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Abstract
We define a new measure of variable importance of an exposure on a continuous outcome, accounting
for potential confounders. The exposure features a reference level x0 with positive mass and a
continuum of other levels. For the purpose of estimating it, we fully develop the semi-parametric
estimation methodology called targeted minimum loss estimation methodology (TMLE) [23, 22].
We cover the whole spectrum of its theoretical study (convergence of the iterative procedure which
is at the core of the TMLE methodology; consistency and asymptotic normality of the estimator),
practical implementation, simulation study and application to a genomic example that originally
motivated this article. In the latter, the exposure X and response Y are, respectively, the DNA copy
number and expression level of a given gene in a cancer cell. Here, the reference level is x0 = 2, that
is the expected DNA copy number in a normal cell. The confounder is a measure of the methylation
of the gene. The fact that there is no clear biological indication that X and Y can be interpreted as an
exposure and a response, respectively, is not problematic.
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1. Introduction
Consider the following statistical problem: One observes the data structure O = (W, X, Y) on
an experimental unit of interest, where W ∈  stands for a vector of baseline covariates, and
X ∈ ℝ and Y ∈ ℝ respectively quantify an exposure and a response; the exposure features a
reference level x0 with positive mass (there is a positive probability that X = x0) and a
continuum of other levels (a first source of difficulty); one wishes to investigate the relationship
between X on Y, accounting for W (a second source of difficulty) and making few assumptions
on the true data-generating distribution (a third source of difficulty). Taking W into account is
desirable when one knows (or cannot rule out the possibility) that it contains confounding
factors, i.e., common factors upon which the exposure X and the response Y may simultaneously
depend.
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We illustrate our presentation with an example where the experimental unit is a set of cancer
cells, the relevant baseline covariate W, the exposure X and response Y are, respectively, is a
measure of DNA methylation, the DNA copy number and the expression level of a given gene.
Here, the reference level is x0 = 2, that is, the expected copy number in a normal cell. The fact
that there is no clear biological indication that X and Y can be interpreted as an exposure and
a response, respectively, is not problematic. Associations between DNA copy numbers and
expression levels in genes have already been considered in the literature (see e.g., [11, 26, 1,
17, 10]). In contrast to these earlier contributions, we do exploit the fact that X features both a
reference level and a continuum of other levels, instead of discretizing it or considering it as a
purely continuous exposure.

We focus on the case that there is very little prior knowledge on the true data-generating
distribution P0 of O, although we know/assume that (i) O takes its values in the bounded set

 (we will denote ||O|| = max{|W|, |X|, |Y|}), (ii) P0(X ≠ x0) > 0, and finally (iii) P0(X ≠ x0|W)
> 0 P0-almost surely. Accordingly, we see P0 as a specific element of the non-parametric set

 of all possible data-generating distributions of O satisfying the latter constraints. We define
the parameter of interest as Ψ (P0), for the non-parametric variable importance measure Ψ:

 → ℝ characterized by

(1)

for all P ∈ . Thus, Ψ (P)(X − x0) is the best linear approximation of the form β (X − x0) to
(Y − EP (Y|X = x0, W)), hence also to (EP(Y|X, W) − EP (Y|X = x0, W)). Parameter Ψ quantifies
the influence of X on Y on a linear scale, using the reference level x0 as a pivot and accounting
for W. Note that this expression conveys the notion that the role of X and Y are not symmetric.
As its name suggests, Ψ belongs to the family of variable importance measures, which was
introduced in [21]. However, its case is not covered by the latter article because X is continuous.
We will see how Ψ naturally relates to an excess risk, a prototypical variable importance
measure of a binary exposure, when X takes only two distinct values.

The methodology presented in this article straightforwardly extends to situations where one
would prefer to replace the expression β(X − x0) in (1) by βf (X, W) for any f such that f(x0,
W) = 0 and EP {f (X, W)2} > 0 for all P ∈ . We emphasize that in contrast to [15, 14, 28,
21, 20], we do not assume a semi-parametric model (which would here be written as Y = β
(X − x0) + η (W) + U with unspecified η and U such that EP (U|X, W) = 0). This fact bears
important implications. The parameter of interest, Ψ (P0), is universally defined no matter
what properties the unknown true data-generating distribution P0 enjoys, or does not enjoy.
This justifies the expression “non-parametric variable importance measure of a continuous
exposure” in the title.

An obvious substitution estimator of Ψ (P0) is

an expression derived from (1) by substituting the empirical measure Pn for P0 and the
Nadaraya-Watson estimator θ̂n(X, W) of EP0 (Y|X, W) for it. Under regularity conditions of
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order k on the true conditional expectation, the optimal bandwith hn for θ̂n satisfies hn =
cn−1/(2k+d) where d = 2 is the dimension of (X, W). Now it is possible to characterize a P0 ∈

 such that . In particular, ψ̂n cannot achieve -consistency under
that P0. We see that ψ̂

n suffers from the fact that the bias-variance trade-off, which is at the
core of the construction of θ̂n, is optimized for the sake of estimating the infinite-dimensional
parameter EP0 (Y|X, W) whereas we are eventually interested in estimating the one-dimensional
parameter Ψ (P0).

Here we fully develop a version of the semi-parametric estimation methodology called targeted
minimum loss estimation (TMLE) [23, 22] tailored to the inference of Ψ (P0). This involves
iteratively updating an initial estimator such as ψ̂

n in order to produce another substitution

estimator. Because the latter is targeted at the estimation of Ψ (P0), it achieves -consistency
under mild assumptions. Specifically, Corollary 1 on asymptotic normality only requires that

the product of the convergence rate of  by the minimum of the convergence rates

of  and  be faster than . In particular, this condition may hold even in

situations where none of the three above estimators achieves -consistency.

We cover the whole spectrum of the TMLE theoretical study, practical implementation,
simulation study, and application to the aforementioned genomic example.

In Section 2, we study the fundamental properties of parameter Ψ. In Section 3 we provide an
overview of the TMLE methodology tailored for the purpose of estimating Ψ (P0). In Section
4, we state and comment on important theoretical properties enjoyed by the TMLE
(convergence of the iterative updating procedure at the core of its definition; its consistency
and asymptotic normality). The specifics of the TMLE procedure are presented in Section 5
(this section may be skipped on first reading). The properties considered in Section 4 are
illustrated by a simulation study inspired by the problem of assessing the importance of DNA
copy number variations on expression level in genes, accounting for their methylation (the real
data application we are ultimately interested in), as described in Section 6. All proofs are
postponed to the appendix.

We assume from now on, without loss of generality, that x0 = 0. Following [25], for any measure

λ and measurable function f, λf = ∫ fdλ. We set . Moreover, the
following notation are used throughout the article: for all P ∈ , θ(P)(X, W) = EP (Y|X, W), μ
(P)(W) = EP (X|W), g(P)(0|W) = P(X = 0|W), and σ2(P) = EP {X2}. In particular, Ψ (P) can
also be written as

2. The non-parametric variable importance parameter
It is of paramount importance to study the parameter of interest in order to better estimate it.
Parameter Ψ actually enjoys the following properties (see Section A.2 for definitions and van
der Vaart [25, Chapter 25, ] for an introduction to the theory of semiparametric models).

Proposition 1: For all P ∈ ,
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(2)

Parameter Ψ is pathwise differentiable at every P ∈  with respect to the maximal tangent set

. Its efficient influence curve at P is , where the two components

 and  are -orthogonal
and characterized by

Furthermore, the efficient influence curve is double-robust: for any (P, P′) ∈ , if either (μ
(P′) = μ(P) and g(P′) = g(P)) or θ (P′)(0, ·) = (P)(0, ·) holds, then PD★(P′) = 0 implies Ψ (P
′) = Ψ (P).

The proof of Proposition 1 is relegated to Section A.2.

We emphasize again that we do not assume a semi-parametric model Y = βX + η(W)+U (with
unspecified η and U such that EP (U|X, W) = 0). Setting R(P, β)(X, W) = θ (P)(X, W) − θ (P)
(0, W) − βX for all (P, β) ∈  × ℝ, the latter semi-parametric model holds for P ∈  if there
exists a unique β(P) ∈ ℝ such that R(P, β(P)) = 0. Note that β is always solution to the equation
βEP {X2} = EP {X (θ (P)(X, W) − θ (P)(0, W) − R(P, β)(X, W))}. In particular, if the semi-
parametric model holds for a certain P ∈ , then β(P) = Ψ (P) by (2). On the contrary, if the
semi-parametric model does not hold for P, then it is not clear what β(P) could even mean
whereas Ψ (P) is still a well-defined parameter worth estimating. We discuss in Section 4.2
what happens if one estimates β(P) when assuming wrongly that the semi-parametric holds.
The discussion allows to identify the awkward non-parametric extension of parameter β(P)
that one then estimates.

