by the

AL2CO (Pei and Grishin, 2001) were used as a measure of sequence

conservation between homologous sequences. The last alignment-derived

feature was the fraction of gaps per residue position. The combination of

features derived from PSI-BLAST alignment (PSSM, conservation value

and gap fraction) is called PBL.

Local structure prediction results were also used as neural network

inputs. PSIPRED (Jones, 1999) was used to obtain predicted secondary

structures (SSP). Predicted RSA values (RSAP) were generated by using

a simple neural network with the PSI-BLAST PSSM as inputs. The se-

quence length of the protein was also added as a feature and was scaled

by dividing by 200.

2.2.4 Performance measures We considered a residue to be in

an SCR when the SCI of that residue was at least 0.8. A cut-off value for

the prediction values was also used to separate predicted SCRs (positives)

from predicted non-SCRs (negatives). The results of our prediction meth-

ods were thus categorized in a 2 by 2 contingency table consisting of TP

(true positives: correctly predicted SCRs), TN (true negatives: correctly

predicted non-SCRs), FP (false positives: non-SCRs predicted to be

SCRs) and FN (false negatives: SCRs predicted to be non-SCRs).

The cut-off value for the predicted SCI values was determined by

scanning the space [0.5, 1] at increments of 0.01 and optimizing once

on accuracy score (Q2) and again on Matthews correlation coefficient

(MCC) given by equations (2) and (3), respectively.

Q2 ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ ¼ TPþ TNð Þ=N ð2Þ

MCC ¼ ðTP� TN� FP� FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð3Þ

Additionally, we performed receiver-operating characteristic (ROC)

analysis, which plots the true positive rate (sensitivity, equation 4)

versus false positive rate [1-specificity (equation 5)] of a prediction

method when the cut-off value for SCR predictions was systematically

varied:

Sensitivity ¼ TP= TPþ FNð Þ ð4Þ

Specificity ¼ TN= TNþ FPð Þ ð5Þ

The area under the ROC curve (AUC) gives an overall estimate of

performance, with a higher AUC value implying better prediction results

(Baldi et al., 2000).

2.2.5 SCR predictions compared with MegaMotifBase structural
motif predictions We compared our work with another

neural network predictor (Pugalenthi et al., 2009) based on the

MegaMotifBase database (Pugalenthi et al., 2008). First, we tested their

structural motif predictors on our data by running their neural network

ensemble on our dataset of 386 proteins. Our neural network was then

used to predict structural motifs defined in MegaMotifBase. Of the 1194

SCOP superfamilies listed on their server, 23 single-membered superfa-

milies (a.2.2, a.4.8, a.7.6, a.8.2, a.38.1, a.49.1, a.50.1, a.118.13, a.137.1,

a.148.1, a.165.1, b.20.1, b.119.1, c.9.2, c.23.8, c.96.1, d.28.1, d.29.1, d.50.2,

d.58.42, d.58.45, e.15.1, g.41.8) had proteins with sequences that did not

match those listed in the SCOP version 1.75 files. These superfamilies

were omitted from the testing set. With the remaining 1171 superfamilies,

we selected a single protein structure at random as a representative of the

superfamily and ran our neural network prediction. The SCI cut-offs in

our prediction results were optimized both on the MCC and Q2.

3 RESULTS AND DISCUSSION

3.1 The database of SCRs

A database of protein structures was assembled from the 386

SCOP superfamilies with five or more nonredundant structures
at the 40% sequence identity level (see Methods). For any struc-

ture, its DaliLite pairwise alignments to other members in the

same superfamily were used to calculate the SCI, i.e. the fraction

of alignable residues in each position (see Methods). An SCI cut-
off of 80% (inclusive) was applied to determine SCRs. This

definition resulted in a total of 653 362 residues in SCRs out

of 1 172 507 residues, or a fraction of 55.72%. The distribution

of SCIs (Fig. 1) shows that about 30% of the residues were
structurally conserved in all members of a superfamily

