Table 1.
Evaluation of SCR predictions
Features used inneural network | Optimization on MCC |
Optimization on Q2 |
AUC | ||||||
---|---|---|---|---|---|---|---|---|---|
MCC | Q2 | SE | SP | Q2 | MCC | SE | SP | ||
Structural features | |||||||||
SS | 0.315 | 0.681 | 0.768 | 0.541 | 0.687 | 0.308 | 0.837 | 0.445 | 0.724 |
RSA | 0.391 | 0.711 | 0.757 | 0.636 | 0.716 | 0.388 | 0.807 | 0.57 | 0.767 |
CB14 | 0.423 | 0.726 | 0.769 | 0.655 | 0.731 | 0.414 | 0.85 | 0.541 | 0.783 |
SS + RSA | 0.414 | 0.719 | 0.751 | 0.668 | 0.728 | 0.406 | 0.853 | 0.527 | 0.784 |
SS + CB14 | 0.436 | 0.719 | 0.703 | 0.745 | 0.739 | 0.432 | 0.852 | 0.556 | 0.802 |
RSA + CB14 | 0.417 | 0.727 | 0.795 | 0.618 | 0.729 | 0.41 | 0.84 | 0.55 | 0.777 |
STR (SS + RSA + CB14) | 0.433 | 0.726 | 0.747 | 0.692 | 0.735 | 0.429 | 0.824 | 0.592 | 0.797 |
Sequence features | |||||||||
PBL | 0.408 | 0.721 | 0.783 | 0.623 | 0.728 | 0.404 | 0.861 | 0.513 | 0.777 |
SSP | 0.364 | 0.698 | 0.746 | 0.621 | 0.707 | 0.354 | 0.854 | 0.469 | 0.749 |
RSAP | 0.389 | 0.713 | 0.776 | 0.61 | 0.716 | 0.387 | 0.808 | 0.568 | 0.766 |
PBL + SSP | 0.424 | 0.735 | 0.844 | 0.559 | 0.735 | 0.423 | 0.855 | 0.543 | 0.788 |
PBL + RSAP | 0.405 | 0.727 | 0.842 | 0.541 | 0.727 | 0.402 | 0.868 | 0.501 | 0.775 |
SSP + RSAP | 0.418 | 0.731 | 0.826 | 0.578 | 0.732 | 0.413 | 0.862 | 0.521 | 0.782 |
SEQ (PBL + SSP + RSAP) | 0.423 | 0.725 | 0.765 | 0.661 | 0.733 | 0.417 | 0.865 | 0.522 | 0.788 |
Combined features | |||||||||
SS + CB14 + PBL | 0.465 | 0.752 | 0.836 | 0.617 | 0.753 | 0.464 | 0.861 | 0.58 | 0.812 |
SS + CB14 + PBL + SSP | 0.476 | 0.75 | 0.782 | 0.698 | 0.755 | 0.468 | 0.867 | 0.575 | 0.817 |
SS + CB14 + SEQ | 0.467 | 0.753 | 0.841 | 0.512 | 0.753 | 0.467 | 0.841 | 0.512 | 0.814 |
STR + PBL | 0.465 | 0.751 | 0.83 | 0.624 | 0.752 | 0.461 | 0.864 | 0.572 | 0.814 |
STR + PBL + SSP | 0.468 | 0.751 | 0.815 | 0.647 | 0.752 | 0.461 | 0.853 | 0.589 | 0.814 |
STR + SEQ | 0.474 | 0.753 | 0.809 | 0.662 | 0.755 | 0.471 | 0.846 | 0.61 | 0.814 |
SE and SP are sensitivity and specificity, respectively. The best two predictions in each category are shown in bold and underlined numbers.