Equality (2) also teaches us that

(3)

for the functional :  → ℝ characterized by

(4)

(all P ∈ ). We see that (P) X is the best linear approximation of the form βX to Y, hence
also to EP (Y|X). In view of (1),  overlooks the role played by W. The second term in the right-
hand side of (3) is a correction term added to (P) in order to take W into account. We do not
claim that Ψ (P) is superior to  (P): they just do not quantify the same features of P. In the
real data application of Section 6.7, we compare the estimators of Ψ (P0) and  (P0) to illustrate
that they target two different unknown quantities, and to check across genes whether accounting
for W has an impact or not.
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Whereas the roles of X and Y are symmetric in the numerator of  (P), they are obviously not
in that of the correction term. Less importantly, (2) also makes clear that there is a connection
between Ψ and an excess risk. Indeed, consider P ∈  such that P(X ∈ {0, x1}) = 1 for x1 ≠
0. Then Ψ (P) satisfies

for h(P)(W) = P(X = x1|W), i.e., Ψ (P) appears as a weighted excess risk (the prototypical
excess risk would be here EP {θ (P)(x1, W) − θ (P)(0, W)}).

Since Ψ is pathwise differentiable, the theory of semi-parametric estimation is applicable,
providing a notion of asymptotically efficient estimation. Remarkably, the asymptotic variance
of a regular estimator of Ψ (P0) is lower-bounded by the variance VarP0D★ (P0)(O) under
P0 of the efficient influence curve at P0 (a consequence of the convolution theorem). The TMLE
procedure takes advantage of the properties of Ψ described in Proposition 1 in order to build
a consistent and possibly asymptotically efficient substitution estimator of Ψ (P0). In view of
(3), this is a challenging statistical problem because, whereas estimating  (P0) is
straightforward (the ratio of the empirical means of XY and X2 is an efficient estimator of 
(P0)), estimating the correction term in (3) is more delicate, notably because this necessarily
requires estimating the infinite-dimensional features θ (P0)(0, ·) and μ(P0).

3. Overview of the TMLE procedure tailored to the estimation of the non-
parametric variable importance measure

We observe n independent copies O(i) = (W(i), X(i), Y (i)) (i = 1, …, n) of the observed data
structure O ~ P0 ∈ . The empirical measure is denoted by Pn. The TMLE procedure iteratively

updates an initial substitution estimator  of Ψ (P0) (based on an initial estimator

 of the data-generating distribution P0), building a sequence  (with  the kth

update of ) which converges to the targeted minimum loss estimator (TMLE)  as k
increases. This iterative scheme is visually illustrated in Figure 1, and we invite the reader to
consult its caption now.

It is not necessary to estimate the whole distribution P0 in order to perform the estimation of
Ψ (P0). Only some features of P0 must be estimated. One of the purposes of Section 3 is to
identify the list of these features. To do so, it proves convenient (from notational and conceptual

points of view) to rely on a sequence of estimators  of the whole distribution P0, even
though we are eventually only interested for each k ≥ 0 in the determined list of features of

.

We determine what initializing the TMLE procedure boils down to in Section 3.1. A general
one-step targeted updating procedure is described in Section 3.2. How to conduct specifically
these initialization and update (as well as two alternative tailored two-step updating procedures)
will be addressed in Section 5.

3.1. Initial estimator
In this subsection, we describe what it takes to construct an initial substitution estimator of Ψ
(P0). Of course, how one derives the substitution estimator Ψ (P) from the description of
(certain features of) P is relevant even if P is not literally an initial estimator of P0.
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By (2), building an initial substitution estimator  of Ψ (P0) requires the estimation of θ
(P0), of σ2 (P0), and of the marginal distribution of (W, X) under P0. Given , initial estimator

of P0 with known  and marginal distribution of (W, X) under  can
indeed be obtained (or, more precisely, evaluated accurately) by the law of large numbers, as
discussed below. We emphasize that such an initial estimator may very well be biased. In other
words, one would need strong assumptions on the true data-generating distribution P0 (which
we are not willing to make; typically, assuming that P0 belongs to a given regular parametric

model) and adapting the construction of  based on those assumptions (typically, relying on

maximum likelihood estimation) in order to obtain the consistency of .

For B a large integer (say B = 105), evaluating accurately (rather than computing exactly) the

initial substitution estimator  of Ψ (P0) boils down to simulating B independent copies

(W ̃ (b), X̃(b)) of (W, X) under , then using the approximation

(5)

Knowing the marginal distribution of (W, X) under  amounts to knowing (i) the marginal

distribution of W under , (ii) the conditional distribution of Z ≡ 1{X = 0} given W under

, and (iii) the conditional distribution of X given (W, X ≠ 0) under . Firstly, we advocate
for estimating initially the marginal distribution of W under P0 by its empirical version, or put

in terms of likelihood, to build  in such a way that . Secondly,

the conditional distribution of Z given W under  is the Bernoulli law with parameter

, so it is necessary that  be known too (and such that, -almost surely,

. Thirdly, the conditional distribution of X given (W, X ≠ 0) under  can be

any (finite variance) distribution, whose conditional mean can be deduced from :

(6)

and whose conditional second order moment  satisfies

(7)

In particular, it is also necessary that  be known too.

In summary, the only features of  we really care for in order to evaluate accurately (rather

than compute exactly)  are , and the marginal distribution

of W under , which respectively estimate θ (P0), μ(P0), g(P0), σ2 (P0), and the marginal
distribution of W under P0. We could for instance rely on a working model where the
conditional distribution of X given (W, X ≠ 0) is chosen as the Gaussian distribution with
conditional mean as in (6) and any conditional second order moment (which is nothing but a
measurable function of W) such that (7) holds. We emphasize that we do use here expressions
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from the semantical field of choice, and not from that of assumption; a working model is just
a tool we use in the construction of the initial estimator, and we do not necessarily assume that
it is well-specified. Although such a Gaussian working model would be a perfectly correct
choice, we advocate for using another one for computational convenience, as presented in
Section 5.1.

3.2. A general one-step updating procedure of the initial estimator

The next step consists in iteratively updating . Assuming that one has already built

(k − 1) updates  of , resulting in (k − 1) updated substitution estimators

, it is formally sufficient to describe how the kth update  is

derived from its predecessor  in order to fully determine the iterative procedure. Note that

the value of  are derived as , by following (5) in Section

3.1 with  substituted for .

We present here a general one-step updating procedure (two alternative tailored two-step
updating procedures are also presented in Section 5.2). We invite again the reader to refer to
Figure 1 for its visual illustration.

Set ρ ∈ (0, 1) a constant close to 1 (in Section 6, we use ρ = 0.999) and consider the path

{ } characterized by

(8)

where  is the current estimator of the efficient influence curve at P0 obtained as the

efficient influence curve at  (see Proposition 1). The path is a one-dimensional parametric

model that fluctuates  (i.e., ) in the direction of  (i.e., the score of

the path at ε = 0 equals ). Here, we choose minus the log-likelihood function as a loss
function (i.e., we choose L:  ×  → ℝ characterized by L(P)(O) = −log P(O)). Consequently,

the optimal update of , corresponds to the maximum likelihood estimator
(MLE)

The MLE  is uniquely defined (and possibly equal to , hence the
introduction of the constant ρ in the definition of the path) provided for instance that
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(this statement is to be understood conditionally on Pn, i.e. it is a statement about the sample).

Under mild assumptions on P0,  targets  such that  is the Kullback-Leibler

projection of P0 onto the path { }. We now set , thus
concluding the description of the iterative updating step of the TMLE procedure. Finally, the

TMLE  is defined as , assuming that the limit exists, or more generally as

 for a conveniently chosen sequence {kn}n≥0 (see Sections 4.1 and 4.2 regarding this issue).

This is a very general way of dealing with the updating step of the TMLE methodology. The

key is that it is possible to determine how the fundamental features of  (i.e., the components

of  involved in the definition of  and in the definition of Ψ) behave (exactly)

as functions of ε relative to their counterparts at ε = 0 (i.e., with respect to (wrt) ), as shown
in the next Lemma (its proof is relegated to Section A.2).

Lemma 1: Set  with ||s||∞ < ∞ and consider the path 
characterized by

(9)

The path has score function s. For all  and all measurable functions f of W,

(10)

(11)

(12)

(13)

(14)

Regarding the computation of , it is also required to know how to sample independent

copies of (W, X) under , see Section 3.1. Finally, we emphasize that by (14), the marginal

distribution of W under  typically deviates from its counterpart under  (i.e., from its
empirical counterpart).

TMLE and one-step estimation methodologies—By being based on an iterative
scheme, the TMLE methodology naturally evokes the one-step estimation methodology
introduced by Le Cam [8] (see [25, Sections 5.7 and 25.8] for a recent account). The latter
estimation methodology draws its inspiration from the method of Newton-Raphson in
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numerical analysis, and basically consists in updating an initial estimator by relying on a linear
approximation to the original estimating equation.

Yet, some differences between the TMLE and one-step estimation methodologies are
particularly striking. Most importantly, because the TMLE methodology only involves
substitution estimators, how one updates (in the parameter space ℝ) the initial estimator

 of Ψ (P0) into  is the consequence of how one updates (in model ) the

initial estimator  of P0 into . In contrast, the one-step estimator is naturally presented as
an update (in the parameter space ℝ) of the initial estimator, for the sake of solving a linear
approximation (in Ψ (P)) to the estimating equation PnD★ (P) = 0. The TMLE methodology
does not involve such a linear approximation; it nevertheless guarantees by construction

 for large k (see Section 4.1 on that issue). Furthermore, on a more technical note,

the asymptotic study of the TMLE  does not require that the initial estimator  be

-consistent (i.e., that  be uniformly tight), whereas that of the one-step
estimator typically does.

