Skip to main content
. 2012 Nov 28;29(2):175–181. doi: 10.1093/bioinformatics/bts682

Table 1.

Evaluation of SCR predictions

Features used inneural network Optimization on MCC
Optimization on Q2
AUC
MCC Q2 SE SP Q2 MCC SE SP
Structural features
    SS 0.315 0.681 0.768 0.541 0.687 0.308 0.837 0.445 0.724
    RSA 0.391 0.711 0.757 0.636 0.716 0.388 0.807 0.57 0.767
    CB14 0.423 0.726 0.769 0.655 0.731 0.414 0.85 0.541 0.783
    SS + RSA 0.414 0.719 0.751 0.668 0.728 0.406 0.853 0.527 0.784
    SS + CB14 0.436 0.719 0.703 0.745 0.739 0.432 0.852 0.556 0.802
    RSA + CB14 0.417 0.727 0.795 0.618 0.729 0.41 0.84 0.55 0.777
    STR (SS + RSA + CB14) 0.433 0.726 0.747 0.692 0.735 0.429 0.824 0.592 0.797
Sequence features
    PBL 0.408 0.721 0.783 0.623 0.728 0.404 0.861 0.513 0.777
    SSP 0.364 0.698 0.746 0.621 0.707 0.354 0.854 0.469 0.749
    RSAP 0.389 0.713 0.776 0.61 0.716 0.387 0.808 0.568 0.766
    PBL + SSP 0.424 0.735 0.844 0.559 0.735 0.423 0.855 0.543 0.788
    PBL + RSAP 0.405 0.727 0.842 0.541 0.727 0.402 0.868 0.501 0.775
    SSP + RSAP 0.418 0.731 0.826 0.578 0.732 0.413 0.862 0.521 0.782
    SEQ (PBL + SSP + RSAP) 0.423 0.725 0.765 0.661 0.733 0.417 0.865 0.522 0.788
Combined features
    SS + CB14 + PBL 0.465 0.752 0.836 0.617 0.753 0.464 0.861 0.58 0.812
    SS + CB14 + PBL + SSP 0.476 0.75 0.782 0.698 0.755 0.468 0.867 0.575 0.817
    SS + CB14 + SEQ 0.467 0.753 0.841 0.512 0.753 0.467 0.841 0.512 0.814
    STR + PBL 0.465 0.751 0.83 0.624 0.752 0.461 0.864 0.572 0.814
    STR + PBL + SSP 0.468 0.751 0.815 0.647 0.752 0.461 0.853 0.589 0.814
    STR + SEQ 0.474 0.753 0.809 0.662 0.755 0.471 0.846 0.61 0.814

SE and SP are sensitivity and specificity, respectively. The best two predictions in each category are shown in bold and underlined numbers.