(SCI¼ 1), while the SCI values have a nearly uniform distribu-

tion between 0.2 and 0.8.
The fraction of SCRs has a negative correlation with the

number of structures in a superfamily. For superfamilies with

eight or less members, the average fraction of SCRs is about
70%, while for superfamilies with 20 or more members, the aver-

age SCR fraction is about 52%. Structural diversity is also re-

flected in the number of SCOP families classified in a SCOP

superfamily. While more than half of the superfamilies (223
out of 386) have three or more SCOP families, there are 89

and 74 superfamilies with only one and two SCOP families,

respectively. SCOP families with three or more families have

median SCR factions 562% (Supplementary Fig. S1). On the
other hand, SCOP superfamilies with one family and two

families have higher median SCR fractions of 77.8% and

72.5%, respectively (Supplementary Fig. S1). SCRs in some of

these superfamilies could be overestimated. It has also been
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observed that the fraction of SCRs is correlated with the

sequence similarity (Hilbert et al., 1993). As a crude measure-

ment of sequence similarity, we calculated pairwise sequence

identities of all domain pairs in each superfamily. For the

majority of the superfamilies (362 out of 386), the average

sequence identity among domain pairs is 525%. The median

of the average sequence identity among the 386 SCOP super-

families is only 17.1%. A positive correlation between SCR frac-

tion and average sequence identity in a superfamily was observed

(Supplementary Fig. S2).

Nine superfamilies have530% residues defined as SCRs, sug-

gesting high structural divergence between the superfamily mem-

bers. The five superfamilies with the lowest SCR fractions (all

520%) are well known for their high structural divergence:

His-Me finger endonucleases (d.4.1, SCR fraction 9.3%)

(Friedhoff et al., 1999; Shub et al., 1994), DNA/RNA polymer-

ases (e.8.1, SCR fraction 10.3%) (Majumdar et al., 2009),

Restriction endonuclease-like (c.52.1, SCR fraction 17.2%)

(Bujnicki, 2001; Roberts and Macelis, 1991), Ribonuclease

H-like (c.55.3, SCR fraction 18.9%) (Nowotny, 2009), and

Metalloproteases (‘zincins’), catalytic domain (d.92.1, SCR

fraction 19.3%) (Gomis-Ruth, 2003). One common feature for

these superfamilies is that they have a core consisting of several

structural elements, while many members have diverse structural

decorations that fall into unalignable regions. Conversely, there

are 18 superfamilies with very high SCR fraction (i.e.485%).

These superfamilies have relatively few members (12 at most).
Our SCR definition relies on pairwise DaliLite structural

alignments. For each target structure, a master–slave pseudo-

multiple alignment was constructed from the pairwise alignments

of that structure (master) to all the other structures (slaves) in the

same superfamily (these alignments are available at the website

of SCR database). SCRs were then deduced from this alignment.

However, information in structural alignments among the slaves

is not used in SCR definition. Structural equivalences deduced

from pairwise structural alignments among three or more struc-

tures are not always consistent. For example, even if position iA
in a master structure A is aligned to position jB in one slave

structure B and aligned to position kC in another slave structure

C, positions jB and kC may not be aligned between the two slave

structures B and C. Such inconsistency should compromise the

structural conservation for position iA of structure A. Multiple

structural alignment methods that explore the consistency among

pairwise structural alignments could lead to improved definitions

of SCRs.

3.2 Predictions of SCRs using neural networks

We used artificial neural network to predict SCRs based on fea-

tures derived from a single structure and/or homologous se-

quences. A 5-fold cross-validation procedure was conducted

(see Methods) with input features derived from a window of

positions centred at a target position. We varied window sizes

starting from a size of one residue and increasing by increments

of four residues. Plotting the MCC and Q2 of the neural net-

works as a function of window size for a variety of combinations

of input features, we observed that the scores stopped increasing

when the window size exceeded 13 (Supplementary Fig. S3). This

suggests that a local window of 13 residues is optimal for neural

network predictors in terms of accuracy and speed. We thus

report results of neural network predictions with a fixed

window size of 13 for all feature combinations to facilitate

their comparisons. Neural networks were also trained with or

without sequence length (scaled by a factor of 1/200) as a feature

to determine its necessity in SCR prediction. We found that as an

input feature, sequence length benefited both MCC and Q2 in

every case (data not shown), so it was included in all experiments

described below.

To evaluate the performance of SCR predictions, we applied a

cut-off to predicted SCIs to distinguish predicted SCRs (residues

with predicted SCIs no less than the cut-off) from predicted

non-SCRs (residues with predicted SCIs less than the cut-off),

which allows us to assign true/false positive or true/false negative

for each residue (see Methods). For each neural network, such a

cut-off of predictions was systematically varied to obtain the

ROC curve, from which the AUC was calculated and served as

a performance evaluation score (Fig. 2 and Supplementary Figs

S4–S6). For each neural network, we also determined a cut-off of

predicted SCIs that reported the best MCC and another cut-off

that reported the optimal Q2. MCC, Q2, sensitivity (SE) and

specificity (SP) given both cases are shown in Table 1.