However, there certainly exist interesting relationships between the TMLE and one-step
estimation methodologies too. Such relationships are not obvious, and we would like to
investigate them in future work.

4. Convergence and asymptotics
In this section, we state and comment on important theoretical properties enjoyed by the TMLE.
In Section 4.1, we study the convergence of the iterative updating procedure which is at the
core of the TMLE procedure. In Section 4.2, we derive the consistency and asymptotic
normality of the TMLE. By building on the statement of consistency, we also argue that it is
more interesting to estimate our non-parametric variable importance measure Ψ (P0) than its
semi-parametric counterpart.

4.1. On the convergence of the updating procedure
Studying the convergence of the updating procedure has several aspects to it. We focus on the
general one-step procedure of Section 3.2. All proofs are relegated to Section A.4.

On one hand, the following result (very similar to Result 1 in [23]) holds:

Lemma 2: Assume (i) that all the paths we consider are included in  ⊂  such that
supP∈  ||D★ (P)||∞ = M < ∞, and (ii) that their fluctuation parameters ε are restricted to

[−ρ, ρ] for ρ = (2M)−1. If  then .

Condition (i) is weak, and we refer to Lemma 4 for a set of conditions which guarantee that it
holds. Lemma 2 is of primary importance. It teaches us that if the TMLE procedure

“converges” (in the sense that ) then its “limit” is a solution of the efficient
influence curve equation (in the sense that for any arbitrary small deviation from 0, it is possible

to guarantee  by choosing k large enough). This is the key to the proofs of

consistency and asymptotic linearity, see Section 4.2. Actually, the condition  can
be replaced by a more explicit condition on the class of the considered data-generating
distributions, as shown in the next lemma.
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Lemma 3: Under the assumptions of Lemma 2, suppose additionally that the sample satisfies

(iii) , and (iv) that the log-likelihood of the data is uniformly bounded on

. Then it holds that  and .

On the other hand, it is possible to obtain another result pertaining to the “convergence” of the

updating procedure directly put in terms of the convergence of the sequences  and

, provided that  goes to 0 quickly enough. Specifically,

Lemma 4: Suppose that  for some finite C > 0. Then we have

 for all k ≥ 0. Suppose moreover

that for all k ≥ 0,  and  are bounded away from 0. Then condition

(i) of Lemma 2 holds. Assume now that . Then the sequence  converges in

total variation (hence in law) to a data-generating distribution . Simultaneously, the sequence

 converges to .

It is necessary to bound  and  away from 0 because conditions (i) and (ii) of Lemma

2 only imply that  and . Now,
it makes perfect sense from a computational point of view to resort to lower-thresholding in

order to ensure that  and  cannot be smaller than a fixed constant. Assuming

that the series  converges ensures that  converges in total variation rather than
weakly only. Interestingly, we do draw advantage from this stronger type of convergence in
order to derive the second part of the lemma. In conclusion, note that Newton-Raphson-type

algorithms converge at a k−2-rate, which suggests that the condition  is not too
demanding.

4.2. Consistency and asymptotic normality

We now investigate the statistical properties of the TMLE . We actually consider a slightly

modified version of the TMLE, henceforth denoted by , in order to circumvent the issue of

the convergence of the sequence  as k goes to infinity. The modified version is perfectly
fine from a practical point of view. All proofs are relegated to Section A.5.

Consistency—Under mild assumptions, the TMLE is consistent. Specifically:

Proposition 2 (consistency): We assume (i) that there exist finite values C > c > 0 such that

 and  for all n ≥ 1, (ii) that  and

 respectively converge to θ0 such that ||θ0||∞ ≤ C, μ0, g0 and  in such a way that

and , and (iii) that  and  belong to a P0-Donsker class with
P0-probability tending to 1. In addition, we suppose that all assumptions of Lemma 3 are met,

and that the (possibly random) integer kn ≥ 0 is chosen so that .

Define . If the limits satisfy either θ (0, ·) = θ (P0)(0, ·) or (μ0 = μ(P0) and

g0 = g(P0)) then  consistently estimates Ψ (P0).

Chambaz et al. Page 10

Electron J Stat. Author manuscript; available in PMC 2013 January 16.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



It is remarkable that the consistency of the TMLE  is granted essentially when the

estimators  converge and that one only of the limits θ0 (0, ·) of

 and (μ0, g0) of ( ) coincides with the corresponding truth θ (P0)(0, ·)
or (μ (P0), g(P0)). This property is mostly inherited from the double-robustness of the efficient
influence curve D★ of parameter Ψ (i.e., PD★ (P′) = 0 implies Ψ (P′) = Ψ (P)) and from the

fact that the TMLE solves the efficient influence curve equation (i.e., .

Merit of the non-parametric variable importance measure over its semi-
parametric counterpart—Again, we do not assume a semi-parametric model Y = βX + η
(W) + U (with unspecified η and U such that EP (U |X, W) = 0). However, if P ∈  is such
that θ (P)(X, W) = β(P)X + θ (P)(0, W) (i.e., if the semi-parametric model holds under P) then
Ψ (P) = β(P). Denote  ⊂  the set of all such data-generating distributions. It is known
(see for instance [28]) that β:  → ℝ is a pathwise differentiable parameter (wrt the
corresponding maximal tangent space), and that its efficient influence curve at P ∈  is given
by

with v2(P)(X, W) = EP ((Y − θ (P)(X, W)) 2|X, W) is the conditional variance of Y given (X,
W) under P. Note that the second factor in the right-hand side expression reduces to (X − μ
(P)(W)) whenever v2(P)(X, W) only depends on W.

For the purpose of emphasizing the merit of the non-parametric variable importance measure
over its semi-parametric counterpart, say that one estimates β(P0) assuming (temporarily) that

P0 ∈  (hence Ψ (P0) = β(P0)). Say that one builds  such that (i)

 does not depend on (X, W), and (ii)  . Assume that

 and  respectively converge to β1, , μ1 and θ1 (such that
θ1(X, W) = β1X + θ1(0, W)), and finally that one solves in the limit the efficient influence
curve equation:

(15)

(this is typically derived from (ii) above; see the proof of Proposition 2 for a typical derivation).

Then (by double-robustness of ), the estimator  of β(P0) is consistent (i.e., β1 = β
(P0)) if either θ1 = θ (P0) (that is obvious) or μ1 = μ (P0). For example, suppose that μ1 =
μ (P0). In particular, one can deduce from equalities EP0 {X (X − μ(P0)(W))} = EP0 {(X − μ
(P0)(W))2} and (15) that

(provided that X does not coincide with μ (P0)(W) under P0). Equivalently, β1 = b(P0) for the
functional b:  = \{P ∈ : X = μ(P)(W)} → ℝ such that, for every P ∈ ,
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Note that one can interpret parameter b as a non-parametric extension of the semi-parametric
parameter β (non-parametric, because its definition does not involve a semi-parametric model
anymore). Now, we want to emphasize that b arguably defines a sensible target if θ1(0, ·) =
θ (P)(0, ·) (in addition to μ1 = μ (P0)), but not otherwise! This illustrates the danger of relying
on a semi-parametric model when it is not absolutely certain that it holds, thus underlying the
merit of targeting the non-parametric variable importance measure rather than its semi-
parametric counterpart.

Asymptotic normality—In addition to being consistent under mild assumptions, the TMLE
is also asymptotically linear, and thus satisfies a central limit theorem. We start with a partial
result:

Proposition 3: Suppose that the assumptions of Proposition 2 are met. If

 then it holds that

(16)

Expansion (16) sheds some light on the first order properties of the TMLE . It notably makes

clear that the convergence of  is affected by how fast the estimators  and

 converge to their limits (see second term). If the rates of convergence are collectively

so slow that they only guarantee  for
some r ∈ [0, 1/2[, then expansion (16) becomes

and asymptotic linearity fails to hold. On the contrary, we easily deduce from Proposition 3
what happens when θ0(0, ·) = θ (P0)(0, ·), μ0 = μ (P0), g0 = g(P0), with fast rates of
convergence:

Corollary 1 (asymptotic normality): Suppose that the assumptions of Proposition 3 are met.
If in addition it holds that θ0(0, ·) = θ (P0)(0, ·), μ0 = μ (P0), g0 = g(P0) and

then
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i.e., the TMLE  is asymptotically linear with an influence function equal to D★ (σ2(P0),
θ0, μ0, g0, Ψ (P0)).

Thus,  is asymptotically distributed from a centered Gaussian law with variance

P0D★ (σ2 (P0), θ0, μ0, g0, Ψ (P0))2. In particular, if θ0 = θ(P0) then the TMLE  is efficient.

Corollary 1 covers a simple case in the sense that, by being , the second right-hand
side term in (16) does not significantly contribute to the linear asymptotic expansion. In other
words, the influence curve actually is D★ (σ2(P0), θ0, μ0, g0, Ψ (P0)). Depending on how

 and  are obtained (we recommend relying on super-learning, cf. Section 5.3),
the contribution to the linear asymptotic expansion may be significant (but determining this
contribution would be a very difficult task to address on a case by case basis when relying on
super-learning).

5. Specifics of the TMLE procedure tailored to the estimation of the non-
parametric variable importance measure

In this section, we present practical details on how we conduct the initialization and updating
steps of the TMLE procedure as described in Section 3. We introduce in Section 5.1 a working
model for the conditional distribution of X given (W, X ≠ 0) which proves very efficient in
computational terms. In Section 5.2, we introduce two alternative two-step updating procedures
which can be substituted for the general one-step updating procedure presented in Section 3.2.
Finally, we describe carefully what are all the features of interest of P0 that must be considered
for the purpose of targeting the parameter of ultimate interest, Ψ (P0), via the construction of
the TMLE.

5.1. Working model for the conditional distribution of X given (W,X ≠ 0)

The working model for the conditional distribution of X given (W, X ≠ 0) under  that we
build relies on two ideas:

•
we link the conditional second order moment  to the conditional

mean  (both under ) through the equality

(17)

where ϕn, λ (t) = λt2+(1 − λ)(t(mn+Mn)− mnMn) (with mn = mini≤n X(i), Mn =
maxi≤n X(i)), and λ ∈ [0, 1] is a tuning parameter;

• under  and conditionally on (W, X ≠ 0), X takes its values in the set {X(i): i ≤ n}\{0}
of the observed X’s different from 0.

As the conditional distribution of X given (W, X ≠ 0) under  is subject to two constraints,
X cannot take fewer than three different values in general. Elegantly, it is possible (under a

natural assumption on ) to fine-tune λ and to select three values in {X(i): i ≤ n}\{0} in such
a way that X only takes the latter values:

Lemma 5: Assume that  guarantees that -
almost surely, and X ∈ [mn + c, Mn − c] for some c > 0 when X ≠ 0. It is possible to construct
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 in such a way that (i) W has the same marginal distribution under  and

 and (ii) for all W ∈ , there exist three
different values x(1), x(2), x(3) ∈ {X(i): i ≤ n}\{0} and three non-negative weights p1, p2, p3

summing up to 1 such that, conditionally on (W, X ≠ 0) under , X = x(k) with conditional
probability pk.

Hence, we choose to directly construct a  satisfying the constraints of  in Lemma 5. Note

that, by (8), because the conditional distribution of X given (W, X ≠ 0) under  has its support
included in {X(i): i ≤ n}\{0}, then so do the conditional distributions of X given (W, X ≠ 0)

under  (all k ≥ 1) obtained by following the general one-step updating procedure of Section
3.2. Similarly, because we initially estimate the marginal distribution of W under P0 by its

empirical counterpart, then the marginal distributions of W under  and  (all k ≥ 1) have
their supports included in {Wi: i ≤ n}.

We discuss in Section 5.4 why it is computationally more interesting to consider such a working
model (instead of a Gaussian working model for instance). We emphasize that assuming X ∈
[mn + c, Mn − c] when X ≠ 0 (for a possibly tiny c > 0) is hardly a constraint, and that the latter
must be accounted for while estimating μ(P0), g(P0), and σ2 (P0). The proof of the lemma is
relegated to Section A.2.

5.2. Two tailored alternative two-step updating procedures
We present in Section 3.2 a general one-step updating procedure. Alternatively, it is also
possible to decompose each update into a first update of the conditional distribution of Y given
(W, X), followed by a second update of the marginal distribution of (W, X).

First update: fluctuating the conditional distribution of Y given (W, X)—We
actually propose two different fluctuations for that purpose: a Gaussian fluctuation on one hand
and a logistic fluctuation on the other hand, depending on what one knows or wants to impose.

Gaussian fluctuation: We use minus the log-likelihood function as a loss function, as we did
for the general one-step updating procedure. First fluctuate only the conditional distribution of

Y given (W, X), by introducing the path { } such that (i) (W, X) has the same

distribution under  as under , and (ii) under  and given (W, X), Y is distributed

from the Gaussian law with conditional mean  and conditional
variance 1, where the so-called clever covariate (an expression taken from [22]) H(P) is
characterized for any P ∈  by

This definition guarantees that the path fluctuates  (i.e., , provided that Y is

conditionally Gaussian given (W, X) under ) in the direction of  (i.e., the score of

the path at ε = 0 equals ). Introducing the MLE
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the first intermediate update bends  into .

Logistic fluctuation: There is yet another interesting option in the case that Y ∈ [a, b] is
bounded (or in the case that one wishes to impose Y ∈ [a, b], typically then with a = mini≤n
Y(i) and b = maxi≤n Y(i), which allows to incorporate this known fact (or wish) into the procedure.

Assume that θ (P0) takes its values in (a, b) and also that  is constrained in such a way

that . Introduce for clarity the function on the real line characterized by
Fa,b(t) = (t − a)/(b − a). Here, we choose the loss function characterized by −La,b(P)(O) =
Fa,b(Y) log Fa,b∘ θ(P)(X, W) + (1 − Fa,b(Y)) log(1 − Fa,b ∘ θ (P)(X, W)), with the convention
La,b(P)(O) = + ∞ if θ (P)(X, W) ∈ {a, b}. Note that the loss La,b(P) depends on the conditional
distribution of Y given (W, X) under P only through its conditional mean θ (P). This

straightforwardly implies that in order to describe a fluctuation { } of , it is

only necessary to detail the form of the marginal distribution of (W, X) under  and how

 depends on  and ε. Specifically, we first fluctuate only the conditional

distribution of Y given (W, X), by making  be such that (i) (W, X) has the same

distribution under  as under , and (ii)

Now, introduce the La,b-minimum loss estimator

which finally yields the first intermediate update . The following lemma
(whose proof is relegated to Section A.2) justifies our interest in the loss function La,b and

fluctuation { }:

Lemma 6: Assume that the conditions stated above are met. Then La,b is a valid loss function
for the purpose of estimating θ (P0) in the sense that

Moreover, it holds that
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The second inequality is the counterpart of the fact that, when using the Gaussian fluctuation,

the score of the path at ε = 0 equals .

Second update: fluctuating the marginal distribution of (W, X)—Next, we preserve
the conditional distribution of Y given (W, X) and only fluctuate the marginal distribution of

(W, X), by introducing the path { } such that (i) Y has the same

conditional distribution given (W, X) under  as under , and (ii) the marginal

distribution of (W, X) under  is characterized by

(18)

This second path fluctuates  (i.e., ) in the direction of  (i.e., the score

of the path at ε = 0 equals ). Consider again minus the log-likelihood as loss function,
and introduce the MLE

the second update bends  into , concluding the description of how we can

alternatively build  based on .

Note that, by (18), because the conditional distribution of X given (W, X ≠ = 0) under  has
its support included in {X(i): i ≤ n}\{0} (a consequence of our choice of working model, see

Section 5.1), then so do the conditional distributions of X given (W, X ≠ 0) under  (all k ≥ 1)
obtained by following either one of the tailored two-step updating procedure. Furthermore, it

still holds that the marginal distributions of W under  and  (all k ≥ 1) have their supports
included in {Wi: i ≤ n} (because we initially estimate the marginal distribution of W under
P0 by its empirical counterpart).

5.3. Super-learning of the features of interest
It still remains to specify how we wish to carry out the initial estimation and updating of the
features of interest θ (P0), μ(P0), g(P0), and σ2 (P0). As for σ2(P0) = EP0{X2}, we simply

estimate it by its empirical counterpart i.e., construct  in such a way that

. The three other features θ (P0), μ(P0) and g(P0) are estimated by

super-learning, and  constructed in such a way that  and  equal their
corresponding estimators. Super-learning is a cross-validation based aggregation method that
builds a predictor as a convex combination of base predictors [24, 22] (we briefly describe in
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Section 6.5 the specifics of the super-learning procedure that we implement for our application
to simulated and real data). The weights of the convex combination are chosen so as to minimize
the prediction error, which is expressed in terms of the non-negative least squares (NNLS) loss
function [7] and estimated by V -fold cross-validation. Heuristically the obtained predictor is
by construction at least as good as the best of the base predictors (this statement has a rigorous
form implying oracle inequalities, see [24, 22]).

Lemma 1 teaches us what additional features of  must be known in order to derive the kth

update  from its predecessor , starting from k = 1.

Specifically, if we rely on the general one-step updating procedure of Section 3.2 then we need
to know:

•
 and  for the update of  (see

(10));

•
 for the updates of , and the marginal

distribution of W under  (see the right-hand side denominators in (11), (12), (14));

•
 for the update of μ (Pk−1) (see the right-hand side numerator

in (11));

•
 for the update of  (see the right-hand side

numerator in (12));

•
 for the update of  (see (13)).

It is noteworthy that if either one of the two-step updating procedures of Section 5.2 is used
then the first two conditional expectations do not need to be known, because updating

 relies on the clever covariate , which is entirely characterized by the current

estimators  and  of the features μ (P0), g(P0), and σ2 (P0),
respectively. In the sequel of this sub-section, we focus on the general one-step updating
procedure of Section 3.2. How to proceed when relying on either of the two-step updating
procedures of Section 5.2 can be easily deduced from that case.

Once , and  are determined (see the first paragraph of this sub-section)

hence  is known, we therefore also estimate by super-learning the conditional

expectations under P0 of  and  given (X, W) and those under P0 of

 and  given W; we simply estimate

 by its empirical counterpart. Then we constrain  in such a way that the

conditional expectations of the same quantities under , and the expectation

 equal their corresponding estimators. This completes the construction of

, and suffices for characterizing the features  and  of the first update

.