3.2.1 SCR predictions using information derived from a single
structure Conventionally, defining SCRs has required align-

ment of two or more homologous structures, and the result

depends on the diversity of available structures. In contrast, we

explored the prediction of SCRs using features derived from just

one structure. The three structural features we tested were sec-

ondary structure (SS) and two residue burial properties: RSA

and CB14 (Table 1). The single feature with the best predictive

power was CB14 (MCC¼ 0.423, Q2¼ 0.731, AUC¼ 0.783). It

outperformed RSA (MCC¼ 0.391, Q2¼ 0.716, AUC¼ 0.767;

Table 1 and Supplementary Fig. S4), suggesting that the

number of residue contacts and solvent accessibility are not inter-

changeable properties despite the strong correlation between

them (Pollastri et al., 2001). Our result is consistent with previous

finding that CB14 is one of the most effective residue burial

properties, outperforming RSA in fold recognition and align-

ment experiments (Karchin et al., 2004). Both CB14 and RSA

Fig. 1. The distribution of SCI values in the SCR database. The range in

the format of [a, b) suggests SCI values no less than a and less than b

178

I.K.Huang et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/CBIO/bts682/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/CBIO/bts682/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/CBIO/bts682/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/CBIO/bts682/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/CBIO/bts682/-/DC1


gave better results than SS (MCC¼ 0.315, Q2¼ 0.687,

AUC¼ 0.724), suggesting that residue burial properties

are more important in determination of SCRs than secondary

structure. When combining structural features, the best perform-

ance was achieved by the combination of SS and CB14

(MCC¼ 0.436, Q2¼ 0.739, AUC¼ 0.802), which performs simi-

larly to the combination of all three structural features

(MCC¼ 0.433, Q2¼ 0.735, AUC¼ 0.797; Table 1).

3.2.2 SCR predictions using sequence information For pro-

tein families without available structures, we explored

information from homologous proteins to predict SCRs. For

each family, we first tested the performance of a PSI-BLAST

PSSM coupled with two additional alignment-derived positional

properties, sequence conservation value and gap fraction (com-

bination of the three features named PBL in Table 1). Two struc-

tural properties predicted from PSI-BLAST PSSMs were

independently tested, SSP and RSAP. Of the three variables

PBL, SSP and RSAP, PBL performed at the highest level

(MCC¼ 0.408, Q2¼ 0.728, AUC¼ 0.777). The features that per-

formed the best when in combination were PBL and SSP

(MCC¼ 0.424, Q2¼ 0.735, AUC¼ 0.788), showing a similar

performance to that of combining all the sequence-based features

(MCC¼ 0.423, Q2¼ 0.733, AUC¼ 0.788; Table 1 and

Supplementary Fig. S5). The best performer using sequence in-

formation yielded slightly worse results compared with the best

performer using information from a single structure (Table 1).

3.2.3 Combining information from both sequence and structure

improves SCR predictions We varied the combinations of
features from the structural category and the sequence category.