Now, if one wished to follow exactly the conceptual road consisting in relying on Lemma 1 in

order to derive the second update  from its predecessor , one would have to describe how
each conditional (and unconditional) expectation of the above list behaves, as a function of
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ε, on the path { }. This would in turn enlarge the above list of the

features of interest of P0 that one would have to consider in the initial construction of . Note
that the length of the list would increase quadratically in the number of updates. Instead, once

 is known, we estimate by super-learning the conditional expectations under P0 of

 and  given (X, W), and the conditional expectations under P0 of

, and  given W; as for , we
simply estimate it by its empirical counterpart. Then we proceed as if the conditional

expectations of the same quantities under  were equal to their corresponding estimators.
By doing so, the length of the list of the features of interest of P0 is fixed, no matter how many
steps of the updating procedure are carried out. Arguably, following this alternative road has
little if no effect relative to following exactly the conceptual road consisting in relying on
Lemma 1, because only second (or more) order expressions in ε are involved.

5.4. Merit of the working model for the conditional distribution of X given (W, X ≠ 0)
We explain here why (a) initially estimating the marginal distribution of W under P0 by its
empirical counterpart and (b) relying on the working model for the conditional distribution of
X given (W, X ≠ 0) that we described in Section 5.1 is computationally very interesting. The

key is that, under  and its successive updates  (all k ≥ 1), the distributions of (W, X) have
their supports included in {(W(i), X(j)): i ≤ j ≤ n} (we say they are “parsimonious”).

Indeed, Lemma 1 and a simple induction yield that, for each k ≥ 1, a single call to

 or  involves a number of (nested) calls to the “past” features of interest

 and  (0 ≤ k′ < k) which is O(k). Furthermore, the evaluation of 

(following (5) with  substituted for ) requires in turn B calls (assuming for simplicity that

the functions are not vectorized) to  (in order to evaluate the numerator of the right-hand

side term of (5)),  and  (in order to simulate {(W ̃ (b), X̃(b)): b ≤ B}). Overall, at least
O(Bk) calls to the set of all features of interest are performed at the kth updating step of the
TMLE procedure. In practice (even if functions are vectorized) this leads to a large memory
footprint and prohibitive running time of the algorithm, as each of these calls consists in the
prediction of the corresponding feature, as described in Section 5.3.

By taking advantage of the “parsimony” of the distributions of (W, X) under the successive

, we manage to alleviate dramatically the time and memory requirements of our
implementation. Indeed, the “parsimony” implies that, at the kth step of the TMLE procedure
(k ≥ 0), it is only required to compute and store O(n2) quantities (including, but not limited to,

 and  for all 1 ≤ i, j ≤ n) — see Section 5.3). In particular,

the evaluation of  now requires retrieving O(B) values from a handful of vectors instead
of performing O(Bk) memory and time-consuming (nested) function calls.

6. Application
We first present the genomic problem that motivated this study, in Section 6.1, and earlier
contributions on the same topic, in Section 6.2. Two real datasets are described in Section 6.3.
They play a central role in this article. We both (a) draw inspiration from one dataset and (b)
use it in order to set up our simulation study, as presented in Section 6.4. We also apply the
TMLE methodology directly to the other dataset. The specifics of the TMLE procedures that
we undertake both on simulated and real data are given in Section 6.5, and their results are
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summarized in Section 6.6, for the simulation study, and in Section 6.7, for the real data
application.

6.1. Association between DNA copy number and gene expression in cancers
The activity of a gene in a cell is directly related to its expression level (Y), that is, the number
of messenger RNA (mRNA) fragments corresponding to this gene. Cancer cells are
characterized by changes in their gene expression patterns. Such alterations have been shown
to be caused directly or indirectly by genetic events, such as changes in the number of DNA
copies (X), and epigenetic events, such as DNA methylation (W). Some changes in DNA copy
number have been reported to be positively associated with gene expression levels [11].
Conversely, DNA methylation is a chemical transformation of cytosines (one of the four types
of DNA nucleotides) which is thought to lead to gene expression silencing [5]. Therefore, DNA
methylation levels are generally negatively associated with gene expression levels.

We propose to apply the methodology developed in the previous sections to the search for
genes for which there exists an association between DNA copy number variation and gene
expression level, accounting for DNA methylation.

6.2. Related works
In the context of cancer studies, various methods have been proposed in order to find
associations between DNA copy number and gene expression at the level of genes. Because
we cannot cite all of them, we try here to cite one relevant publication for each broad type of
method. Most of them can be classified into two groups, depending on whether DNA copy
number is viewed as a continuous or a discrete variable. When DNA copy number is viewed
as a continuous variable, associations between X and Y are generally quantified using a
correlation coefficient [11]. When it is viewed as a discrete variable, associations are typically
quantified using a test of differential expression between DNA copy number states [26]. A
common limitation to this two types of methods is that they are generally good at identifying
genes that were already known, but less so at finding novel candidates. This is not surprising:
for correlation-based methods, high correlation between X and Y requires both X and Y to vary
substantially, in which case it is likely that these (marginal) variations have already been
reported. For methods based on differential expression between copy number states, the latter
often correspond to biological or clinical groups which are already known and for which
differential expression analyses have already been carried out.

In the present paper, we acknowledge the fact that while DNA copy number is observed as a
quantitative variable, the copy neutral state (two copies of DNA) generally has positive mass,
in the sense that for a given gene, a positive proportion of samples have two copies of DNA.

Another major difference between our method and the ones cited above is that we explicitly
incorporate DNA methylation into the analysis. Several papers where DNA copy number, gene
expression and DNA methylation are combined have been published recently, but they
typically analyze one dimension of (W, X, Y) at a time, and then use an ad hoc rule to merge
or intersect the results [1, 17]. The CNAmet method [10] relies on two scores: a score of
differential expression between copy number levels on the one hand, and between DNA
methylation levels on the other hand. Then both scores are summed. In the method proposed
here, the three dimensions are studied jointly.

6.3. Datasets
We exploit glioblastoma multiforme (GBM, the most common type of primary adult brain
cancers) and ovarian cancers (OvCa, a cancerous growth arising from the ovary) data from
The Cancer Genome Atlas (TCGA) project [2], a collaborative initiative to better understand
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several types of cancers using existing large-scale whole-genome technologies. TCGA has
recently completed a comprehensive genomic characterization of these types of tumor,
including DNA copy number (X), gene expression (Y), and DNA methylation (W) microarray
experiments [18, 19].

Probe-level normalized GBM and OvCa data can be downloaded from the TCGA repository
at http://tcga-data.nci.nih.gov/tcga/. In order to study associations between X, Y and W at the
level of genes, these probe-level measurements first need to be aggregated into gene-level
summaries. We choose to define X, Y and W as follows for a given gene:

• DNA methylation W is the proportion of “methylated” signal at a CpG locus in the
gene’s promoter region;

• DNA copy number X is a locally smoothed total copy number relative to a set of
reference samples;

• expression Y is the “unified” gene expression level across three microarray platforms,
as defined by [27].

After this pre-processing step, each gene is represented by a 3 × n matrix, where 3 is the number
of data types and n is the number of samples. Figure 2(a) represents DNA methylation, DNA
copy number, and gene expression data for one particular gene, EGFR, which is known to be
altered in GBM. For this gene, the association between copy number and expression is non-
linear, and high methylation levels are associated with low expression levels.

6.4. Simulation scheme
Because association patterns between copy number, expression and methylation are generally
non-linear, setting up a realistic simulation model is a difficult task. We design here a simulation
strategy based on perturbations of real observed data structures. It mimics situations such as
the one observed in the Figure 2(a) for the EGFR gene in GBM. This strategy implements the
following constraints:

• there are generally up to three copy number classes: normal regions, and regions of
copy number gains and losses;

• in normal regions, expression is negatively correlated with methylation;

• in regions of copy number alteration, copy number and expression are positively
correlated.

Our simulation scheme relies on three real observed data structures

 corresponding to three samples from
different copy number classes: loss (class 1), normal (class 2), and gain (class 3). We simulate
a synthetic observed data structure O = (W, X, Y) ~ Ps as follows. Given a vector p = (p1, p2,
p3) of proportions such that p1 + p2 + p3 = 1, we first draw a class assignment U from the
multinomial distribution with parameter (1, p) (in other words, U = u with probability pu).
Conditionally on U, a measure W of DNA methylation is drawn randomly as a perturbation of
the DNA methylation in the corresponding real observed data structure OU: given a vector ω
= (ω1, ω2, ω3) of positive numbers,

where Z is a standard normal random variable independent of U. Finally, a couple (X, Y) of
DNA copy number and expression level is drawn conditionally on (U, W) as a perturbation of
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the couple ( ) in the corresponding real observed data structure OU (with an additional
centering applied to X so that the pivot value be equal to 0): Given σ2 > 0, two variance-
covariance 2 × 2-matrices Σ1 and Σ3 and a non-increasing mapping λ0: [0, 1] → [0, 1],

• if U = 2, then , where Z′ is a standard normal random
variable independent of (U, W);

• if U ≠ 2, then (X, Y) is drawn conditionally on (U, W) from the bivariate Gaussian

distribution with mean ( ) and variance-covariance matrix ΣU.

In particular, the reference/pivot value x0 = 0. Note that λ0 is chosen non-increasing in order
to account for the negative association between DNA expression and methylation.
Furthermore, the synthetic observed data structure O drawn from Ps is not bounded.

We easily derive closed-form expressions for the features of interest θ (Ps), μ(Ps), g(Ps), and
σ2(Ps), which we report in the Appendix (see Lemma 7). Relying on Lemma 7 makes it possible
to evaluate the value of Ψ (Ps), by following the procedure described in Section 3.1 (see details
in Section 6.6).

Finally we provide in Figure 2(b), for the sake of illustration, a visual summary of a simulation
run with n = 200 independent copies of the synthetic observed data structure O drawn from
Ps and based on real observed data structure from two GBM samples for the EGFR gene which
are described in Table 1. The parameters for this simulation were chosen as follows: p = (0,

1/2, 1/2), ω = (0, 3, 3), λ0: w ↦ −w, σ2 = 1, .

6.5. Library of algorithms for super-learning
We have explained in Section 5.3 that we rely on super-learning [24, 22] in order to estimate
some relevant infinite-dimensional features of P0, including (but not limited to) θ (P0), μ
(P0) and g(P0). This algorithmic challenge is easily overcome, thanks to the remarkable R-
package SuperLearner [12] and the possibility to rely on the library of R-packages [13] built
by the statistical community. As for the base predictors, they involve (by alphabetical order):

• Generalized additive models: we use the gam R-package [4], with its default values.

• Generalized linear models: we use the glm R-function with identity link (for learning
θ (P0) and μ (P0)) and logit link (for learning g(P0)), and with linear combinations
of (1, X, W) or (1, X, W, XW) (for learning θ (P0)) and linear combinations of (1, W)
or (1, W, W2) (for learning μ (P0) and g(P0)).

• Piecewise linear splines: we use polymars R-function from the polspline R-package
[6], with its default values.

• Random forests: we use the randomForest R-package [9], with its default values.

• Support vector machines: we use the svm R-function from the e1071 R-package [3],
with its default values.

Note that none of the statistical models associated to the above estimation procedures contains
Ps (see Lemma 7).

6.6. Simulation study
We conduct twice a simulation study where B′ = 103 datasets of n = 200 independent observed
data structures are (independently) generated under Ps (i.e., under the simulation scheme
described in Section 6.4). In each simulation study and for every simulated dataset, we perform
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the TMLE methodology for the purpose of estimating the target parameter Ψ (Ps). From one
simulation study to the other, we only change the setup of the super-learning procedure, by
modifying the library of algorithms involved in the super-learning of the features of interest:

• the first time, we proceed exactly as described in Section 6.5 (we say that the full-
SL is undertaken);

• the second time, we decide to include only algorithms based on generalized linear
models (we say that the light-SL is undertaken).

We do not use any index to refer to the super-learning setup (full-SL or light-SL) for the sake
of alleviating notations.

In each simulation study (i.e., for each setup of the super-learning procedure full-SL and light-

SL) and for each b ≤ B′, we record the values  of the initial substitution estimator
(k = 0) and subsequent updated substitution estimators (k = 1, 2, 3) targeting Ψ (Ps), as derived
on the bth simulated dataset (whose empirical measure is denoted by Pn,b). The targeted update
steps rely on the Gaussian fluctuations presented in Section 5.2 (the results are very similar
when one applies either the general one-step updating procedure of Section 3.2 or the second
tailored alternative two-step updating procedure of Section 5.2). We do not record the next
updates because the ad hoc stopping criterion that we devise systematically indicates that this
is not necessary (heuristically, the criterion elaborates on the gains in likelihood and the
variations in the resulting estimates).

The value of Ψ (Ps) is evaluated by simulations, following (5) in Section 3.1 with Ps substituted

for  (we rely on B = 105 simulated observed data structures, whose empirical measure is
denoted by PB; the features θ (Ps) and σ2 (Ps) are explicitly known, see Lemma 7). In order
to get a sense of how accurate our evaluation of Ψ (Ps) is, we also use the same large simulated
dataset to evaluate VarPsD

★ (Ps)(O) (as the empirical variance Var PB D★ (Ps)(O); again,
D★ (Ps) is known explicitly by Lemma 7). Denoting by ψB(Ps) and vB(Ps) the latter evaluations,

we interpret the intervals  and  as (1 −
α)-accuracy intervals for the evaluation of Ψ (Ps) based on n = 200 and B = 105 independent
observed data structures. The gray intervals in Figure 3 represent these accuracy intervals for
α = 5%, n = 200 (light gray) and B = 105 (dark gray). Note that (by the convolution theorem)

the length of  is the optimal length of a 95%-confidence interval
based on an efficient (regular) estimator of Ψ (Ps) relying on n observations (assuming that
the asymptotic regime is reached). The numerical values are reported in Table 2.

The results of this joint simulation study are summarized by Figure 3 (which shows kernel

density estimates of the empirical distributions of { } for 0 ≤ k ≤ 3) and Table 3.
They illustrate some of the fundamental characteristics of the TMLE estimator and related
confidence intervals: convergence of the iterative updating procedure, robustness, asymptotic
normality, and coverage.

Convergence of the iterative updating procedure, and robustness—A substantial

bias in the initial estimation is revealed by the location of the mode of { } in Figure
3, both for the full-SL and light-SL procedures. We see that the full-SL initial estimator is less
biased than its light-SL counterpart. As one can judge visually or by the first rows of Tables 3
(a) and 3(b), this initial bias is diminished (if not perfectly corrected) at the first updating step
of the TMLE procedure, illustrating the robustness of the targeted estimator. The empirical
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distributions of { } for k = 1, 2, 3 are not (visually) markedly different, an empirical
indication that the TMLE procedure converges quickly.

Asymptotic normality—In order to check the asymptotic normality of the TMLE estimator
(e.g. under the conditions of Corollary 1), we first perform Lilliefors tests of normality based

on the empirical distributions of { } for k = 0, 1, 2, 3 (i.e., we perform Kolmogorov-
Smirnov tests of normality without specification of the means and variances under the null).
We report the values of the test statistics and corresponding p-values in the third and fourth
rows of Tables 3(a) and 3(b). If we take into account the multiplicity of tests, there is no clear
indication that the limit distributions are not Gaussian.

Second, we test the fit of the empirical distributions of { } to a Gaussian distribution
with mean and variance given by the estimates ψB(Ps) and vB(Ps) (which are independent of

{ }). We report in the fifth rows of Tables 3(a) and 3(b) the obtained values of the
KS test statistics. If all p-values are smaller than 10−4, one notices that the test statistics are
strikingly smaller for k ≥ 1 than for k = 0. Performing Anderson-Darling tests of normality with
only the null mean or the null variance specified (i.e., KS tests of normality with specified null
mean, equal to ψB(Ps), and unspecified null variance or specified null variance, equal to
vB(Ps), and unspecified null mean) teaches us that it is mainly the little remaining bias and not
the choice of the variance under the null that makes the KS tests have so small p-values [values
not shown].

Coverage—The theoretical convergence in distribution of the TMLE estimator to a Gaussian
limit (e.g. under the conditions of Corollary 1) promotes the use of intervals

[ ] as (1 − α)-confidence intervals for Ψ (Ps) (k = 1, 2, 3), with

. Interestingly, the theoretical result of Corollary 1 does not guarantee

that it is safe to estimate the limit variance by  (additional assumptions on the construction

and convergence of  and  would be required to get such a result). We
nonetheless check whether the latter intervals provide the desired coverage or not. For this
purpose, we compute and report in the sixth and seventh rows of Tables 3(a) and 3(b) the

empirical coverages  and their optimistic

counterpart  (the
latter incorporates the remaining uncertainty of the true value of Ψ (Ps)). We conclude that
the provided coverage is good for the light-SL procedure (with excellent optimistic coverage),
but disappointing for the full-SL procedure (even for the optimistic coverage). The results may
have been better if one had relied on the bootstrap in order to estimate the asymptotic variance
of the TMLE. We will investigate this issue in future work.

6.7. Real data application
For the real data application, we focus the set  of all 130 genes on chromosome 18 in the
OvCa dataset. This choice is notably motivated by the associated sample size, approximately
equal to 500 (thus much larger than the sample size associated to the GBM dataset). We estimate
the non-parametric variable importance measure of X on Y accounting for W for each gene g

separately (i.e.,  where  is the true distribution of O = (W, X, Y) for gene g),
following exactly one of the statistical methodologies developed in the simulation study.
Specifically, the targeted update step relies on the Gaussian fluctuations presented in Section
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5.2, and the super-learning involves the library of algorithms that we report in Section 6.5. In

particular, we estimate for each gene g the asymptotic variance of the TMLE  of  with

the empirical variance  of the efficient influence curve at . In a future work solely
devoted to this real data application, we will use the bootstrap in order to derive a more robust

estimator of the asymptotic variance (again, Corollary 1 requires some conditions on  and

in order to guarantee that  is a consistent estimator). We will also “extend” W, by
adding to the DNA methylation of the gene of interest the DNA methylations, DNA copy
numbers and gene expressions of its neighboring genes.