Various combinations all gave similar performance (Table 1 and

Supplementary Fig. S6). The best result (MCC¼ 0.476,

Q2¼ 0.755, AUC¼ 0.817) was achieved when combining the

two features that gave the best performance in the structural

category (SSþCB14) and the two features that gave the best

performance in the sequence category (PBLþ SSP). This result

was similar to that of combining all structural and

sequence features (STRþ SEQ in Table 1). Given the input

SSþCB14þPBLþ SSP, adding sequence information

improved MCC by about 9%, Q2 by about 2% and AUC by

Table 1. Evaluation of SCR predictions

Features used in

neural network

Optimization on MCC Optimization on Q2 AUC

MCC Q2 SE SP Q2 MCC SE SP

Structural features

SS 0.315 0.681 0.768 0.541 0.687 0.308 0.837 0.445 0.724

RSA 0.391 0.711 0.757 0.636 0.716 0.388 0.807 0.57 0.767

CB14 0.423 0.726 0.769 0.655 0.731 0.414 0.85 0.541 0.783

SSþRSA 0.414 0.719 0.751 0.668 0.728 0.406 0.853 0.527 0.784

SSþCB14 0.436 0.719 0.703 0.745 0.739 0.432 0.852 0.556 0.802

RSAþCB14 0.417 0.727 0.795 0.618 0.729 0.41 0.84 0.55 0.777

STR (SSþRSAþCB14) 0.433 0.726 0.747 0.692 0.735 0.429 0.824 0.592 0.797

Sequence features

PBL 0.408 0.721 0.783 0.623 0.728 0.404 0.861 0.513 0.777

SSP 0.364 0.698 0.746 0.621 0.707 0.354 0.854 0.469 0.749

RSAP 0.389 0.713 0.776 0.61 0.716 0.387 0.808 0.568 0.766

PBLþSSP 0.424 0.735 0.844 0.559 0.735 0.423 0.855 0.543 0.788

PBLþRSAP 0.405 0.727 0.842 0.541 0.727 0.402 0.868 0.501 0.775

SSPþRSAP 0.418 0.731 0.826 0.578 0.732 0.413 0.862 0.521 0.782

SEQ (PBLþSSPþRSAP) 0.423 0.725 0.765 0.661 0.733 0.417 0.865 0.522 0.788

Combined features

SSþCB14þPBL 0.465 0.752 0.836 0.617 0.753 0.464 0.861 0.58 0.812

SSþCB14þPBLþ SSP 0.476 0.75 0.782 0.698 0.755 0.468 0.867 0.575 0.817

SSþCB14þSEQ 0.467 0.753 0.841 0.512 0.753 0.467 0.841 0.512 0.814

STRþPBL 0.465 0.751 0.83 0.624 0.752 0.461 0.864 0.572 0.814

STRþPBLþSSP 0.468 0.751 0.815 0.647 0.752 0.461 0.853 0.589 0.814

STRþ SEQ 0.474 0.753 0.809 0.662 0.755 0.471 0.846 0.61 0.814

SE and SP are sensitivity and specificity, respectively. The best two predictions in each category are shown in bold and underlined numbers.
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Fig. 2. ROC curves of selected neural network predictions. Two best

neural networks using structure features (blue lines), sequence features

(black lines) and combined features (red lines) are shown
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about 2% when compared with the best performer that used
structural information only (SSþCB14).

3.3 Comparison with the predictions of

MegaMotifBase structural motifs

In a related study, neural network predictions of conserved

structural motifs in the MegaMotifBase were reported
(Pugalenthi et al., 2009). These MegaMotifBase motifs were

defined as segments with both high sequence conservation and
structural conservation, while our SCR definitions do not include
sequence conservation. Our neural network did not accurately

predict MegaMotifBase motifs (see Methods; best MCC was
only 0.348), as compared with the reported performance of
neural networks trained directly on these motifs (MCC¼ 0.845)

(Pugalenthi et al., 2009). Likewise, the MegaMotifBase motif pre-
diction program is inferior in predicting our definitions of SCRs

(MCC¼ 0.192, Q2¼ 0.476). The relatively inaccurate predictions
of both our program on the MegaMotifBase dataset and
Pugalenthi et al.’s program on our SCR dataset highlight how

our SCR definitions differ from the MegaMotifBase motifs.

3.4 Structural analysis of SCR predictions

We compared prediction results (based on the feature combin-

ation of SSþCB14þPBLþ SSP) to SCR definitions for each
individual protein to determine prediction sensitivity, specificity
and accuracy (Supplementary Table S1). The prediction accura-

cies for individual domains ranged from 0.119 to 0.977, with a
median value of 0.783 and an average value of 0.765.

Inspection of SCR definitions and predictions revealed two
major reasons for the worst prediction accuracies. The first
was unreasonable SCR definitions owing to the inconsistency

in SCOP domain definitions in a superfamily. In particular, for
some SCOP superfamilies, a domain definition comprised a
single unit for some members, but duplicate units for other mem-

bers. One example is the low prediction accuracy for the struc-
ture of a hypothetical protein (SCOP ID: d1u9da_, pdb code:

1U9D, chain A) from the Tautomerase/MIF superfamily (SCOP
ID: d.80.1). This structure is characterized by a duplication of
two beta-alpha-beta structural units (Fig. 3a). However, 4 out of

11 domains in this superfamily contain only one beta-alpha-beta
unit, and they are all aligned to the C-terminal beta-alpha-beta

unit of d1u9da_ (�-strands b3 and b4 and �-helix A2 in Fig. 3a).
The N-terminal beta-alpha-beta unit of d1u9da_ (�-strands b1
and b2 and �-helix A1, Fig. 3a) is thus devoid of SCRs according

to our SCR definition, as the SCI values for the residues in the
N-terminal unit are no more than 7/11 and less than the SCR
cut-off of 0.8 (see Supplementary Fig. S7a for the alignment).