We only briefly summarize the results of the real data application. For this purpose, we report

in Figure 4 the values of the test statistics  derived from the TMLE

after three updates, using two different reference values . Here,

is the least square (substitution, asymptotically efficient) estimator of parameter , see
(4), a parameter which overlooks the role potentially played by W while quantifying the
influence of X on Y. We know that  is also path-wise differentiable at all P ∈ , with an
efficient influence curve Δ ★ (P) at P characterized by Δ ★ (P)(O) = (XY −  (P)X2)/
σ2(P). We acknowledge that the variance of ( ) would be best approximated by the

empirical variance of  rather than .

The reference value  is a natural null value to rely on from a testing perspective. Using

 as another null value is relevant because that allows us to identify those genes for
which the (possibly intricate) role played by W in quantifying the influence of X on Y is

especially important and results in a stark deviation of  from .

Looking at the left graphic in Figure 4 teaches us that a majority of the  are likely

positive. Eight genes stand up (by having a test statistic ): two genes at 18p11.32
(USP14 and THOC1), a cluster of five genes at 18q11.2 (SNRPD1, RBBP8, RIOK3, NPC1,
SS18), and gene MBP at 18q23. This suggests that the region 18q11.2 (especially 19–24 Mb)
is of particular relevance in this set of ovarian cancers. Seven out of the latter eight genes
(specifically: all of them but gene NPC1) also stand up in the right graphic of Figure 4: six out
of the latter seven genes standing up in both graphics (specifically: all of them but gene MBP)

exhibit a significantly small test statistic (by having ), as does the
additional gene SERPINB2, while gene MBP exhibits a significantly large test statistic (by

having ), as do eight additional genes (MBD1, TXNL1, LMAN1,
WDR7, NARS, ZNF236, ATP9B, TXNL4A). All genes standing up in the right graphic of
Figure 4 are located at 18q2 (41–76 Mb).
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Appendix A: Appendix

A.1. Miscellanea
Recall that Ps denotes the data-generating distribution of the synthetic observed data structure
O = (W, X, Y) described in Section 6.6. We easily derive the following closed-form expressions
for the features of interest θ (Ps), μ (Ps), g(Ps), and σ2(Ps).

Lemma 7
Let ϕ denote the density of the standard normal distribution. The following equalities hold:

where, for each u = 1, 2, 3,

A.2. Proofs of Lemmas 1, 6 and Proposition 1
Proof of Lemma 1

Consider (10). For any non-negative measurable function f of (X, W), it holds that
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for h(X, W) equal to the right-hand side expression of (10), since (9) implies

The function f being arbitrarily chosen, the latter equalities yield (10). The remaining
relationships are easily proven in the same spirit.

Proof of Lemma 6
Note that

where KL(p, q) is the Kullback-Leibler divergence between the Bernoulli distributions of
parameters p, q ∈ (0, 1) and c(P0) is a constant depending on P0 only. Since KL(p, q) ≥ 0 with
equality iff p = q, we obtain that θ (P0) minimizes P ↦ P0La,b(P) and also that another
minimizer must satisfy θ (P)(X, W) = θ (P0)(X, W) P0-almost surely. The second equality is
easily obtained by differentiating.

Recall that Ψ is pathwise differentiable at every P ∈  with respect to the maximal tangent

space  with an efficient influence curve at P equal to  if, for all 

with ||s||∞ < ∞ and  characterized by (9), the mapping ε ↦ Ψ (Pε) is
differentiable at ε = 0 with a derivative satisfying

We refer to van der Vaart [25, Chapter 25] for an introduction to the theory of semiparametric
models.

Proof of Proposition 1
By expanding the squared sum in (1), we obtain that
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which straightforwardly yields (2). It is easily seen that , or in other words

that the two components are orthogonal in .

Regarding the pathwise differentiability, it is sufficient to consider paths of the form (9) for

arbitrarily chosen  with ||s||∞ < ∞. Set such a s and . Using the telescopic
equality a1/b1 − a0/b0 = (a1 − a0)/b1 − (a0/b0)(b1 − b0)/b1 yields

(19)

with

(20)

by (13). Now, the same telescopic equality also yields that

By (10) and the dominated convergence theorem (indeed, { } is bounded),

Furthermore, (10) also yields that

Consequently, applying the dominated convergence theorem finally yields (by using the above
telescopic equality and (10), one easily checks the boundedness of

{ })

(21)

where we emphasize that

Combining (19), (20), (21) and (13) teaches us that, for all  with ||s||∞ < ∞,
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where D★ (P) is defined in the statement of the proposition. In particular, Ψ is pathwise
differentiable at P wrt the described collection of paths, and D★ (P) is a gradient of Ψ at P.

Since the related tangent space is  itself, it is necessarily the efficient influence curve.

It remains to prove that D★ (P) is double-robust. For this purpose, note that

Now, the right-hand side expression vanishes as soon as either θ (P′)(0, ·) = θ (P)(0,) or (μ
(P′) = μ (P) and g(P′) = g(P)). The conclusion readily follows.

A.3. Proof of Lemma 5
Proof of Lemma 5

Assume for the time being that, for all W ∈ , there exists λn such that (17) holds with λn
substituted for λ. Then, for all W ∈ , the point with coordinates

( ) lies in the convex envelope of the set {(X(i), X(i)2):
i ≤ n}\{(0, 0)}. Equivalently, there exist for all W ∈  three non-negative weights p1, p2, p3
summing up to 1 and three different values x(1), x(2), x(3) ∈ {X(i): i ≤ n}\{0} such that

the right-hand side expressions being, respectively, the mean and second order moment of the

distribution . Thus, there exists  such that (i) and (ii) hold.

Set W ∈ . Combining (6), (7) and (17) yields that if there exists λn such that (17) holds with

λn substituted for λ, then it must be equal to , where

 and

. In order to conclude, it is therefore sufficient to check
that ℓn ∈ [0, 1].
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By Jensen’s inequality, it holds that , which yields in turn

with (6) and (7) that . Finally, using again (6) and (7),  equals

hence . Thus, ℓn ∈ [0, 1], which completes the proof.

A.4. Proofs of Lemmas 2, 3 and 4
Proof of Lemma 2

It is sufficient to verify that, under the stated assumptions,

Now, the absolute value above is straightforwardly upper-bounded by

This trivially entails the wished convergence, hence the result.

Introduce, for all k ≥ 0 and |ε| ≤ ρ,  and

Obviously, the normalized log-likelihood  under  is twice differentiable wrt ε, with

first derivative at ε = 0 equal to  and second derivative at ε equal to .

Proof of Lemma 3, first part

We first show that  under the stated assumptions, by contradiction.

Suppose that  does not converge to 0 as k → ∞: there exist η > 0 and an increasing
function ϕ: ℕ → ℕ such that, for all k ≥ 0,

(22)

We show that necessarily limk→∞ εϕ(k) = 0, hence  by Lemma 2,
contradicting (22).
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Set k ≥ 0. For any , a Taylor expansion of  yields the existence of

 such that

(23)

By assumption (iii) and since

(24)

there exists a constant κ > 0 (depending on Pn) such that the right-hand side term of (24) is

upper-bounded by −κ, hence  simultaneously for all k′ ≥ 0 and |ε| ≤ ρ.

The function  being decreasing and equal to  at ε = 0, it

necessarily holds that  (i.e.,  and  share the same sign), hence

 too. Furthermore, combining (23) and the left-hand side of (24) yields

(25)

The conclusion is now at hand. Assume that the sequence  does not converge to 0:
there exist c > 0 and another increasing function ψ: ℕ → ℕ such that, for all k ≥ 0,

. Note that c can be chosen small enough to guarantee in addition that cη −

2M2c2 > 0. Impose now  for all k ≥ 0 (this uniquely defines ).
According to (25), for all k ≥ 0,

Using (a)   for all k′ ≥ 0 and (b)   for every k′ ≥ 1, one
obtains that for all k ≥ 0,

This contradicts assumption (iv). So the sequence  must converge to 0, Lemma 2
applies, and (22) is contradicted.

Proof of Lemma 3, second part

For all k ≥ 0, another Taylor expansion of  yields the existence of  such that

Chambaz et al. Page 31

Electron J Stat. Author manuscript; available in PMC 2013 January 16.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



We derive from these inequalities that

where the right-hand side converges to 0 as k → ∞ by virtue of the first part of the lemma.
This completes the proof.

Proof of Lemma 4

We first show that the sequence  converges in total variation. For this purpose, note that

 is dominated by , with a density  characterized by .

Since (a) the functions  are uniformly bounded by a common constant M, and (b) the

series  converges, the sequence of densities  converges wrt the ||·||∞-

norm to a limit density ( ) that we denote . Density  gives rise to a data-generating

distribution , the limit of  in total variation (hence its weak limit too).

Now, it holds that

The observed data structure O being bounded, the functions O = (W, X, Y) ↦ XY and O =

(W, X, Y) ↦ X2 are continuous and bounded, hence  and  respectively converge

to  and  by weak convergence. Furthermore, the convergence of  to 

wrt the ||·||∞-norm trivially entails the pointwise convergence of  to , then the wished

convergence of  to  by the dominated convergence
theorem. This completes the proof.

A.5. Proof of Propositions 2 and 3 and of Corollary 1

Denote . Let D1 (σ2, θ) be characterized by
D1 (σ2, θ) (O) = (X(θ(X, W) − θ (0, W)))/σ2, and denote D1 (P) = D1 (σ2 (P), θ(P)). We use
the notation a ≲ b for “a smaller than b up to a multiplicative constant”. We start with a useful
lemma.

Lemma 8
Suppose that the assumptions of Proposition 2 are met. There exists ψ0 ∈ ℝ such that

 (i.e., the TMLE converges in probability). Moreover, it holds that
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(26)

(27)

(28)

Proof—Recall that ||O|| is bounded under P0 and that . Using repeatedly the
telescopic equality a1/b1 − a0/b0 = (a1 − a0)/b1 − (a0/b0)(b1 − b0)/b1 and inequality (a + b)2 ≤
2(a2 + b2) yields that, under P0,

, and therefore that

(29)

Similarly, the same tricks as above and the facts that (a) both random variables

 and  are upper-bounded under P0, and (b)

, g0(0|W) ≥ c imply that, under P0,

, hence (27).

Now, rewrite  as

(30)

and consider the two first right-hand side terms. Since we have

 and the class {O ↦ X2ψ/σ2: (ψ, σ2) ∈ ℝ × [c,

∞]} is P0-Donsker, it holds that both  and  belong to a P0-Donsker class with

P0-probability tending to 1, hence so does . Therefore, by (29), (27) and

Lemma 19.24 in [25], the first term is . Combining (29) and (27) with the
Cauchy-Schwarz inequality yields in turn that the second term is oP (1). Finally, the law of

large numbers and the fact that  entail that .
Consequently, we deduce from (30) that there exists ψ0 ∈ ℝ such that ψn = ψ0 + oP (1).

Because , (26) easily follows from (29) and the

convergence in probability of ψn and  to ψ0 and . Finally (26) and (27) imply (28),
thus concluding the proof.

Proof of Proposition 2—We first rewrite  as
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(31)

Since  and  belong to a P0-Donsker class with P0-probability tending to 1, so

does . Therefore, (28) of Lemma 8 and Lemma 19.24 in [25] yield that the first right-

hand term in (31) is . Moreover, (28) of Lemma 8 and the Cauchy-Schwarz
inequality imply that the second right-hand side term is oP (1). Consequently, the deterministic

quantity  is equal to 0, and the conditions on (θ0, μ0, g0) ensure that

necessarily ψ0 = Ψ (P0) i.e., that the TMLE  is consistent.

Proof of Proposition 3—We resume the previous proof where we left it. The fundamental

relationship of this proof, derived from  and ,
is

(32)

where the left-hand side term obviously equals . Consider now the first right-

hand term in (32). Since (a) { } is a P0-Donsker class and (b)

, it holds that

 by Lemma 19.24 in
[25]. Regarding the second right-hand side term in (32), note (a) that

(b) that we have already shown that the first random function between parentheses belongs to
a P0-Donsker class with P0-probability tending to 1, (c) that second random function between

parentheses belongs to the P0-Donsker class { },
and (d) that the last function of the decomposition is deterministic. Therefore,

 belongs to a P0-Donsker class with P0-probability tending to 1.
Now, by applying repeatedly the inequality (a + b)2 ≤ 2(a2 + b2) we deduce that
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But ||O|| is bounded under P0 and , so that

. This fact combined with (29), (27) and

 yield that . Consequently, Lemma 19.24

in [25] implies that the second right-hand side term in (32) is . We now turn to the
last right-hand side term in (32). It is easily seen that

where . Using that

, the previous display yields that the third right-hand side term
in (32) equals

In summary, we just showed that

hence the stated relationship.

Proof of Corollary 1—This result relies on the decomposition:

where we use that P0D★ (σ2 (P0), θ0, μ0, g0, Ψ (P0)) = 0. Following the lines of the proof
of Lemma 8 and using the Cauchy-Schwarz inequality yield that the first term of the left-hand
side decomposition is upper-bounded (up to a multiplicative constant) by square-root of

, while the second
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term equals zero. Thus the latter left-hand side expression is  by assumption, (32)
yields the asymptotic linear expansion, and the central limit theorem completes the proof.
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Fig 1.
Illustration of the TMLE procedure (with its general one-step updating procedure). We

intentionally represent the initial estimator  closer to P0 than its kth and (k +1)th updates

 and , heuristically because  is as close to P0 as one can possibly get (given Pn and the
specifics of the super-learning procedure) when targeting P0 itself. However, this obviously

does not necessarily imply that  performs well when targeting Ψ (P0) (instead of P0),

which is why we also intentionally represent  closer to Ψ (P0) than . Indeed,

 is obtained by fluctuating its predecessor  in the direction of Ψ ”, i.e., taking into account
the fact that we are ultimately interested in estimating Ψ (P0). More specifically, the fluctuation

{ } of  is a one-dimensional parametric model (hence its curvy shape in the large

model ) such that (i) , and (b) its score at ε = 0 equals the efficient influence curve

 at  (hence the dotted arrow). An optimal stretch  is determined (e.g. by maximizing

the likelihood on the fluctuation), yielding the update .
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Fig 2.
Illustrating DNA methylation, DNA copy number, and gene expression data. In both graphics,
we represent kernel density estimates (diagonal panels), pairwise plots (lower panels), and
report the pairwise Pearson correlation coefficients (upper panels). (a). Real dataset
corresponding to the EGFR gene in 187 GBM tumor samples. For 130 among the 187 samples,
only DNA copy number and gene expression data were available (circles in lower middle plot).
(b). Simulated dataset consisting of n = 200 independent copies of the synthetic observed data

structure described in Section 6.6. Note that the constant  is added to each value of X so that
graphics corresponding to real and simulated data can be more easily compared.
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Fig 3.

Empirical distribution of { } based on n = 200 independent observed data structures
for k = 0 (initial estimator) and k iterations of the updating procedure (k = 1, 2, 3), as obtained
from B′ = 103 independent replications of the simulation study (using a Gaussian kernel density
estimator). (a). The super-learning procedure involves all algorithms described in Section 6.5.
(b). The super-learning procedure only involves algorithms based on generalized linear models.
In both graphics, gray rectangles represent 95%-accuracy intervals

 and  for the true parameter Ψ (Ps)
based on 200 observed data structures (light gray) and B = 105 observed data structures (dark

p gray). The length of  is the optimal length of a 95%-confidence
interval based on an efficient (regular) estimator of Ψ (Ps) relying on n observations (assuming
that the asymptotic regime is reached).
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Fig 4.
Real data application to the 130 genes of chromosome 18 in the OvCa dataset (ovarian cancers).

We represent the test statistics  for  (left graphic) and 
(right graphic) along the position of gene g on the genome. We report the names of the genes

such that  (left graphic) and  (right graphic), the cut-
offs being arbitrarily chosen.
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Table 1

Real methylation, copy number and expression data used as a baseline for simulating the dataset according to
the simulation scheme presented in Section 6.6. A visual of the simulated dataset is provided in Figure 2(b)

sample name methylation copy number expression 

TCGA-02-0001 (i = 2) 0.05 2.72 −0.46

TCGA-02-0003 (i = 3) 0.01 9.36 1.25
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Table 2

Values of ψB(Ps) and vB(Ps), estimators of Ψ (Ps) and VarPsD★

(Ps)(O), and 95%-accuracy intervals  (n = 200, B = 105)

ψB(Ps) vB(Ps)

N = 200 N = 105

0.2345 0.05980232 [0.2006; 0.2684] [0.2329; 0.2360]
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Table 3

Testing the asymptotic normality of  and the validity of the coverage provided by , wit

h  for k = 0, 1, 2, 3, (a) for the full-SL procedure and (b) for the light-SL procedure. We
report the gains in relative error and mean square error (first and second rows), the test statistics and corresponding
p-values of Lilliefors tests of normality (third and fourth rows), the test statistics of the KS test of normality with

null mean and variance equal to ψB(Ps) and vB(Ps) (fifth rows; the corresponding p-values are all smaller than

10−4), and finally the empirical coverages  as well as their

optimistic counterparts  (sixth and

seventh rows)

(a) full-SL

iteration of the TMLE procedure k = 0 k = 1 k = 2 k = 3

gain in relative error 0 0.0469 0.0625 0.0335

gain in relative mean square error 0 0.0365 0.0369 0.0035

Lilliefors test statistic 0.0183 0.0269 0.0298 0.0282

Lilliefors test p-value 0.5718 0.0861 0.0365 0.0582

KS test statistic 0.1566 0.0782 0.0743 0.0786

empirical coverage – 0.896 0.905 0.898

empirical coverage (optimistic) – 0.914 0.920 0.916

(b) light-SL

iteration of the TMLE procedure k = 0 k = 1 k = 2 k = 3

gain in relative error 0 0.2871 0.2837 0.2866

gain in mean square error 0 0.2352 0.2293 0.2305

Lilliefors test statistic 0.0253 0.0224 0.0218 0.0295

Lilliefors test p-value 0.1251 0.2620 0.2999 0.0400

KS test statistic 0.4227 0.1327 0.1451 0.1377

empirical coverage – 0.936 0.938 0.929

empirical coverage (optimistic) – 0.945 0.948 0.941
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