Our neural network predicted a similar fraction of SCRs in both
the N- and C-terminal units of d1u9da_. However, the SCR

predictions in the N-terminal unit were counted as false positives
(green, Fig. 3a) according to the unreasonable SCR definitions,
which resulted in the low prediction accuracy for d1u9da_

(Q2¼ 0.500). Besides d1u9da_, we found low prediction accura-
cies for several other proteins with unreasonable SCR definitions

owing to inconsistent SCOP domain definitions involving dupli-
cated domains (such as d1s7ja_ and d1wwia1, Supplementary
Table S1). A similar problem was found for a few cases where

SCRs were not defined for regions corresponding to an inserted

domain, while reasonable SCR predictions were made for the

inserted domain (e.g., d1t3qc2 in the superfamily of d.145.1,

Supplementary Table S1).
A second cause of low prediction accuracy was found in sev-

eral domains from SCOP superfamilies with high structural

divergence and low fractions of defined SCRs. One example is

the domain (SCOP ID: d2etja1) from the Ribonuclease H-like

superfamily (SCOP ID: c.33.3, Fig. 3b). Our SCR definition pro-

cedure successfully identified the five central �-strands of this

domain as its SCRs (b1–b5 in Fig. 3b), consistent with the

SCOP description of the general ‘Ribonuclease H-motif’ fold.

The neural network also predicted these five �-strands as SCRs

(true positives, coloured red in Fig. 3b), resulting in high sensi-

tivity of the prediction (SE¼ 1.0, all 35 defined SCRs were pre-

dicted as SCRs). However, the neural network predictor also

included additional structural elements as predicted SCRs

(a total of 44 residues were false positives), resulting in low pre-

diction specificity (SP¼ 0.426) and a low Q2 score of 0.521. Most

noticeably, two �-helices (A1 and A2 in Fig. 3b) sandwiching the

central beta sheet were predicted as SCRs, while they were not

defined as SCRs. In quite a number of members of the

Ribonuclease H-like superfamily, these two �-helices are indeed

present and could be structurally aligned to their counterparts in

d2etja1 (Supplementary Fig. S7b). However, the SCI values for

residues in these two �-helices were around 0.5, and so did not

pass the SCR definition cut-off of 0.8.
High structural divergence among some superfamily members

also resulted in incorrect DaliLite alignments, as observed for

some members in the His-Me endonuclease superfamily (SCOP

ID: d.4.1). Other structural changes that posed problems for

DaliLite alignment program and SCR definitions included circu-

lar permutation (such as superfamily d1r5ba2 in the superfamily

of b.44.1) and domain swap (such as d2gmya1 in the superfamily

Fig. 3. Structural mapping of SCR predictions for (a) d1u9da_ from the

Tautomerase/MIF superfamily and (b) d2etja1 from the Ribonuclease

H-like superfamily. True positives, false positives, true negatives and

false negatives are coloured red, green, yellow and blue, respectively.

N- and C-termini are marked. Major secondary structural elements are

labelled ‘A’ for �-helices and ‘b’ for �-strands
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of a.152.1). Manual inspection of structures with the worst pre-

diction results revealed 11 protein domains with SCR definition

problems (gray lines in Supplementary Table S1). For the neural

network (SSþCB14þPBLþ SSP) trained on 386 domains,

removal of the 11 domains led to improved performance for

the remaining 375 domains (MCC¼ 0.491, Q2¼ 0.765,

AUC¼ 0.826, Supplementary Table S2) compared with the per-

formance averaged on the 386 domains (MCC¼ 0.476,

Q2¼ 0.755, AUC¼ 0.817). To investigate whether those cases

of unreasonable SCR definitions negatively affected neural net-

work training, we excluded them and did new cross-validation

tests of neural networks using the remaining 375 domains

(Supplementary Table S3). However, this procedure yielded no

improvement over the procedure trained using the entire 386

domains (Supplementary Tables S2 and S3). This result suggests

that our neural network procedure is robust and can tolerate a

few cases of unreasonable SCR definitions.

4 CONCLUSION

We developed SCI, a measure of positional structural conserva-

tion based on pairwise DaliLite alignments among a set of hom-

ologous structures. A database of SCRs was defined for 386

SCOP superfamilies with five or more structures at the �40%

sequence identity. We explored various structure-based and

sequence-based features in SCR predictions using the artificial

neural network technique. For features derived from a single

structure, we observed that CB14 was a more informative residue

burial property than relative solvent accessibility, and that CB14

coupled with SS achieved a prediction Q2 of 0.739 and MCC of

0.436. For features derived from homologous sequences, we

observed that SSP contributed to prediction accuracy, and SSP

coupledwith PBLproperties [PSI-BLAST position scoringmatrix

(PSSM), gap fraction and positional amino acid conservation

score] gave Q2 of 0.735 and MCC of 0.424. Combination of fea-

tures derived from a single structure and features derived from

homologous sequences (SSþCB14þPBLþ SSP) resulted in the

best predictor with Q2 of 0.755 and MCC of 0.476. Inspection of

the discrepancies between the prediction results and SCR defin-

itions for structures with low prediction accuracies highlights

problems and difficulties in defining SCRs caused by inconsist-

ency in domain definitions and high structural divergence.
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